
INTEGRATED CIRCUITS

Product specification Supersedes data of 1997 Feb 04 IC24 Data Handbook

1998 Apr 20

74LV123

FEATURES

- Optimized for Low Voltage applications: 1.0 to 5.5V
- Accepts TTL input levels between V_{CC} = 2.7V and V_{CC} = 3.6V
- Typical V_{OLP} (output ground bounce) $< 0.8V @ V_{CC} = 3.3V$, $T_{amb} = 25^{\circ}C$
- Typical V_{OHV} (output V_{OH} undershoot) > 2V @ V_{CC} = 3.3V, $T_{amb} = 25^{\circ}C$
- DC triggered from active HIGH or active LOW inputs
- Retriggerable for very long pulses up to 100% duty factor
- Direct reset terminates output pulses
- Schmitt-trigger action on all inputs except for the reset input
- Output capability: standard (except for nR_{EXT}/C_{EXT})
- I_{CC} category: MSI

DESCRIPTION

The 74LV123 is a low-voltage Si-gate CMOS device and is pin and function compatible with the 74HC/HCT123.

The 74LV123 is a dual retriggerable monostable multivibrator with output pulse width control by three methods. The basic pulse time is programmed by selection of an external resistor (R_{FXT}) and capacitor (C_{EXT}). They are normally connected as shown in Figure 1. Once triggered, the basic output pulse width may be extended by retriggering the gated active LOW-going edge input $(n\overline{A})$ or the active HIGH-going edge input (nB). By repeating this process, the output pulse period (nQ = HIGH, $n\overline{Q}$ = LOW) can be made as long as desired. Alternatively, an output delay can be terminated at any time by a LOW-going edge on input $n\overline{R}_{D}$, which also inhibits the triggering. Figures 1 and 2 illustrate pulse control by retriggering and early reset. The basic output pulse width is essentially determined by the values of the external timing components R_{EXT} and C_{EXT}. For pulse width when C_{EXT} <10000pF, see Figure 5. When $C_{EXT} > 10,000$ pF, the typical output pulse width is defined as: $t_W = 0.45 \times R_{EXT} \times C_{EXT}$ (typ.), where t_W = pulse width in ns; R_{EXT} = external resistor in $K\Omega;$ and C_{EXT} = external capacitor in pF. Schmitt-trigger action in the nA and nB inputs makes the circuit highly tolerant of slower input rise and fall times.

QUICK REFERENCE DATA

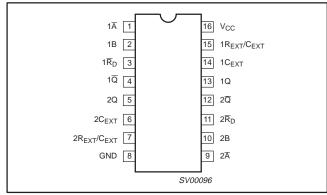
GND = 0V; $T_{amb} = 25^{\circ}C$; $t_r = t_f \le 2.5$ ns

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	Propagation delay nĀ, nB to nQ, nQ nR _D to nQ, nQ	$\begin{array}{l} C_L = 15 p F \\ V_{CC} = 3.3 V \\ R_{EXT} = 5 K \Omega \\ C_{EXT} = 0 p F \end{array}$	25 20	ns ns
CI	Input capacitance		3.5	pF
C _{PD}	Power dissipation capacitance per monost- able	V_{CC} = 3.3V, V_I = GND to V_{CC}^{1}	60	pF

NOTES:

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W)

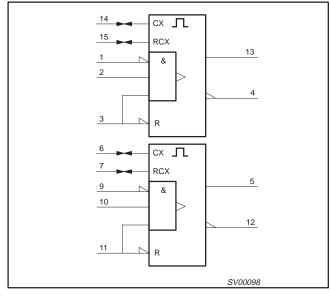
 $\begin{array}{l} \mathsf{P}_{D} = \mathsf{C}_{\mathsf{PD}} \times \mathsf{V}_{\mathsf{CC}}^2 \times f_i + \Sigma \left(\mathsf{C}_L \times \mathsf{V}_{\mathsf{CC}}^2 \times f_o\right) \text{ where:} \\ \mathsf{f}_i = \mathsf{input} \text{ frequency in MHz; } \mathsf{C}_L = \mathsf{output} \text{ load capacitance in pF;} \\ \mathsf{f}_o = \mathsf{output} \text{ frequency in MHz; } \mathsf{V}_{\mathsf{CC}} = \mathsf{supply voltage in V;} \end{array}$

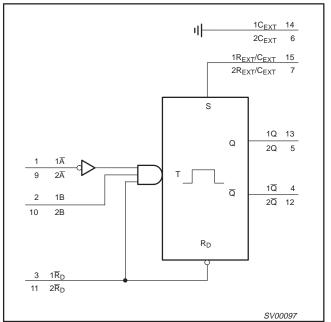

 Σ (C_L × V_{CC}² × f_o) = sum of the outputs.

