DATA SHEET

DOT MATRIX LCD CONTROLLER/DRIVER

DESCRIPTION

The μ PD16435 and 16435A are controllers/drivers for a 119×73-dot LCD, and perform LCD full-dot and character composite display by means of control by a microprocessor that has a 4 or 8 -bit data bus. A charge pump type $\mathrm{DC} / \mathrm{DC}$ converter is also incorporated, enabling 3 or 5 V single power supply drive.

The μ PD16435 uses an external reference clock. The μ PD16435A has the on-chip oscillation circuit (external crystal resonator).

FEATURES

- Can interface to 4 or 8 -bit CPU.
- Incorporates 119 segment outputs and 73 common outputs.
(Display duty selectable from $1 / 35,1 / 37,1 / 71,1 / 73$)
- 5×7 character font 208 character data configuration character generation ROM and 16 character data configuration character generation RAM, allowing composite full-dot and character display
- Incorporates extended display functions such as magnification, lateral scrolling, blink, reverse, etc.
- Operating voltage: 2.7 V to 5.5 V
- On-chip DC/DC converter: Selectable between $\times 4$ set-up circuit and $\times 2$ step-up circuit
- On-chip temperature correction circuit
- Master/slave operation capability
- On-chip power-on reset circuit
- On-chip oscillation circuit (μ PD16435A)
- 232-pin TCP (Tape Carried Package)

ORDERING INFORMATION

Part Number	
μ PD16435N-001-×××	TCP (TAB), Standard ROM code
μ PD16435N-001-001	Standard quad TCP (Conforms to EIAJ), Standard ROM code
μ PD16435N-001-002	Standard dual TCP (Output OLB: 0.25 mm pitch), Standard ROM code
μ PD16435AN-001-×××	TCP (TAB), Standard ROM code
μ PD16435AN-001-001	Standard quad TCP (Conforms to EIAJ), Standard ROM code
μ PD16435AN-001-052	Standard dual TCP (Output OLB: 0.25 mm pitch), Standard ROM code

Explanation of Part Number

$\mu \mathrm{PD} 16435$ (A) N-xxx-xxx
-TCP code

ROM code
The TCP model is a custom model. For details, consult NEC sales representative.

BLOCK DIAGRAM

PIN CONFIGURATION (CHIP)

PIN DESCRIPTIONS

Pin Name	Pin No.	Input/Output	Output Type	Description
$\overline{\mathrm{CS}}$	255	Input	-	Chip select signal
RS	254	Input	-	Register selection signal (specifies address register when "0", control register when " 1 ").
$\overline{\mathrm{RD}}$	253	Input (Schmitt)	-	Read enable signal. Reads write address when scrolling. Active edge is falling edge.
WR	252	Input (Schmitt)	-	Write enable signal. Active edge is falling edge.
WS	251	Input	-	Word length selection signal (4-bit input when " 1 ", 8 -bit input when "0").
Doto D_{7}	$\begin{gathered} 250 \\ \text { to } \\ 243 \end{gathered}$	Input/output	CMOS 3-state	Transmit/receive data (3-state bidirectional) Upper \rightarrow D4 to D7 Lower \rightarrow D0 to D3 (These pins should be set as unused in case of 4-bit data). In test mode, these pins are output pins. In a 4-bit transfer, storage is performed in the upper (MSB) in order from the data transferred first.
$\overline{\text { BUSY }}$	240	Output	Nch open-drain	" 0 " indicates busy state.
RESET	242	Input	-	" 0 " \rightarrow Initialization of all internal registers and commands is performed. Output is fixed at V_{1}.
SCR	241	Output	cmos	Signal is output to CPU on completion of one-character scroll.
SYNC	239	Input/output	Nch open-drain	Synchronization signal input/output pins for master/slave operation.
$\begin{aligned} & \mathrm{OSC}_{1} \\ & \mathrm{OSC}_{2} \end{aligned}$	$\begin{aligned} & 235 \\ & 234 \end{aligned}$	-	-	μ PD16435: Input the 4.19 MHz reference clock to the OSC $_{1}$ pin externally. Leave the OSC_{2} pin open. (Always outputs high level.) μ PD16435A: This is the pin to which the 4.19 MHz crystal resonator is connected. Input the external clock to OSC ${ }_{1}$ first.
OSC_{3}	233	Input (Schmitt)	-	2 Hz external clock input pin. Scaled by 2 internally to generate 1 Hz , used as blink synchronization signal.
COM1 to COM73	$\begin{gathered} 212 \text { to } 176 \\ 3 \text { to } 38 \end{gathered}$	Output	Analog switch	Common output signals
SEG1 to SEG119	41 to 70 81 to 134 137 to 171	Output	Analog switch	Segment output signals
$\begin{aligned} & \text { TEST1 } \\ & \text { TEST2 } \end{aligned}$	$\begin{aligned} & 238 \\ & 237 \end{aligned}$	Output	-	" 1 " \rightarrow Test mode " 0 " or open \rightarrow Normal operating mode

