128 Segment LCD Drivers CMOS

The MC14LC5003/5004 are 128-segment, multiplexed-by-four LCD Drivers. The two devices are functionally the same except for their data input protocols. The MC14LC5003 uses a serial interface data input protocol. The device may be interfaced to the MC68HCXX product families using a minimal amount of software (see example). The MC14LC5004 has a IIC interface and has essentially the same protocol, except that the device sends an acknowledge bit back to the transmitter after each eight-bit byte is received. MC14LC5004 also has a "read mode", whereby data sent to the device may be retrieved via the IIC bus.

The MC14LC5003/MC14LC5004 drives the liquid-crystal displays in a mul-tiplexed-by-four configuration. The device accepts data from a microprocessor or other serial data source to drive one segment per bit. The chip does not have a decoder, allowing for the flexibility of formatting the segment data externally.

Devices are independently addressable via a two-wire (or three-wire) communication link which can be common with other peripheral devices.

The MC14LC5003/MC14LC5004 are low cost version of MC145003 and MC145004 without cascading function.

- Drives 128 Segments Per Package
- May Be Used with the Following LCDs: Segmented Alphanumeric, Bar Graph, Dot Matrix, Custom
- Quiescent Supply Current: $30 \mathrm{~A} @ 2.7 \mathrm{~V}$ VD
- Operating Voltage Range: 2.7 to 5.5 V
- Operating Temperature Range: -40 to 85 C
- Separate Access to LCD Drive Section's Supply Voltage to Allow for Temperature Compensation
- See Application Notes AN1066 and AN442

MC14LC5003 MC14LC5004

QFP FU SUFFIX CASE 848B

ORDERING INFORMATION
MC14LC5003FU QFP MC14LC5004FU QFP MCC14LC5003 BARE DIE MCC14LC5004 BARE DIE

PIN ASSIGNMENT		
O		
	52515049484746454443424140	
FP32	1 39	Din
FP31	38	DCLK
FP30	37	NC
FP29	36	FP1
FP28	35	FP2
FP27	34	FP3
FP26	33	FP4
FP25	32	FP5
FP24	31	FP6
FP23	10	FP7
FP22	11 29	FP8
FP21]	12 28	FP9
FP20	13 27	FP10
14151617181920212223242526		
NC=NO CONNECTION		

REV 2
10/96

ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to $\mathrm{V}_{\text {SS }}$)

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage	-0.5 to +6.5	V
$\mathrm{~V}_{\text {in }}$	Input Voltage, $\mathrm{D}_{\text {in }}$, and Data Clock	-0.5 to 15	V
$\mathrm{~V}_{\text {in osc }}$	Input Voltage, $\mathrm{OSC}_{\text {in }}$ of Master	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}$	DC Input Current, per Pin	± 10	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Descriptions section.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{T}_{\mathrm{A}}=25 \mathrm{C}$)