ORDERING INFORMATION

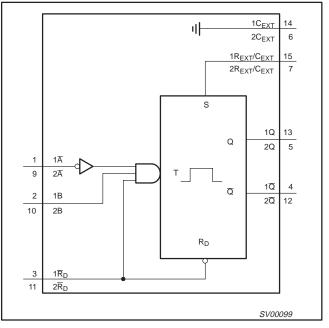
PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. #
16-Pin Plastic DIL	–40°C to +125°C	74LV123 N	74LV123 N	SOT38-1
16-Pin Plastic SO	–40°C to +125°C	74LV123 D	74LV123 D	SOT109-1
16-Pin Plastic SSOP Type II	–40°C to +125°C	74LV123 DB	74LV123 DB	SOT338-1
16-Pin Plastic TSSOP Type I	–40°C to +125°C	74LV123 PW	74LV123PW DH	SOT403-1

74LV123

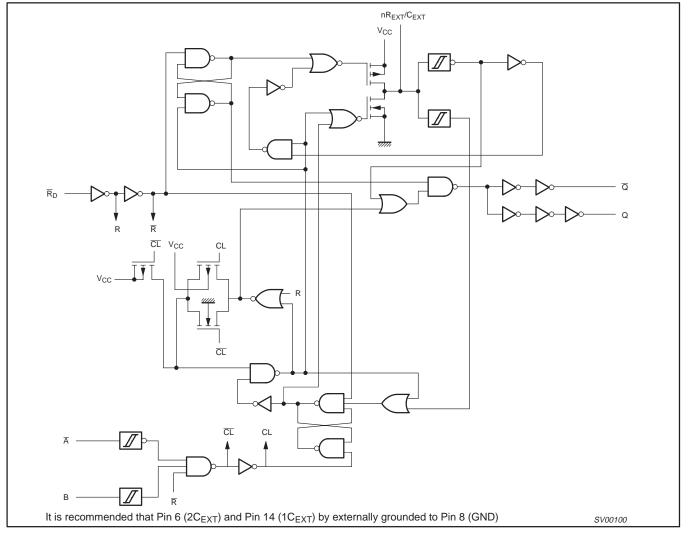



PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
1,9	1 A , 2 A	Trigger inputs (negative-edge triggered)
2,10	1B, 2B	Trigger inputs (positive-edge triggered)
3,11	$1\overline{R}_{D}, 2\overline{R}_{D}$	Direct reset LOW and trigger action at positive edge
4, 12	1 <u>Q</u> , 2 <u>Q</u>	Outputs (active LOW)
7	2R _{EXT} /C _{EXT}	External resistor/capacitor connection
8	GND	Ground (0V)
13, 5	1Q, 2Q	Outputs (active HIGH)
14, 6	1C _{EXT,} 2C _{EXT}	External capacitor connection
15	1R _{EXT} /C _{EXT}	External resistor/capacitor connection
16	V _{CC}	Positive supply voltage


LOGIC SYMBOL (IEEE/IEC)

LOGIC SYMBOL



FUNCTIONAL DIAGRAM

74LV123

LOGIC DIAGRAM

FUNCTION TABLE

	INPUTS		OUTPUTS			
nR _D	nĀ	n <mark>A</mark> nB		nQ		
L	Х	Х	L	Н		
Х	н	Х	L*	H *		
Х	X	L	L*	Н*		
Н	L	\uparrow				
Н	\downarrow	н				
Ŷ	L	Н				

NOTES:

If the monostable was triggered before this condition was established, the pulse will continue as programmed.