Pin Name	Pin No.	Input/Output	Output Type	Description
V1	221	Output	-	LCD drive power supply pin Internal OP-amp output
V2 to V5	$\begin{gathered} 220 \\ \text { to } \\ 217 \end{gathered}$	Input	-	LCD drive power supply pins Can be adjusted by addition of external resistor.
$\begin{aligned} & \operatorname{Vin}(-) \\ & \operatorname{Vin}(+) \end{aligned}$	$\begin{aligned} & 224 \\ & 223 \end{aligned}$	Input	-	Liquid crystal drive power supply OP-amp input pins
Vcc, GND1	232, 256	-	-	Logic power supply, GND
VDD, GND2	257, 222	-	-	Liquid crystal drive (step-up) power supply, GND
$3 / 5$	236	Input	-	Drive voltage selection pin $" 1 " \rightarrow V_{D D}=3 V$ ($\times 4$ step-up circuit selected) " 0 " \rightarrow VDD $=5 \mathrm{~V}$ ($\times 2$ step-up circuit selected)
$\begin{gathered} \mathrm{C} 1 \pm, \mathrm{C} 2 \pm \\ \mathrm{C} 3 \pm \end{gathered}$	$\begin{gathered} 230 \text { to } \\ 225 \end{gathered}$	-	-	A $1 \mu \mathrm{~F}$ tantalum or ceramic capacitor should be connected externally.

REFERENCE CLOCK

Product Name	Reference Clock
μ PD16435	External input
μ PD16435A	On-chip oscillation circuit (External crystal resonator)

OSC CIRCUIT (μ PD16435A)

REGISTER FUNCTIONS

(1) Address Register

Sets the address of each register, and also sets display control, standby mode, and scaler resetting.

Note Standby mode = (DC/DC converter stopped
OSC $_{1}$ input invalid (μ PD16435)
OSC stopped (μ PD16435A)
SEGn, COMn = V_{1}
Data write/read prohibited
After powering on

0	0	0	0	0	0	0	0

Register address list

Address				Register Name	
b3	b2	b1	b0		
0	0	0	0	Full-dot X address register	
0	0	0	1	Full-dot Y address register	
0	0	1	0	Full-dot data register	
0	0	1	1	Character X address register	
0	1	0	0	Character Y address register	
0	1	0	1	Character data register	
0	1	1	0	CGRAM address register	
0	1	1	1	CGRAM data register	
1	0	0	0	Extension register	
1	0	0	1	Extension register X address register	
1	0	1	0	Extension register Y address register	
1	0	1	1	Scroll register	
1	1	0	0	Control register	

(2) Full-Dot X Address Register (Register Address = 0000B)

Performs full-dot display, display screen X (segment) direction address setting. As scrolling is not possible with a fulldot display, addresses are not allocated to the scroll RAM area.

After powering on: Undefined
(3) Full-Dot Y Address Register (Register Address = 0001B)

Performs full-dot display, display screen Y (common) direction address setting.

After powering on: Undefined

(4) Full-Dot Data Register (Register Address $=0010 \mathrm{~B}$)

Inputs full-dot display data. Display data is stored in the display memory with the MSB on the left, and display data " 1 " corresponds to illumination.

After powering on: Undefined

Full-Dot X Address and Y Address Allocation

(5) Character X Address Register (Register Address = 0011B)

Performs character display display, screen X (segment) direction address setting. X addresses include the scroll RAM area.