Characteristic	Symbol	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ \mathrm{~V} \end{gathered}$	$\underset{\mathbf{V}}{\mathrm{V}_{\mathrm{LCD}}}$	Min	Typical	Max	Unit
	$\begin{aligned} & \mathrm{I}_{\mathrm{FH}} \\ & \mathrm{I}_{\mathrm{FL}} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 260 \\ & 260 \end{aligned}$	-	-	$\mu \mathrm{A}$
	$\begin{aligned} & \mathrm{I}_{\mathrm{FH}} \\ & \mathrm{I}_{\mathrm{FL}} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.7 \end{aligned}$	$\begin{aligned} & \hline-240 \\ & -240 \end{aligned}$	-	-	
	$\begin{aligned} & \mathrm{I}_{\mathrm{FH}} \\ & \mathrm{I}_{\mathrm{FL}} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.7 \end{aligned}$	-40	-	-1.5	
	$\begin{aligned} & \mathrm{I}_{\mathrm{FH}} \\ & \mathrm{I}_{\mathrm{FL}} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.7 \end{aligned}$	40	-	$\frac{-}{2}$	
	$\begin{aligned} & \mathrm{I}_{\mathrm{FH}} \\ & \mathrm{I}_{\mathrm{FL}} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 600 \\ & 600 \end{aligned}$	-	-	
	$\begin{aligned} & \mathrm{I}_{\mathrm{FH}} \\ & \mathrm{I}_{\mathrm{FL}} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & -520 \\ & -520 \end{aligned}$	-	-	
	$\begin{aligned} & \mathrm{I}_{\mathrm{FH}} \\ & \mathrm{I}_{\mathrm{FL}} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	-35	-	$\overline{-1.5}$	
	$\begin{aligned} & \mathrm{I}_{\mathrm{FH}} \\ & \mathrm{I}_{\mathrm{FL}} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	55	-	$\overline{1}$	
Supply Standby Currents (No Clock) $\begin{aligned} \mathrm{I}_{\mathrm{DD}} & =\text { Standby @ } \mathrm{I}_{\text {out }} \end{aligned}=0 \mu \mathrm{~A}$	$I_{D D S}$ ILCDS IDDS lcds	$\frac{2.7}{5.5}$	$\frac{\overline{2.7}}{\frac{-5}{5.5}}$	-	-	$\begin{gathered} 30 \\ 800 \\ 50 \\ 1500 \end{gathered}$	$\mu \mathrm{A}$
$\begin{aligned} & \text { Supply Currents }\left(\mathrm{f}_{\mathrm{OSC}}\right)=110 \mathrm{kHz} \\ & \mathrm{I}_{\mathrm{DD}}=\text { Quiescent } @ \mathrm{I}_{\text {out }}=0 \mu \mathrm{~A}, \text { no loading } \\ & \mathrm{I}_{\mathrm{DD}}=\text { Quiescent } \text { loading }=270 \mathrm{pF} \\ & \mathrm{I}_{\mathrm{DD}}=\text { Quiescent } @ I_{\text {out }}=0 \mu \mathrm{~A}, \text { no loading } \\ & \mathrm{I}_{\mathrm{ID}}=\text { Quiescent } @ \text { loading }=270 \mathrm{pF} \\ & \mathrm{I}_{\mathrm{LCD}}=\text { Quiescent } @ \mathrm{I}_{\text {out }}=0 \mu \mathrm{~A}, \text { no loading } \\ & \mathrm{I}_{\text {LCD }}=\text { Quiescent } @ \mathrm{I}_{\text {out }}=0 \mu \mathrm{~A}, \text { no loading } \end{aligned}$	$I_{D D Q}$ IDDQ $I_{D D Q}$ $\mathrm{I}_{\mathrm{DDQ}}$ l'LCDQ lıDQ	$\begin{aligned} & 2.7 \\ & 2.7 \\ & 5.5 \\ & 5.5 \\ & - \end{aligned}$	- - - 2.7 5.5	-	30 - 170 - -	$\begin{gathered} \overline{70} \\ \overline{400} \\ 40 \\ 70 \end{gathered}$	$\mu \mathrm{A}$
Input Current	$\mathrm{l}_{\text {in }}$	-	-	-0.1	-	0.1	$\mu \mathrm{A}$
Input Capacitance	$\mathrm{C}_{\text {in }}$	-	-	-	-	7.5	pF

(continued)