H = HIGH voltage level

L = LOW voltage level

- X = don't care
- \uparrow = LOW-to-HIGH transition
- \downarrow = HIGH-to-LOW transition
- = one HIGH level output pulse
- = one LOW level output pulse

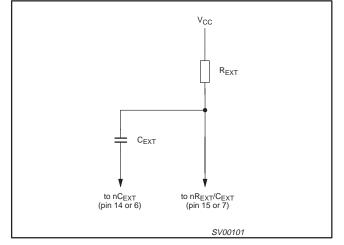


Figure 1.Timing component connection

74LV123

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
V _{CC}	DC supply voltage	See Note ¹	1.0	3.3	5.5	V
VI	Input voltage		0	-	V _{CC}	V
Vo	Output voltage		0	-	V _{CC}	V
T _{amb}	Operating ambient temperature range in free air	See DC and AC characteristics	-40 -40		+85 +125	°C
t _r , t _f	Input rise and fall times except for Schmitt-trigger inputs	$\begin{array}{l} V_{CC} = 1.0V \mbox{ to } 2.0V \\ V_{CC} = 2.0V \mbox{ to } 2.7V \\ V_{CC} = 2.7V \mbox{ to } 3.6V \\ V_{CC} = 3.6V \mbox{ to } 5.5V \end{array}$	- - -	_ _ _ _	500 200 100 50	ns/V

NOTE:

1. The LV is guaranteed to function down to V_{CC} = 1.0V (input levels GND or V_{CC}); DC characteristics are guaranteed from V_{CC} = 1.2V to V_{CC} = 5.5V.

ABSOLUTE MAXIMUM RATINGS^{1, 2}

In accordance with the Absolute Maximum Rating System (IEC 134).

Voltages are referenced to GND (ground = 0V).

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
$\pm I_{IK}$	DC input diode current	$V_{I} < -0.5 \text{ or } V_{I} > V_{CC} + 0.5 V$	20	mA
± I _{OK}	DC output diode current	$V_{\rm O}$ < –0.5 or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5V	50	mA
± I _O	DC output source or sink current – standard outputs	$-0.5V < V_{O} < V_{CC} + 0.5V$	25	mA
${\pm I_{GND}, \atop \pm I_{CC}}$	DC V _{CC} or GND current for types with – standard outputs		50	mA
T _{stg}	Storage temperature range		-65 to +150	°C
P _{TOT}	Power dissipation per package – plastic DIL – plastic mini-pack (SO) – plastic shrink mini-pack (SSOP and TSSOP)	for temperature range: -40 to +125°C above +70°C derate linearly with 12 mW/K above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K	750 500 500	mW

NOTES:

 Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

74LV123

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltages are referenced to GND (ground = 0V).

					LIMITS	_		
SYMBOL	PARAMETER	TEST CONDITIONS	-40	°C to +8	5°C	-40°C to	o +125°C	דואט
			MIN	TYP ¹	MAX	MIN	MAX	1
		V _{CC} = 1.2V	0.9			0.9		
M	HIGH level Input	$V_{CC} = 2.0V$	1.4			1.4		
VIH	voltage	V _{CC} = 2.7 to 3.6V	2.0			2.0		1 [×]
		V _{CC} = 4.5 to 5.5V	0.7 * V _{CC}			0.7 * V _{CC}		1
		V _{CC} = 1.2V			0.3		0.3	
M	LOW level Input	$V_{CC} = 2.0V$			0.6		0.6	
V_{IL}	voltage	V _{CC} = 2.7 to 3.6V			0.8		0.8	1 `
		V _{CC} = 4.5 to 5.5			0.3 * V _{CC}		0.3 * V _{CC}	1
		$V_{CC} = 1.2V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 100 \mu A$		1.2				
		$V_{CC} = 2.0V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 100 \mu A$	1.8	2.0		1.8		1
V _{OH}	HIGH level output voltage; all outputs	$V_{CC} = 2.7V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 100 \mu A$	2.5	2.7		2.5		V
	ronago, an oaipaio	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 100 \mu A$	2.8	3.0		2.8		1
	$V_{CC} = 4.5V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 100 \mu A$	4.3	4.5		4.3		1	
V _{OH}	HIGH level output voltage;	V_{CC} = 3.0V; V_I = V_{IH} or $V_{IL;}$ – I_O = 6mA	2.40	2.82		2.20		v
VОН	STANDARD outputs	V_{CC} = 4.5V; V_{I} = V_{IH} or V_{IL} ; $-I_{O}$ = 12mA	3.60	4.20		3.50		v
		V_{CC} = 1.2V; V_{I} = V_{IH} or $V_{IL;}$ I_{O} = 100 μA		0				
		V_{CC} = 2.0V; V_{I} = V_{IH} or $V_{IL;}$ I_{O} = 100 μA		0	0.2		0.2	
V _{OL}	LOW level output voltage; all outputs	V_{CC} = 2.7V; V_{I} = V_{IH} or $V_{IL;}$ I_{O} = 100 μA		0	0.2		0.2	V
		V_{CC} = 3.0V; V_I = V_{IH} or $V_{IL;}I_O$ = 100 μA		0	0.2		0.2	
		V_{CC} = 4.5V; V_I = V_{IH} or $V_{IL;}I_O$ = 100 μA		0	0.2		0.2	
V _{OL}	LOW level output voltage;	V_{CC} = 3.0V; V_I = V_{IH} or V_{IL} ; I_O = 6mA		0.25	0.40		0.50	v
V OL	STANDARD outputs	V_{CC} = 4.5V; V_{I} = V_{IH} or V_{IL} ; I_{O} = 12mA		0.35	0.55		0.65	V
I _I	Input leakage current	V_{CC} = 5.5V; V_{I} = V_{CC} or GND			1.0		1.0	μA
I _{CC}	Quiescent supply current; MSI	$V_{CC} = 5.5V; V_I = V_{CC} \text{ or GND}; I_O = 0$			20.0		160	μΑ
ΔI_{CC}	Additional quiescent supply current	V_{CC} = 2.7V to 3.6V; V_{I} = V_{CC} – 0.6V			500		850	μA