After powering on: Undefined
(6) Character Y Address Register (Register Address = 0100B)

Performs character display display, screen Y (common) direction address setting.

After powering on: Undefined

(7) Character Data Register (Register Address = 0101B)

The character indicated in the character code table is displayed at the position indicated by the character X and Y address registers.

After powering on: Undefined

Character X Address and Y Address Allocation

(8) CGRAM Address Register (Register Address = 0110B)

Performs address setting when display data is written to CGRAM. Bits b6 to b3 of the CGRAM address indicate the character code, and bits b2 to b0 indicate the character line.

Note If auto increment is set with the control register, 06 H is followed by 07 H . Dummy data should be sent when the address is 07 H .
Example: (CGRAM address with auto increment)

$$
---\rightarrow 15 \mathrm{H} \rightarrow 16 \mathrm{H} \rightarrow \underline{17 \mathrm{H}} \rightarrow 18 \mathrm{H} \rightarrow---
$$

After powering on: Underfined
(9) CGRAM Data Register (Register Address = 0111B)

CGRAM display data. The lower 5 bits of the write data are valid.

After powering on: Undefined
(10) Extension Register (Register Address = 1000B)

Performs magnification, reverse, cursor, and time mark setting.
MSB LSB

\times : Don't Care

In case of magnification setting
00: Standard
01: $\times 2$ horizontal
10: $\times 2$ vertical
11: $\times 4$ magnification ($\times 2$ horizontal \& vertical)
Magnification display is performed at any line position; characters of different sizes cannot be displayed on the same line.
Line specification magnification display is possible by setting an extension Y address after this command, and multiple-line magnification display is possible by setting consecutive extension Y address.

In case of reverse setting
00: Reverse cancellation (line specification)
01: Reverse (line specification)
10: Reverse cancellation (full screen)
11: Reverse (full screen)
Line specification reverse display is possible by setting an extension Y address after this command, and multiple-line reverse display is possible by setting consecutive extension Y addresses.
Regarding the reverse display Y address direction, a total of 9 dots (7 character part dots +1 cursor part dot +1 top space dot) are reversed.
In the case of $\times 2$ vertical magnification or $\times 4$ magnification, a total of 18 dots (14 character part dots +2 cursor part dots +2 top space dots) are reversed.

```
In case of cursor setting
    00: Cursor non-display
    01: Cursor display (blinking stopped)
    10: Cursor display (blink operation)
    11: Don't Care
```

Blinking display can be performed at any address by specifying an extension X and Y address after this command. The specification is for one address only. The address specification should be performed in the order: X address $\rightarrow \mathrm{Y}$ address.
In case of character blink setting
X0: Blinking stopped
X1: Blink operation
Blinking can be performed at any address by specifying an extension X and Y
address after this command. The specification is for one address only.
The address specification should be performed in the order: X address $\rightarrow \mathrm{Y}$ address.
Extension function setting
00: Magnification setting
01: Reverse setting
10: Cursor setting
11: Character blink setting

After powering on

\times	\times	\times	\times	0	0	0	0

Display and RAM Allocation in Case of Magnification Setting
(1) Example of $\times 2$ horizontal magnification (line 07 H specified)

Note Lines 0 AH to 15 H for which $\times 2$ horizontal magnification is specified can be used as scroll RAM.
(2) Example of $\times 2$ vertical magnification (line 00 H specified)

Note If $\times 2$ vertical magnification is specified for line 07 H , the lower half will be outside the display area. Also, if $\times 2$ vertical magnification is specified for line 06 H , the bottom dot will be a space.
(3) Example of $\times 4$ magnification (line 00 H specified)

Note Lines 0 AH to 15 H for which $\times 4$ magnification is specified can be used as scroll RAM.
If $\times 4$ magnification is specified for line 07 H , the lower half will be outside the display area, and if $\times 4$ magnification is specified for line 06 H , the bottom dot will be a space.
(11) Extension X Address Register (Register Address = 1001B)

Performs extension display, display screen X (segment) direction address setting. X addresses include the scroll RAM area. This register must be executed before the extension Y address register.

After powering on: Undefined
(12) Extension Y Address Register (Register Address = 1010B)

Performs extension display, display screen Y (common) direction address setting. This register must be executed after the X address.