ELECTRICAL CHARACTERISTICS（Continued）

Characteristic	Symbol	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ \mathrm{~V} \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{LCD}} \\ \mathrm{~V} \end{gathered}$	Min	Typical	Max	Unit
Frequencies OSC2 Frequency＠R1；R1＝ $200 \mathrm{k} \Omega$ BP Frequency＠R1 OSC2 Frequency＠R2；R2＝ $996 \mathrm{k} \Omega$	$\begin{aligned} & \mathrm{f}_{\mathrm{OSC} 2} \\ & \mathrm{f}_{\mathrm{BP}} \\ & \mathrm{f}_{\mathrm{OSC} 2} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{gathered} 100 \\ 100 \\ 23 \end{gathered}$	$-$	$\begin{gathered} 150 \\ 150 \\ 33 \end{gathered}$	$\begin{gathered} \mathrm{kHz} \\ \mathrm{~Hz} \\ \mathrm{kHz} \end{gathered}$
Average DC Offset Voltage（BP Relative to FP）	V_{OO}	5	2.8	－50	－	＋50	mV
Input Voltage \quad＂0＂Level	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	$\begin{aligned} & 2.8 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	－	－	$\begin{aligned} & \hline 0.85 \\ & 1.65 \end{aligned}$	V
	$\begin{aligned} & \mathrm{V}_{I H} \\ & \mathrm{~V}_{\mathrm{IH}} \end{aligned}$	$\begin{aligned} & 2.8 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{gathered} \hline 2 \\ 3.85 \end{gathered}$	－	－	
Output Drive Current－Backplanes	$\begin{aligned} & \mathrm{I}_{\mathrm{BH}}{ }^{*} \\ & \mathrm{I}_{\mathrm{BL}} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.8 \end{aligned}$	$\begin{aligned} & -240 \\ & -240 \end{aligned}$	二	－	$\mu \mathrm{A}$
	$\begin{aligned} & \mathrm{I}_{\mathrm{BH}} \\ & \mathrm{I}_{\mathrm{BL}} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 260 \\ & 260 \end{aligned}$	二	－	
	$\begin{aligned} & \mathrm{I}_{\mathrm{BH}} \\ & \mathrm{I}_{\mathrm{BL}} \end{aligned}$	5	$\begin{aligned} & 2.8 \\ & 2.8 \end{aligned}$	40	－	$\overline{2}$	
	$\begin{aligned} & \mathrm{I}_{\mathrm{BH}} \\ & \mathrm{I}_{\mathrm{BL}} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline 2.8 \\ & 2.8 \end{aligned}$	－40	二	－1	
	$\begin{aligned} & \mathrm{I}_{\mathrm{BH}} \\ & \mathrm{I}_{\mathrm{BL}} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & -520 \\ & -520 \end{aligned}$	－	－	
	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{BH}} \\ & \mathrm{I}_{\mathrm{BL}} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \end{aligned}$	－	－	
	$\begin{aligned} & \mathrm{I}_{\mathrm{BH}} \\ & \mathrm{I}_{\mathrm{BL}} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	55	二	$\overline{1}$	
	$\begin{aligned} & \mathrm{I}_{\mathrm{BH}} \\ & \mathrm{I}_{\mathrm{BL}} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	－35	－	－1	
Pulse Width，Data Clock（Figure 1）	$\mathrm{t}_{\text {w }}$	$\begin{aligned} & 5 \\ & 3 \end{aligned}$		$\begin{gathered} 50 \\ 100 \end{gathered}$	－	－	ns
DCLK Rise／Fall Time（Figure 1）	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	$\begin{aligned} & 5 \\ & 3 \end{aligned}$		－	－	$\begin{gathered} 20 \\ 120 \end{gathered}$	$\mu \mathrm{s}$
Setup Time， $\mathrm{D}_{\text {in }}$ to DCLK \quad（Figure 2）	$\mathrm{t}_{\text {su }}$	$\begin{aligned} & 5 \\ & 3 \end{aligned}$		0	－	－	ns
Hold Time， $\mathrm{D}_{\text {in }}$ to DCLK ${ }^{\text {a }}$（Figure 2）	$t_{\text {h }}$	$\begin{aligned} & 5 \\ & 3 \end{aligned}$		$\begin{aligned} & \hline 30 \\ & 60 \end{aligned}$	－	－	ns
DCLK Low to ENB High（Figure 3）	$t_{\text {h }}$	$\begin{aligned} & \hline 5 \\ & 3 \end{aligned}$		10 20	－	－	ns
ENB High to DCLK High（Figure 3）	$\mathrm{t}_{\text {rec }}$	$\begin{aligned} & 5 \\ & 3 \end{aligned}$		$\begin{aligned} & 10 \\ & 20 \end{aligned}$	－	－	ns
ENB High Pulse Width（Figure 3）	$\mathrm{t}_{\text {w }}$	$\begin{aligned} & 5 \\ & 3 \end{aligned}$		$\begin{gathered} 50 \\ 100 \end{gathered}$	－	－	ns
ENB Low to DCLK High（Figure 3）	$\mathrm{t}_{\text {su }}$	$\begin{aligned} & \hline 5 \\ & 3 \end{aligned}$		$\begin{aligned} & 10 \\ & 20 \end{aligned}$	－	－	ns