NOTES:

1. All typical values are measured at $T_{amb} = 25^{\circ}C$.

6

74LV123

AC CHARACTERISTICS

GND = 0V; t_r = t_f \leq 2.5ns; CL = 50pF; RL =1 $K\Omega$

			CONDITION			LIMITS			
SYMBOL	PARAMETER	WAVEFORM		-	-40 to +85°	C	-40 to	+125°C	UNIT
			V _{CC} (V)	MIN	TYP ¹	MAX	MIN	MAX	
			1.2		120				
	Developed to a state of	Figure 3	2.0		40	76		92	
t _{PHL}	Propagation delay $n\overline{R}_{D}$, $n\overline{A}$, nB , to $n\overline{Q}$	C _{EXT} = 0pF	2.7		30	56		68	ns
		$R_{EXT} = 5K\Omega$	3.0 to 3.6		25 ²	48		57	
			4.5 to 5.5		18 ²	40		46	
			1.2		120				
	Developed to a state of	Figure 3	2.0		40	76		92	
t _{PLH}	Propagation delay $n\overline{R}_{D}$, $n\overline{A}$, nB , to nQ	$C_{FXT} = 0pF$	2.7		30	56		68	ns
		$R_{EXT} = 5K\Omega$	3.0 to 3.6		25 ²	48		57	
			4.5 to 5.5		182	40		46	
			1.2		100				
		Figure 3	2.0		30	57		68	
t _{PHL}	Propagation delay nR _D to nQ (reset)	C _{FXT} = 0pF	2.7		23	43		51	ns
		$R_{EXT} = 5K\Omega$	3.0 to 3.6		20 ²	38		45	
			4.5 to 5.5		14 ²	31		36	
			1.2		100				
		Figure 3	2.0		30	57		68	
t _{PLH}	Propagation delay nR _D to nQ (reset)	C _{EXT} = 0pF	2.7		23	43		51	ns
		$R_{EXT} = 5K\Omega$	3.0 to 3.6		20 ²	38		45	
			4.5 to 5.5		14 ²	31		36	
		2.0	30	5		40			
	Trigger pulse width		2.7	25	3.5		30		ns
tw	nA = LOW	Figure 3	3.0 to 3.6	20	3.0 ²		25		
			4.5 to 5.5	15	2.5 ²		20		
			2.0	30	13		40		ns
	Trigger pulse width		2.7	25	8		30		
tw	nB = HIGH	Figure 3	3.0 to 3.6	20	7 ²		25		
			4.5 to 5.5	15	5 ²		20		
			2.0	35	6		45		
	Reset pulse width		2.7	30	5		40		
t _W	$nR_D = LOW$	Figure 2	3.0 to 3.6	25	4 ²		30		ns
			4.5 to 5.5	20	3 ²		25		
		1 1	2.0		470				
	Output pulse width	Figures 1, 2	2.7		460				
t _W	$n\overline{Q} = HIGH$ nQ = LOW	C _{EXT} = 100nF R _{EXT} = 10KΩ	3.0 to 3.6		450 ²				μs
		KEXT = 10KS2	4.5 to 5.5		430 ²				
		+ +	2.0		100				
	Output pulse width	Figures 1, 2	2.7		90	<u> </u>			
tw	$n\overline{Q} = HIGH$	$C_{EXT} = 0pF$	3.0 to 3.6		80 ²				ns
	nQ = LOW	$R_{EXT} = 5K\Omega$	4.5 to 5.5		70 ²				
		+ +	2.0	_	70				
	Dotrigger time	Figure 1	2.7		55				
t _{rt}	Retrigger time nA, nB	C _{EXT} = 0pF	3.0 to 3.6		45 ²				ns
		$R_{EXT} = 5K\Omega$							-
	.,	$R_{EXT} = 5K\Omega$	4.5 to 5.5		40 ²				