After powering on: Undefined
(13) Scroll Register (Register Address = 1011B)

Performs scroll setting.

Notes 1. When scroll reset is executed, the screen leftmost character X address returns to 00 H , and scrolling is stopped.
2. After scrolling has been stopped, character Y address setting is necessary when scrolling is restarted. It is not possible to set a different address from the character Y address before scrolling was stopped.

After powering on

0	0	0	0	0	0	0	0

(14) Control Register (Register Address = 1100B)

Performs address increment direction, common output, frame frequency, blinking, and master/slave setting.

Note CGRAM is incremented in the Y direction even if 00 H is set.

After powering on

0	0	0	0	0	0	0	0

Standard ROM Code (001)

$\begin{aligned} & \text { Higher Bit } \\ & \text { Lower } \\ & \text { Bit } 4 \text { Bits } \\ & \text { Bits } \end{aligned}$	0000	0001	0010	0011	0100	0101	0110	0111	1010	1011	1100	1101	1110	1111
xxxx0000	$\begin{array}{\|c\|} \hline \text { CC } \\ \text { RAM } \\ (1) \\ \hline \end{array}$:": ${ }^{\prime \prime}$:"':	!"'."		:'.'.	: ${ }^{\prime \prime}$	"-.'	:':':	".'.	.:'	":':
xxxx0001	(2)	:":	:	-	:"':	:"'	..:	-".:	:'	:	":':-	:". ${ }^{\text {: }}$:".	".'"
xxxx0010	(3)			."':	:"':	.':	!"	:"'.		.: ${ }^{\prime}$: :	:	:'	"':
xxxx0011	(4)			:'	:"'	'"	:"...	-'.".		: ':	':':'	\#:"."	: ${ }^{\prime \prime}$:'
xxxx0100	(5)	:	-	:	:"':	:"	-"	:			:'.	-:	: $:$:	".. \cdots \cdots \cdots
xxxx0101	(6)	:"':	: ${ }_{\text {: }}^{\text {: }}$: $:$:".'.	..	!	:".':	:	::	-.':'	.	"'	:':':	'.' \cdots \cdots
xxxx0110	(7)			:"'	:"-"	!	:"'	:	-...":	:	\cdots	.':	'	:':'
xxxx0111	(8)		":	" ${ }^{\prime \prime}$:"	:"':	!	:"-:	: :	-...:	-.':',	'..':	-'.',	':	:"' ${ }^{\prime \prime}$
xxxx1000	(9)		:"	:"..:	..:	.'"	! "	'.."	: ${ }^{\prime \prime}$: "'	.-:':	!	':	:
xxxx1001	(10)	:'.':	:	'...:	:	'.''	:	:...:	: : $:$. ${ }^{\text {a' }}$:	:	:"':	\#:
xxxx1010	(11)		: : : $:$:	::	':'	.":	"'	-":'	- ${ }^{\text {a' }}$	-..':	: '	! ${ }^{\text {. }}$: "	":
xxxx1011	(12)	:	.:	::		!	\#.	:'	-.:':	:	!	-	":":'	:":
xxxx1100	(13)	:':"	:			": $:$:'			': $:$:	\# \quad :	'"-:	:'":	:':':	:'"':
xxxx1101	(14)		-..."			'	:':'		'":	-	-':	-'	"'.',	:"'
xxxx1110	(15)	:":':		'.	-	: \quad "	:"	.:'	-.."	-:':	-':'	'.'	:'.":	:':'
xxxx1111	(16)	:.:"	. ${ }^{\prime}$	" \quad :	:"'		:"':	-:".	: :	:	'--':		"'.':	".."'