NOTE：Timing for Figures 1，2，and 3 are design estimates only．
＊For a time（ $\mathrm{t}=4 /$ OSC FREQ．）after the backplane waveform changes to a new voltage level，the circuit is maintained in the high－current state to allow the load capacitances to charge quickly．The circuit is then returned to the low－current state until the next voltage change．

SWITCHING WAVEFORMS

Figure 1.

Figure 2.

Figure 3.

FUNCTIONAL DESCRIPTION

The MC14LC5003/MC14LC5004 has essentially two sections which operate asynchronously from each other; the data input and storage section and the LCD drive section. The LCD drive and timing is derived from the oscillator, while the data input and storage is controlled by the Data $\operatorname{In}\left(\mathrm{D}_{\text {in }}\right)$, Data Clock (DCLK), Address (A0, A1, A2), and Enable (ENB) pins.

Data is shifted serially into the 128 -bit shift register and arranged into four consecutive blocks of 32 parallel data bits. A time-multiplex of the four backplane drivers is made (each backplane driver becoming active then inactive one after another) and, at the start of each backplane active period, the corresponding block of 32 bits is made available at the frontplane drivers. A high input to a plane driver turns the driver on, and a low input turns the driver off.

Figure 4 shows the sequence of backplanes. Figure 5 shows the possible configurations of the frontplanes relative to the backplanes. When a backplane driver is on, its output switches
from $\mathrm{V}_{\mathrm{LCD}}$ to 0 V , and when it is off, it switches from $1 / 3 \mathrm{~V}_{\mathrm{LCD}}$ to $2 / 3 \mathrm{~V}_{\mathrm{LCD}}$. When a frontplane driver is on, its output switches from 0 V to $\mathrm{V}_{\text {LCD }}$, and when it is off, it switches from $2 / 3 V_{L C D}$ to $1 / 3 V_{L C D}$.

The LCD drive and timing section provides the multiplex signals and backplane driver input signals and formats the frontplane and backplane waveforms.

The address pins are used to uniquely distinguish LCD driver from any other chips on the same bus and to define LCD driver as the "master" in the system. There must be one master in any system.

The enable pin may be used as a third control line in the communication bus. It may be used to define the moment when the data is latched. If not used, then the data is latched after 128 bits of data have been received.

Figure 4. Backplane Sequence

Figure 5. Frontplane Combinations

A0-A2
 Address Inputs (Pins 42-44)

The devices have to receive a correct address before they will accept data. Three address pins (A2, A1, A0) are used to define the states of the three programmable bits of MC14LC5003/MC14LC5004's 8-bit address.

The address is 0111vwxy where $\mathrm{v}, \mathrm{w}, \mathrm{x}$ represent $\mathrm{A} 2, \mathrm{~A} 1$, and $A 0$ respectively. Where $v, w, x=0$, then $A 2, A 1$, and $A 0$ should be tied to 0 V . Where $\mathrm{v}, \mathrm{w}, \mathrm{x}=1$, then $\mathrm{A} 2, \mathrm{~A} 1$, and A 0 should be tied to V_{DD}.

The address pins must be tied to V_{DD}. This defines the device as a master.

NOTE

Note: In applications where the circuit will be isolated from external manual interference the system designer may take advantage of the self-programming feature. Upon power-on, address pins which are left open-circuit will be charged to V_{DD}. However, care must be taken not to inadvertently discharge the pins after power-on since the address may then be lost. A similar feature is also available on the $\overline{\mathrm{ENB}}$ pin.