74LV123

AC CHARACTERISTICS (Continued)

GND = 0V; $t_r = t_f \le 2.5$ ns; $C_L = 50$ pF; $R_L = 1$ K Ω

			CONDITION			LIMITS			
SYMBOL	PARAMETER	WAVEFORM	CONDITION	-	40 to +85°	C	-40 to	+125°C	UNIT
		[V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	
		1.2	10		1000				
	Endermont Contern		2.0	5		1000			
R _{EXT} External timing resistor	Figure 5	2.7	3		1000			KΩ	
		3.0 to 3.6	2		1000				
		I [4.5 to 5.5	2		1000			
			1.2						
	-	Ι Γ	2.0						
C _{EXT}	External timing capacitor	Figure 5 ³	2.7			No limits			pF
	ospaane.	I [3.0 to 3.6		1				
		1 [4.5 to 5.5						

NOTES:

1. Unless otherwise stated, all typical values are at T_{amb} = 25°C.

2. Typical value measured at V_{CC} = 3.3V.

3. Typical value measured at $V_{CC} = 5.0V$.

- 4. For other R_{EXT} and C_{EXT} combinations see Figure 5.
 - if $C_{EXT} > 10$ nF, the next formula is valid:

 - $t_W = K x R_{EXT} x C_{EXT} (typ.)$ $t_W = output pulse width in ns;$ where, t_W

 $\begin{array}{l} \text{R}_{\text{EXT}} = \text{cuteral resistor in K} \\ \text{R}_{\text{EXT}} = \text{cuteral resistor in K} \\ \text{K} = \text{constant} = 0.45 \text{ for } V_{\text{CC}} = 5.0 \text{V} \text{ and } 0.48 \text{ for } V_{\text{CC}} = 2.0 \text{V}. \\ \text{The inherent test jig and pin capacitance at pins 15 and 7 } (\text{nR}_{\text{EXT}}/\text{C}_{\text{EXT}}) \text{ is approximately 7 pF.} \end{array}$

The time to retrigger the monostable multivibrator depends on the values of R_{EXT} and C_{EXT}. 5. The output pulse width will only be extended when the time between the active-going edges of the trigger pulses meets the minimum retrigger time.

If $C_{EXT} > 10 \text{ pF}$, the next formula (at $V_{CC} = 5.0\text{V}$) for the set-up time of a retrigger pulse is valid: $t_{rt} = 30 + 0.19\text{ R x C}^{-9} + 13 \text{ x R}^{1.05}$ (typ.) where, $t_{rt} = \text{retrigger time in ns};$

C_{EXT} = external capacitor in pF;

 R_{EXT} = external resistor in KΩ.

The inherent test jig and pin capacitance at pins 15 and 7 (nR_{EXT}/C_{EXT}) is approximately 7 pF.