ABSOLUTE MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{GND} 1=\mathrm{GND} 2=0 \mathrm{~V}\right)$

Parameter	Symbol	Rating	Unit
Supply voltage $1(3 / 5=\mathrm{L})$	Vcc1	-0.3 to +7.0	V
Supply voltage $2(3 / 5=H)$	Vcc2	-0.3 to +4.0	V
Logic input voltage	Vin	-0.3 to V $\mathrm{cc}+0.3$	V
Logic output voltage	Vout1	-0.3 to Vcc+0.3	V
LCD drive power supply voltage	VDD	V cc -0.3 to +16.0	V
LCD drive power supply input voltage	V_{2} to V_{5}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
LCD drive power supply output voltage	V_{1}	-0.3 to V $\mathrm{VD}+0.3$	V
Amplifier input voltage	VIN (+), Vin (-)	-0.3 to V $\mathrm{DD}+0.3$	V
Driver output voltage (Segment, common)	Vout2	-0.3 to V $\mathrm{VD}+0.3$	V
Storage temperature range	Tstg.	-55 to +150	C

RECOMMENDED OPERATING RANGES

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply voltage $1(3 / 5=\mathrm{L})$	$\mathrm{V}_{\mathrm{CC} 1}$	4.5	5.0	5.5	V
Supply voltage 2 $(3 / 5=\mathrm{H})$	$\mathrm{V}_{\mathrm{CC} 2}$	2.7	3.0	3.6	V
LCD drive supply voltage	V_{DD}	V_{CC}	8.0	14.5	V
Logic input voltage	V_{IN}	0		$\mathrm{~V}_{\mathrm{CC}}$	V
LCD drive power supply input voltage	V_{2} to V_{5}	0		$\mathrm{~V}_{\mathrm{DD}}$	V
LCD drive power supply output voltage	V_{1}	0		$\mathrm{~V}_{\mathrm{DD}}$	V
External capacitance	C_{0} to C_{3}	1		4.7	$\mu \mathrm{~F}$
Operating temperature range	T_{A}	-40		+85	${ }^{\circ} \mathrm{C}$

ELECTRICAL SPECIFICATIONS (Unless specified otherwise, $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{0}$ to $\mathrm{C}_{3}=1 \mu \mathrm{~F}, \mathrm{Vcc}=$ $5 \mathrm{~V} \pm 10 \%$: $\overline{3} / 5=\mathrm{L}$ or $\mathrm{Vcc}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}: 3 / 5=\mathrm{H}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Input voltage high	$\mathrm{V}_{\mathrm{H} 1}$	Except Schmitt inputs	0.7 V cc			V
Input voltage low	VIL1	Except Schmitt inputs			0.3 Vcc	V
Input voltage high	$\mathrm{V}_{\mathbf{H} 2}$	Schmitt inputs	0.8 Vcc			V
Input voltage low	VIL2	Schmitt inputs			0.2 Vcc	V
Hysteresis voltage	V_{H}	Schmitt inputs	0.05 V cc		0.2 Vcc	V
Input current high	Інн	$\overline{\mathrm{CS}}, \mathrm{RS}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{WS}, \overline{\mathrm{RESET}}, 3 / \overline{5}$, $\mathrm{OSC}_{3}, \operatorname{Vin}(+), \operatorname{Vin}(-), \mathrm{Vin}^{2}=\mathrm{Vcc}$			1	$\mu \mathrm{A}$
Input current low	$1{ }_{1+1}$	$\overline{\mathrm{CS}}, \mathrm{RS}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{WS}, \overline{\mathrm{RESET}}, 3 / \overline{5}$, $\mathrm{OSC}_{3}, \operatorname{Vin}(+), \operatorname{Vin}(-), \mathrm{Vin}=0 \mathrm{~V}$			-1	$\mu \mathrm{A}$
Input current high	$11+2$	TEST1, TEST2, Vin = Vcc			6	mA
Input current low	ILL	TEST1, TEST2, Vin $=0 \mathrm{~V}$			-100	$\mu \mathrm{A}$
Output voltage high	Vон1	$\begin{aligned} & \mathrm{D}, \mathrm{SCR}, 3 / \overline{5}=\mathrm{L} \\ & \mathrm{Ioн}=-1 \mathrm{~mA} \end{aligned}$	0.9 Vcc			V
Output voltage low	Vol1	$\begin{aligned} & D_{n}, \text { BUSY, SCR, SYNC, } 3 / 5=L \\ & \text { loL }=4 \mathrm{~mA} \end{aligned}$			0.1 Vcc	V
Output voltage high	Voн2	$\begin{aligned} & \mathrm{D}_{\mathrm{n}}, \mathrm{SCK}, 3 / \overline{5}=\mathrm{H} \\ & \mathrm{I} \text { н }=-0.6 \mathrm{~mA} \end{aligned}$	0.9 Vcc			V
Output voltage low	Vol2	$\begin{aligned} & \text { Dn, BUSY, SCR, SYNC, } 3 / \overline{5}=\mathrm{H} \\ & \text { loL }=2.4 \mathrm{~mA} \end{aligned}$			0.1 Vcc	V
Output voltage high	Vонз	$\begin{aligned} & \mathrm{V} 1 \mathrm{pin} \\ & \operatorname{IoH}=-1 \mathrm{~mA} \\ & \operatorname{ViN}(+)=\operatorname{VDD}, \operatorname{Vin}(-)=0 \mathrm{~V} \end{aligned}$	0.9 Vcc			V
Output voltage low	Voı3	$\begin{aligned} & \mathrm{V}_{1} \mathrm{pin} \\ & \operatorname{loL}=-10 \mu \mathrm{~A} \\ & \operatorname{ViN}(+)=0 \mathrm{~V}, \operatorname{ViN}(-)=\operatorname{VDD} \end{aligned}$			$0.1 \mathrm{~V}_{\text {do }}$	V
Leak current high	ILoн	$\mathrm{D}_{\mathrm{n}}, \mathrm{SYNC}, \mathrm{BUSY}$ Vinout $=\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$
Leak current low	ILol	D_{n}, SYNC, BUSY Vinout $=0 \mathrm{~V}$			-10	$\mu \mathrm{A}$
Common output on-resistance	Rсом	COM_{1} to COM_{73} $\|\|\mathrm{II}\|=100 \mu \mathrm{~A}$			5	k Ω
Segment output on-resistance	Rseg	SEG ${ }_{1}$ to SEG $_{119}$ $\|\|\mathrm{II}\|=100 \mu \mathrm{~A}$			10	k Ω
Driver unit supply voltage (step-up voltage)	VDD1	$\begin{aligned} & R_{\mathrm{B}}=10 \mathrm{k} \Omega \\ & 3 / \overline{5}=\mathrm{L} \end{aligned}$	1.9 Vcc		2.0 Vcc	V
Driver unit supply voltage (step-up voltage)	VDD2	$\begin{aligned} & \mathrm{RB}=10 \mathrm{k} \Omega \\ & 3 / \overline{5}=\mathrm{H} \end{aligned}$	3.6 Vcc		4.0 Vcc	V