CAUTION

The configuration $\mathrm{A} 0, \mathrm{~A} 1, \mathrm{~A} 2=000$ should not be used. This does not give a valid address and is reserved for Motorola's use only. All three address pins should never be tied to 0 V simultaneously.

ENB

Enable Input (Pin 41)

If the $\overline{E N B}$ pin is tied to $V_{D D}$, the MC14LC5003/ MC14LC5004 will always latch the data after 128 bits have been received. The latched data is multiplexed and fed to the frontplane drivers for display. If external control of this latching function is required, then the ENB pin should be held low, followed by one high pulse on ENB when data display is required. (This may be useful in a system where one MC145003/ MC145004 is permanently addressed and only the last 128 bits of data sent are required to be latched for display). The pulse on the ENB pin must occur while DCLK is high.

DCLK, $\mathrm{D}_{\text {in }}$

Data Clock and Data Input (Pins 38, 39)

Address input and data input controls. See Data Input Protocol sections for relevant option.

OSC1, OSC2

Oscillator Pins (Pins 51, 50)
To use the on-board oscillator, an external resistor should be connected between OSC1 and OSC2. Optionally, the OSC1 pin may be driven by an externally generated clock signal.

A resistor of 680 k connected between OSC1 and OSC2 pins gives an oscillator frequency of about 30 kHz , giving approximately 30 Hz as seen at the LCD driver outputs. A resistor of 200 k gives about 100 kHz , which results in 100 Hz at the driver outputs. LCD manufacturers recommend an LCD drive frequency of between 30 Hz and 100 Hz . See Figure 6.

Figure 6. Oscillator Frequency vs. Load Resistance

(Approximate)

FP1-FP32

Frontplane Drivers (Pins 36-27, 25-22, 19-15, 13-1)
Frontplane driver outputs.

BP1-BP4

Backplane Drivers (Pins 48-45)
Backplane driver outputs.
$V_{\text {LCD }}$
LCD Driver Supply (Pin 20)
Power supply input for LCD drive outputs. May be used to supply a temperature-compensated voltage to the LCD drive section, which can be separate from the logic voltage supply, $V_{D D}$.
$V_{D D}$
Positive Power Supply (Pin 49)
This pin supplies power to the main processor interface and logic portions of the device. The voltage range is 2.7 to 5.5 V with respect to the $\mathrm{V}_{S S}$ pin.

For optimum performance, V_{DD} should be bypassed to $V_{S S}$ using a low inductance capacitor mounted very closely to these pins. Lead length on this capacitor should be minimized.
$V_{S S}$
Ground (Pin 21)
Common ground.

DATA INPUT PROTOCOL

Two-wire communication bus DCLK, $\mathrm{D}_{\text {in }}$; three-wire communication bus DCLK, D_{in}, $\overline{\mathrm{ENB}}$.

MC14LC5003 - SERIAL INTERFACE DEVICE (FIGURE 7)

Before communication with an MC14LC5003 can begin, a start condition must be set up on the bus by the transmitter. To establish a start condition, the transmitter must pull the data line low while the clock line is high. The "idle" state for the clock line and data line is the high state.

After the start condition has been established, an eight-bit address should be sent by the transmitter. If the address sent corresponds to the address of the MC14LC5003 then on each
successive clock pulse, the addressed device will accept a data bit.

If the ENB pin is permanently high, then the addressed MC14LC5003's internal counter latches the data to be displayed after 128 data bits have been received. Otherwise, the control of this latch function may be overridden by holding the ENB line low until the new data is required to be displayed, then a high pulse should be sent on the ENB line. The high pulse must be sent during DCLK high (clock idle).

To end communication with an MC14LC5003, a stop condition should be set up on the bus (or another start condition may be set up if another communication is desired). Note that the communication channel to an addressed device may be left open after the 128 data bits have been sent by not setting up a stop or a start condition. In such a case, the 129th rising DCLK edge, which normally would be used to set up the stop or start condition, is ignored by the MC14LC5003 and data continues to be received on the 130th rising DCLK. The latch function continues to work as normal (i.e., data is be latched either after each block of 128 data bits has been received or under external control as required).