6. When the device is powered up, initiate the device via a reset pulse, when $C_{EXT} < 50$ pF.

AC WAVEFORMS

 V_M = 1.5V at $V_{CC} \ge$ 2.7V; V_M = 0.5 V_{CC} at $V_{CC} <$ 2.7V; V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

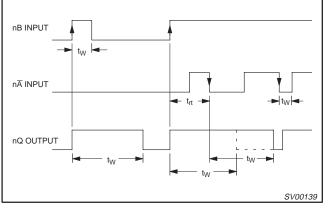


Figure 1.Output pulse control using retrigger pulse; $n\overline{R}_{D} = HIGH.$

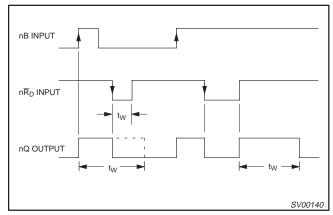


Figure 2.Output pulse control using reset input $n\overline{R}_{D}$; $n\overline{A} = LOW.$

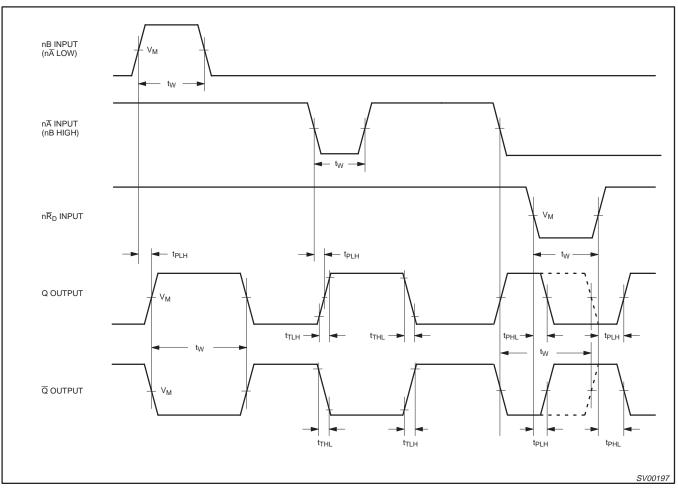


Figure 3. Input $(n\overline{A}, nB, n\overline{R}_D)$ to output $(nQ, n\overline{Q})$ propagation delays, the output transition times, and the input and output pulse widths.

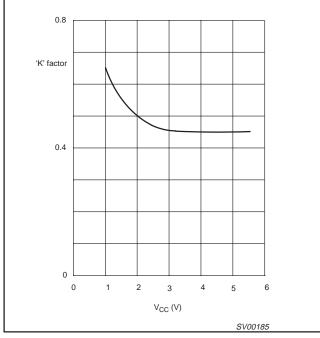


Figure 4. HCT typical "k" factor as a function of V_{CC}; C_X = 10 nF; R_X = 10 K Ω to 100 K Ω .

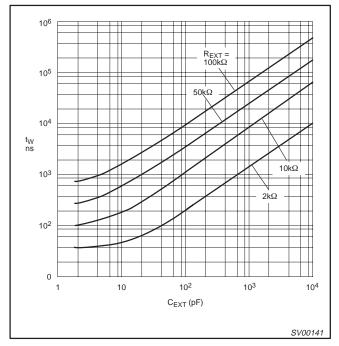


Figure 5.Typical output pulse width as a function of the external capacitor values at V_{CC} = 3.3V and T_{amb} = 25°C.

APPLICATION INFORMATION

Power-up considerations

When the monostable is powered-up it may produce an output pulse, with a pulse width defined by the values of R_X and C_X . This output pulse can be eliminated using the circuit shown in Figure 6.

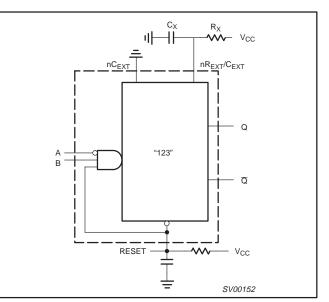


Figure 6. Power-up output pulse elimination circuit

Power-down considerations

A large capacitor (C_X) may cause problems when powering-down the monostable due to the energy stored in this capacitor. When a system containing this device is powered-down or a rapid decrease of V_{CC} to zero occurs, the monostable may sustain damage, due to the capacitor discharging through the input protection diodes. To avoid this possibility, connect a damping diode (D_X) preferably a germanium or Schottky type diode able to withstand large current surges as shown in Figure 7.