ELECTRICAL SPECIFICATIONS (Unless specified otherwise, $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{C} 0$ to $\mathrm{C} 3=1 \mu \mathrm{~F}, \mathrm{Vcc}=$ $5 \mathrm{~V} \pm 10 \%$: $3 / \overline{5}=\mathrm{L}$ or $\mathrm{Vcc}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}: 3 / \overline{5}=\mathrm{H}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Logic consumption current$\text { (} \mu \mathrm{PD} 16435)$	Icc1	$\begin{aligned} \mathrm{V} \mathrm{cc} & =3.0 \mathrm{~V}, \text { no load, } 3 / \overline{5}=\mathrm{H} \\ \mathrm{fosc} & =4.19 \mathrm{MHz} \end{aligned}$		0.35	1	mA
	Icc2	$\begin{aligned} \mathrm{Vcc} & =5.0 \mathrm{~V}, \text { no load, } 3 / 5=\mathrm{L} \\ \mathrm{fosc} & =4.19 \mathrm{MHz} \end{aligned}$		0.35	1	mA
	Ісс3	$\begin{aligned} & \mathrm{V} \mathrm{Cc}=3.0 \mathrm{~V}, 3 / 5=\mathrm{H} \\ & \mathrm{R}_{\mathrm{B}}=10 \mathrm{k} \Omega^{\mathrm{Note}} \\ & \mathrm{fosc}=4.19 \mathrm{MHz} \end{aligned}$		1.3	2.5	mA
	Icc4	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 3 / 5=\mathrm{L} \\ & \mathrm{R}_{\mathrm{B}}=10 \mathrm{k} \Omega^{\mathrm{Note}} \\ & \text { fosc }=4.19 \mathrm{MHz} \end{aligned}$		0.75	1.5	mA
Logic consumption current$\text { (} \mu \text { PD16435A) }$	Icc1	$\begin{aligned} \mathrm{V} \mathrm{cc} & =3.0 \mathrm{~V}, \text { no load, } 3 / \overline{5}=\mathrm{H} \\ \mathrm{fosc} & =4.19 \mathrm{MHz} \end{aligned}$		0.6	1.5	mA
	Icc2	$\begin{aligned} \mathrm{V} \mathrm{cc} & =5.0 \mathrm{~V}, \text { no load, } 3 / 5=\mathrm{L} \\ \text { fosc } & =4.19 \mathrm{MHz} \end{aligned}$		0.65	1.5	mA
	Іссз	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}, 3 / \overline{5}=\mathrm{H} \\ & \mathrm{R}_{\mathrm{B}}=10 \mathrm{k} \Omega^{\mathrm{Note}} \\ & \mathrm{fosc}=4.19 \mathrm{MHz} \end{aligned}$		1.5	3	mA
	Icc4	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, 3 / \overline{5}=\mathrm{L} \\ & \mathrm{R}_{\mathrm{B}}=10 \mathrm{k} \Omega^{\mathrm{Note}} \\ & \mathrm{fosc}=4.19 \mathrm{MHz} \end{aligned}$		1.05	2	mA