At any time during data transmission, the transfer may be interrupted with a stop condition. Data transmission may be resumed with a start condition and resending the address.

MC14LC5004 - IIC DEVICE (FIGURE 8)

Before communication with an MC14LC5004 can begin, a start condition must be set up on the bus by the controller. To establish a start condition, the controller must pull the data line low while the clock line is high.

After the start condition has been established, an eight-bit address should be sent by the controller followed by an extra clock pulse while the data line is left high. In this option, only the seven most significant bits of the address are used to uniquely define devices on the bus, the least significant bit is used as a read/write control: if the least significant bit is 0 , then the controller writes to the LCD driver; if it is 1 , then the
controller reads from the LCD driver's 128-bit shift register on a first-in first-out basis. If the seven most significant address bits sent correspond to the address of the LCD driver then the addressed LCD driver responds by sending an "acknowledge" bit back to the controller (i.e., the LCD driver pulls the data line low during the extra clock pulse supplied by the controller). If the least significant address bit was 0 , then the controller should continue to send data to the LCD driver in blocks of eight bits followed by an extra ninth clock pulse to allow the LCD driver to pull the data line $\mathrm{D}_{\text {in }}$ low as an acknowledgment. If the least significant address bit was 1 , then the LCD driver sends data back to the controller (the clock is supplied by the controller). After each successive group of eight bits sent, the LCD driver leaves the data line high for one pulse.

If the ENB pin is permanently high, then the addressed MC14LC5004's internal counter latches the data to be displayed after 128 data bits have been received. Otherwise the control of this latch function may be overridden by holding the ENB line low until the new data is required to be displayed, then a high pulse should be sent on the ENB line. The high pulse must be sent during DCLK high (clock idle).

To end communication with an MC14LC5004, a stop condition should be set up on the bus (or another start condition may be set up if another communication is desired). Note that the communication channel to an addressed device may be left open after the 128 data bits have been sent by not setting up a stop or a start condition. In such a case the rising DCLK edge which comes after all 128 data bits have been sent and after the last acknowledge-related clock pulse has been made is ignored; data continues to be received on the following DCLK high. The latch function continues to work as normal (i.e., data is latched either after each block of 128 data bits has been received or under external control as required).

At any time during data transmission, the transfer may be interrupted with a stop condition. Data transmission may be resumed with a start condition and resending the address.

Figure 7. MC14LC5003(SERIAL INTERFACE DEVICE)

Figure 8 . Data Input MC14LC5004 (IIC Device)

Figure 9. Application Example

APPLICATION INFORMATION

Figure 10 shows an interface example.
Example shows a semi-automatic SPI Mode (only start and stop conditions are done in non-SPI Mode). It contains the software to use HC11 with MC14LC5003 in manual SPI Mode.

Figure 10. Interface Example Between MC68HC11 and MC14LC5003

1							
2				; =======CONSTANTS=			
3	0000	T		extram	equ	\$A000	; \$A000 for 8K RAM
4	0000	T		stack	equ	\$00FF	; last RAM byte
5	0000	T		intofs	equ	\$1000	; Internal Registers
6	0000	T		data	equ	\$08	
7	0000	T		clock	equ	\$10	
8	0000	T		enable	equ	\$20	
9	0000	T		portd	equ	8	
10							
11							
12				; =======PROGRAM			
13	A000	T			org	extram	; Program into RAM
14	A000	N	8E00FF	cold	lds	\#stack	```; set stack pointer ;set of MOSI,SS,SCK ;DDRD```
15	A003	M	8638		ldaa	\#\$38	
16	A005	T	B71009		staa	\$1009	
17	A008	M	C611		1 dab	\#17	
18	A00A	N	CEA05E		$1 d x$	\#send	
19	A00D	T	BDA010		jsr	spi	
20	A010	T			end	cold	
21							
22	A010	U	18CE1000	spi	ldy	\#intofs	
23	A014	J	181D0820		bclr	portd, y \#enable	; $\mathrm{EN}=0$
24	A018	T	BDA031		jsr	start	; start condition
25	A01B	X	A600	again	ldaa	0 , x	; SPI Mode Use
26	A01D	T	B7102A		staa	\$102A	; SPDR
27	A020	L	181F2980FB		brclr	\$29,y,\#\$80,*	
28	A025	H	08		inx		; next DATA
29	A026	H	5A		decb		
30	A027	R	26F2		bne	again	
31	A029	J	181C0820		bset	portd, y \#enablestop	
32	A02D	T	BDA04C		jsr		; stop condition
33	A030	H	39		rts		
34							
35	A031	M	8633	start	ldaa	\#\$33	; Normal Mode
36	A033	T	B71028		staa	\$1028	; SPCR