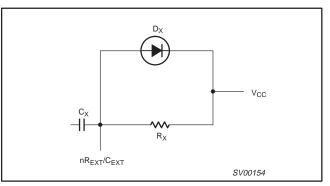


Figure 7. Power-down protection circuit

74LV123

TEST CIRCUIT

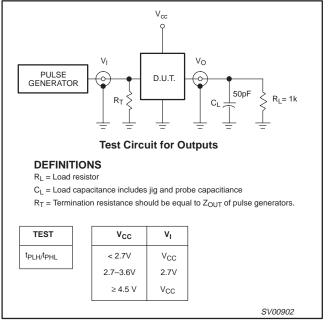
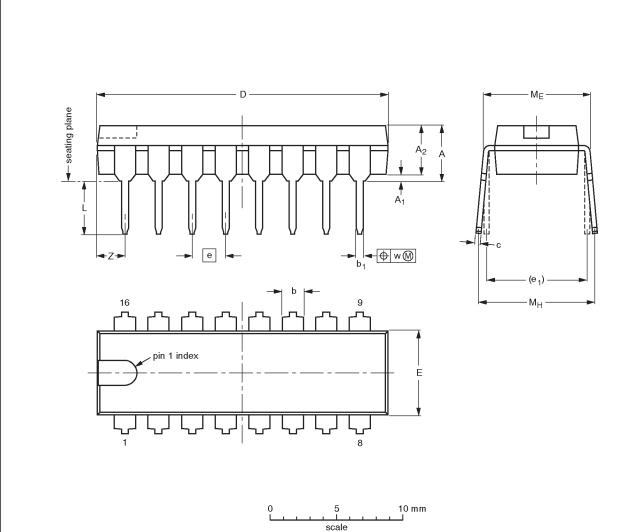



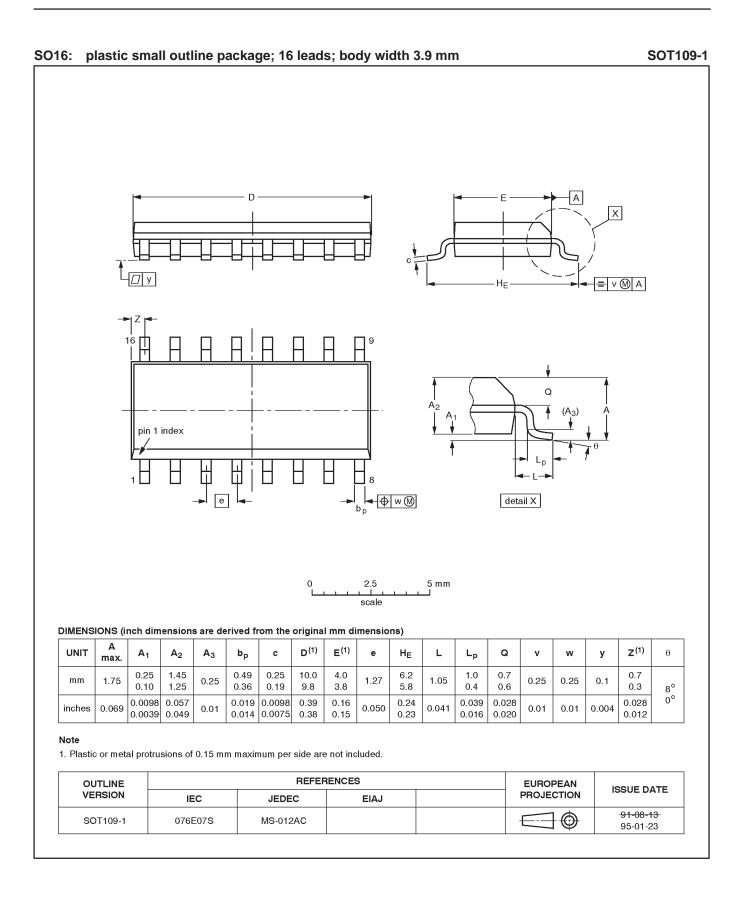
Figure 8. Load circuitry for switching times

1998 Apr 28

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	c	D ⁽¹⁾	Е ⁽¹⁾	e	e ₁	L	M _E	M _H	w	Z ⁽¹⁾ max.
mm	4.7	0.51	3.7	1.40 1.14	0.53 0.38	0.32 0.23	21.8 21.4	6.48 6.20	2.54	7.62	3.9 3.4	8.25 7.80	9.5 8.3	0.254	2.2
inches	0.19	0.020	0.15	0.055 0.045	0.021 0.015	0.013 0.009	0.86 0.84	0.26 0.24	0.10	0.30	0.15 0.13	0.32 0.31	0.37 0.33	0.01	0.087