Note TYP. values are reference values for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

NOTE MEASUREMENT CIRCUIT

SWITCHING SPECIFICATIONS (Unless specified otherwise, $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, C_{0} to $\mathrm{C}_{3}=1 \mu \mathrm{~F}, \mathrm{Vcc}=$ $5 \mathrm{~V} \pm 10 \%, R \mathrm{~L}=5 \mathrm{k} \Omega, \mathrm{CL}=150 \mathrm{pF})$

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\mathrm{RD}}$ data delay time	trid	$\overline{\mathrm{RD}} \downarrow \rightarrow \mathrm{D}_{\mathrm{n}}$			150	ns
$\overline{\mathrm{RD}}$ data hold time	troh	$\overline{\mathrm{RD}} \uparrow \rightarrow \mathrm{D}_{\mathrm{n}}$	10			ns
$\overline{\mathrm{BUSY}}$ low-level time	tBL	When full-dot data is written	3		9	CLKNote
$\overline{\text { BUSY }}$ low-level time	tBL	When charactor data is written	48		54	CLK Note
SCR high-level time	tscr		100		550	$\mu \mathrm{s}$

Note CLK = 4/fosc

REQUIRED TIMING CONDITIONS (Unless specified otherwise, $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, C_{0} to $\mathrm{C}_{3}=1 \mu \mathrm{~F}, \mathrm{Vcc}=$ $5 \mathrm{~V} \pm 10 \%, \mathrm{RL}=5 \mathrm{k} \Omega, \mathrm{CL}=150 \mathrm{pF}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Clock frequency	fosc	μ PD16435 only	3.77	4.19	4.61	MHz
High-level clock pulse width	twhc	μ PD16435 only	100			ns
Low-level clock pulse width	twlc	μ PD16435 only	100			ns
$\overline{\mathrm{RD}}$ high-level width	trin		200			ns
$\overline{\mathrm{RD}}$ low-level width	tric		200			ns
$\overline{\mathrm{WR}}$ high-level width	twRH		200			ns
$\overline{\mathrm{WR}}$ low-level width	twRL		200			ns
$\overline{\mathrm{WR}}-\overline{\mathrm{RD}}$ time	twrrd	$\overline{\mathrm{WR}} \uparrow \rightarrow \overline{\mathrm{RD}} \downarrow$	200			ns
$\overline{\mathrm{RD}}-\overline{\mathrm{WR}}$ time	trdwr	$\overline{\mathrm{RD}} \uparrow \rightarrow \overline{\mathrm{WR}} \downarrow$	200			ns
$\overline{\mathrm{CS}}$, RS setup time	tcrs	$\overline{\mathrm{CS}} \downarrow, \mathrm{RS} \rightarrow \overline{\mathrm{WR}} \downarrow, \overline{\mathrm{RD}} \downarrow$	0			ns
$\overline{\mathrm{CS}}, \mathrm{RS}$ hold time	tcri	$\overline{\mathrm{WR}} \uparrow, \overline{\mathrm{RD}} \uparrow \rightarrow \overline{\mathrm{CS}} \uparrow, \mathrm{RS}$	300			ns
Input data setup time	tos	$\mathrm{D}_{\mathrm{n}} \rightarrow \overline{\mathrm{WR}} \uparrow$	0			ns
Input data hold time	toh	$\overline{\mathrm{WR}} \uparrow \rightarrow \mathrm{D}_{\mathrm{n}}$	200			ns