37	A036	J	181C0808		bset	portd, y \#data	; DATA $=1$
38	A03A	J	$181 \mathrm{C0810}$		bset	portd, y \#clock	; CLK = 1
39	A03E	J	181D0808		bclr	portd, y \#data	; DATA $=0$
40	A042	J	181D0810		bclr	portd, y \#clock	; CLK = 0
41	A046	M	8673		ldaa	\#\$73	; SPI Mode
42	A048	T	B71028		staa	\$1028	; SPCR
43	A04B	H	39		rts		
44	A04C	M	8633	stop	ldaa	\#\$33	; Normal Mode
45	A04E	T	B71028		staa	\$1028	; SPCR
46	A051	J	181D0808		bclr	portd, y \#data	; DATA $=0$
47	A055	J	$181 \mathrm{C0810}$		bset	portd, y \#clock	; CLK = 1
48	A059	J	181C0808		bset	portd, y \#data	; DATA $=0$
49	A05D	H	39		rts		
50							
51	A05E	T	7E	send	fcb	\$007E	; LCD Driver Address
52	A05F	T	F0		fcb	\$00f0	; Data to sent
53	A060	T	F0		fcb	\$00f0	
54	A061	T	F0		fcb	\$00f0	
55	A062	T	F0		fcb	\$00f0	
56	A063	T	F0		fcb	\$00f0	
57	A064	T	F0		fcb	\$00f0	
58	A0 65	T	F0		fcb	\$00f0	
59	A066	T	F0		fcb	\$00f0	
60	A067	T	F0		fcb	\$00f0	
61	A068	T	F0		fcb	\$00f0	
62	A069	T	F0		fcb	\$00f0	
63	A06A	T	F0		fcb	\$00f0	
64	A06B	T	F0		fcb	\$00f0	
65	A06C	T	F0		fcb	\$00f0	
66	A06D	T	F0		fcb	\$00f0	
67	A06E	T	F0		fcb	\$00f0	
68	A0 6F	H	39		rts		
6							
70				; ===	OGRAM	=============	

Example 1. Semi-Automatic SPI Method

Figure 11 shows another interface example.
Example 2 contains the software to use HC05 with MC14LC5003 in serial data interface.

Figure 11. Interface Example Between MC68HC05 and MC14LC5003

PORTC	EQU	$\$ 02$	PORTC
DDRC	EQU	$\$ 06$	PORTDC
SEN	EQU	$\$ 07$	ENABLE PIN, PC7
SCL	EQU	$\$ 06$	CLOCK PIN, PC6
SDA	EQU	$\$ 05$	DATA PIN, PC5
DOUT	EQU	$\$ F F$	OUTPUT DATA
	ORG	$\$ 0050$	
W1	RMB	1	
COUNT	RMB	1	
	ORG	$\$ 1$ FFE	ADDRESS OF RESET VECTOR OF MC68HC805C4
	FCB	$\# \$ 01$	RESET VECTOR
	FCB	$\# \$ 00$	