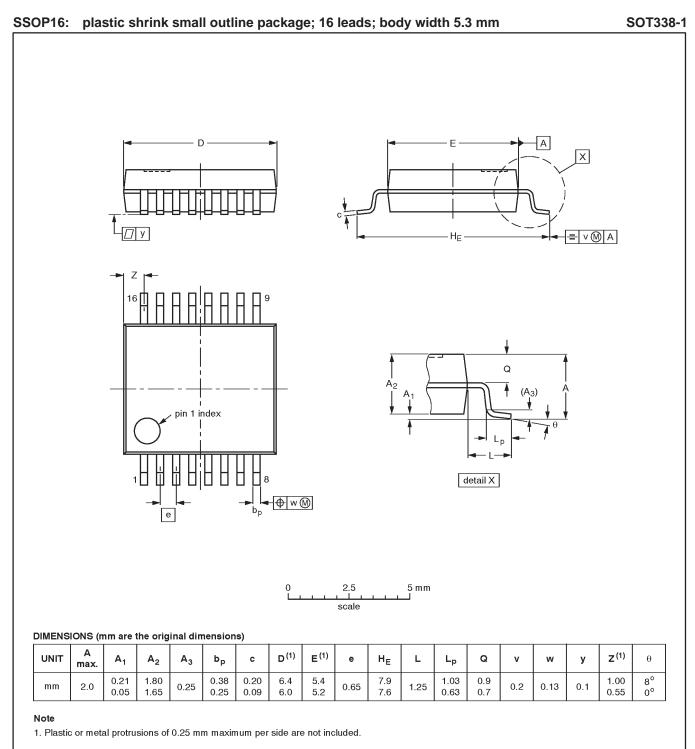
Note


1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

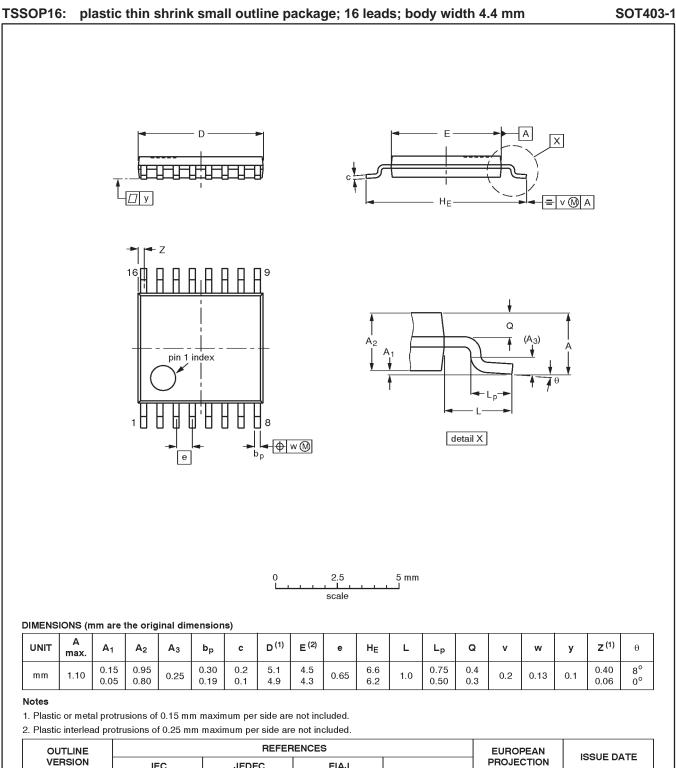
OUTLINE	OUTLINE REFERENCES				EUROPEAN		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT38-1	050G09	MO-001AE				-92-10-02 95-01-19	

74LV123

SOT38-1


74LV123

1998 Apr 28


74LV123

Product specification

OUTLINE	LINE REFERENCES				EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT338-1		MO-150AC				-94-01-14- 95-02-04

74LV123

OUTLINE VERSION	REFERENCES				EUROPEAN	ISSUE DATE
	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT403-1		MO-153				-94-07-12 95-04-04

DEFINITIONS					
Data Sheet Identification	Product Status	Definition			
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.			
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philip: Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.			
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.			

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code

Document order number:

Date of release: 05-96 9397-750-04418

Let's make things better.

PHILIPS