SWITCHING SPECIFICATIONS (Unless specified otherwise, $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{0}$ to $\mathrm{C}_{3}=1 \mu \mathrm{~F}, \mathrm{Vcc}=2.7$ to $3.6 \mathrm{~V}, \mathrm{RL}=5 \mathrm{k} \Omega, \mathrm{CL}=150 \mathrm{pF}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\mathrm{RD}}$ data delay time	trid	$\overline{\mathrm{RD}} \downarrow \rightarrow \mathrm{D}_{\mathrm{n}}$			500	ns
$\overline{\mathrm{RD}}$ data hold time	troh	$\overline{\mathrm{RD}} \uparrow \rightarrow \mathrm{D}_{\mathrm{n}}$	15			ns
$\overline{\text { BUSY }}$ low-level time	tBL	When full-dot data is written	3		9	CLK ${ }^{\text {Note }}$
$\overline{\text { BUSY }}$ low-level time	tBL	When charactor data is written	48		54	CLK ${ }^{\text {Note }}$
SCR high-level time	tscr		100		550	$\mu \mathrm{s}$

Note CLK = 4/fosc

REQUIRED TIMING CONDITIONS (Unless specified otherwise, $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, C_{0} to $\mathrm{C}_{3}=1 \mu \mathrm{~F}, \mathrm{Vcc}=2.7$ to $3.6 \mathrm{~V}, \mathrm{RL}=5 \mathrm{k} \Omega, \mathrm{CL}=150 \mathrm{pF}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Clock frequency	fosc	μ PD16435 only	3.77	4.19	4.61	MHz
High-level clock pulse width	twнс	μ PD16435 only	100			ns
Low-level clock pulse width	twLc	μ PD16435 only	100			ns
$\overline{\mathrm{RD}}$ high-level width	troh		400			ns
$\overline{\mathrm{RD}}$ low-level width	trbL		400			ns
$\overline{\text { WR }}$ high-level width	twR		400			ns
$\overline{\mathrm{WR}}$ low-level width	twri		400			ns
$\overline{\mathrm{WR}}$ - $\overline{\mathrm{RD}}$ time	twrrd	$\overline{\mathrm{WR}} \uparrow \rightarrow \overline{\mathrm{RD}} \downarrow$	400			ns
$\overline{\mathrm{RD}}$ - $\overline{\mathrm{WR}}$ time	trowr	$\overline{\mathrm{RD}} \uparrow \rightarrow \overline{\mathrm{WR}} \downarrow$	400			ns
$\overline{\mathrm{CS}}$, RS setup time	tcrs	$\overline{\mathrm{CS}} \downarrow, \mathrm{RS} \rightarrow \overline{\mathrm{WR}} \downarrow, \overline{\mathrm{RD}} \downarrow$	0			ns
$\overline{\mathrm{CS}}$, RS hold time	tcre	$\overline{\mathrm{WR}} \uparrow, \overline{\mathrm{RD}} \uparrow \rightarrow \overline{\mathrm{CS}} \uparrow$, RS	600			ns
Input data setup time	tos	$\mathrm{D}_{\mathrm{n}} \rightarrow \overline{\mathrm{WR}} \uparrow$	0			ns
Input data hold time	toh	$\overline{\mathrm{WR}} \uparrow \rightarrow \mathrm{D}_{\mathrm{n}}$	400			ns

AC TIMING TEST VOLTAGE

AC CHARACTERISTICS WAVEFORM

 OSCOSC1

READ TIMING

WRITE TIMING

BUSY

SCR

SCR

EXAMPLE TEMPERATURE CORRECTION CIRCUIT CONNECTION

REFERENCE DOCUMENTS

NEC Semiconductor Device Reliability/Quality Control System (IEI-1212)
Semiconductor Device Mounting Technology Manual

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