*** Main Program start at 0100 ***

	ORG	\$0100	
START	LDA	\#DOUT	SET DATA LINE OUTPUT
	STA	DDRC	
AGAIN			
	LDX	\#\$00	
	BSET	SDA,PORTC	IDLE STATE
	BSET	SCL,PORTC	CLOCK AND DATA ARE HIGH
READY	BSET	SEN,PORTC	$\mathrm{EN}=1$
	LDA	\#\$11	SET ADDRESS AND 8 CHARACTERS
	STA	W1	
	BCLR	SDA,PORTC	START CONDITION, DATA LOW WHILE CLOCK HIGH
LBYTE	CLC		
	LDA	\#\$08	
	STA	COUNT	8 BITS TO SHIFT
	LDA	SEND, X	GET A BYTE
	INCX		
LBIT	BCLR	SCL,PORTC	CLOCK LOW
	ROLA		
	BCC	DZERO	DATA BIT $=0$?
	BSET	SDA,PORTC	NO, BIT $=1$ AND DATA HIGH
	JMP	CLKHI	
DZERO	BCLR	SDA,PORTC	DATA LOW
CLKHI	BSET	SCL,PORTC	CLOCK HIGH
	DEC	COUNT	
	BNE	LBIT	
	DEC	W1	
	BNE	LBYTE	LAST BYTE ?
STOP	BCLR	SCL,PORTC	
	BCLR	SDA,PORTC	STOP CONDITION
	BSET	SCL,PORTC	DATA GOES HIGH WHILE CLOCK HIGH
	BSET	SDA,PORTC	
	BCLR	SEN,PORTC	EN=0
	RTS		
*** End	Program		

SEND
FCB \$7E LCD DRIVER ADDRESS

FCB \quad FFF, $\$$ FF, \$FF, \$FF, \$FF, \$FF, \$FF, \$FF
DATA TO SENT
FCB $\quad \$ \mathrm{FF}, \$ \mathrm{FF}$

Example 2. Serial Data Interface Method

PACKAGE DIMENSIONS

QFP
FU SUFFIX CASE 848B-02

BOND PAD LAYOUT

Die size : 78×119 mil 2 (1 mil ~ 25.4 m)

BOND PAD COORDINATES

PIN NO.	PIN NAME	COORDINATES	
		\mathbf{X}	\mathbf{Y}
1	FP32	-736.002	929.199
2	FP31	-736.002	781.999
3	FP30	-736.002	634.799
4	FP29	-736.002	487.599
5	FP28	-736.002	340.399
6	FP27	-736.002	193.199
7	FP26	-736.002	45.999
8	FP25	-736.002	-101.201
9	FP24	-736.002	-248.401
10	FP23	-736.002	-395.601
11	FP22	-736.002	-542.801
12	FP21	-736.002	-690.001
13	FP20	-736.002	-837.201
14	NC	N/A	N/A
15	FP19	-736.002	-1205.601
16	FP18	-588.802	-1205.601
17	FP17	-441.602	-1205.601
18	FP16	-294.402	-1205.601
19	FP15	-147.202	-1205.601
20	VLCD	0.000	-1205.600
21	VSS	147.200	-1205.600
22	FP14	294.398	-1205.601
23	FP13	441.598	-1205.601
24	FP12	588.798	-1205.601
25	FP11	735.998	-1205.601
26	NC	N/A	N/A

PIN NO.	PIN NAME	COORDINATES	
		\mathbf{X}	\mathbf{Y}
27	FP10	735.998	-837.201
28	FP9	735.998	-690.001
29	FP8	735.998	-542.801
30	FP7	735.998	-395.601
31	FP6	735.998	-248.401
32	FP5	735.998	-101.201
33	FP4	735.998	45.999
34	FP3	735.998	193.199
35	FP2	735.998	340.399
36	FP1	735.998	487.599
37	NC	736.000	634.800
38	DCLK	736.000	782.000
39	DIN	736.000	929.200
40	NC	N/A	N/A
41	$\overline{\text { ENB }}$	736.000	1205.600
42	A2	588.800	1205.600
43	A1	441.600	1205.600
44	A0	294.400	1205.600
45	BP4	147.198	1205.599
46	BP3	-0.002	1205.599
47	BP2	-147.202	1205.599
48	BP1	-294.402	1205.599
49	VDD	-441.600	1205.600
50	OSC2	-588.800	1205.600
51	OSC1	-736.000	1205.600
52	NC	N/A	N/A

