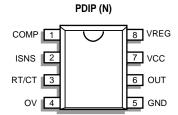


AS2208

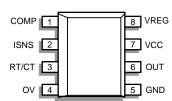
Primary Side PWM Controller Preliminary Specification

Features

- Low Startup Current
- Single-start or auto-restart modes
- Oscillator trimmed for precision duty cycle clamp
- Standard temperature range extended to 105°C
- Remote on / off control
- Self limiting supply Voltage
- Standard current mode control

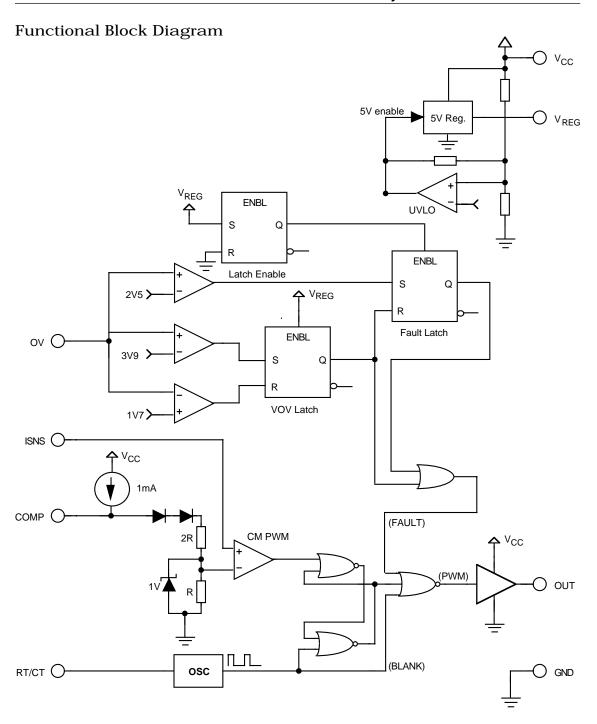

Description

The AS2208 is a simplified pulse width modulation controller, offering similar functionality as that of the AS3842. Based on the AS2214, the AS2208 provides the additional features of low startup current and overvoltage latching, making it a good solution for adapter applications.


The PWM function is controlled by the current sense comparator for normal current mode control. The COMP pin, which serves as an input to the current sense comparator, provides a 1 mA current source which can be tied directly to the control loop optocoupler. The output stage is a high current totem pole output that sees only 85 ns delay from the PWM comparator.

The AS2208 requires only 100 μ A of startup current. The undervoltage lockout (UVLO) thresholds are nominally 14V for turn on and 8 V for turn off. The VREG pin, based on a trimmed bandgap reference, provides a temperature compensated 5 V to loads of up to 50 mA. The oscillator discharge current is trimmed to provide guaranteed duty cycle clamping.

Pin Configuration — Top view



8L SOIC (D)

Ordering Information

Package	Temperature Range	Order Code		
8-Pin Plastic DIP	0 to 105° C	AS2208N		
8-Pin Plastic SOIC	0 to 105° C	AS2208D		

Pin Function Description

Pin Number	Function	Description
1	COMP	This is the inverting input to the PWM comparator. A divided and level shifted representation of this voltage is compared to the ISNS input to determine OUT duty cycle. A 1 mA current source is provided as a pull-up for an optocoupler.
2	ISNS	A voltage proportional to inductor current is connected to this pin. The PWM uses this information to terminate the gate drive of the output.
3	RT/CT	Oscillator frequency and maximum duty cycle are set by connecting a resistor (R_T) to VREG and a capacitor (C_T) to ground.
4	OV	This pin latches OUT low when pulled above 2.5 V. The latch can be reset by pulling OV above 4 V then back to ground.
5	GND	Circuit common ground.
6	OUT	This totem pole output is designed to directly drive a power MOSFET switch capable of sourcing and sinking peak currents up to 1 A.
7	Vcc	Positive supply voltage for the IC.
8	V _{REG}	Output of 5V series regulator.

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply Voltage (I _{CC} < 30 mA)	V _{CC}	Self-Limiting	V
Supply Voltage (Low Impedance Source)	Vcc	20	V
Reference Current	I _{REF}	200	mA
Output Current	I _{OUT}	1	Α
Output Voltage	V _{OUT}	20	V
Continuous Power Dissipation at 25° C	P _D	500	mW
Junction Temperature	TJ	150	°C
Storage Temperature Range	T _{STG}	-65 to 150	°C
Lead Temperature, Soldering 10 Seconds	TL	300	°C

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Conditions

Parameter	Symbol	Rating	Unit
Supply Voltage	V _{CC}	10 - 15	V
Oscillator	Fosc	50 - 250	kHz

Typical Thermal Resistance

Package	θja	θјс	Typical Derating
8L PDIP	95° C/W	50° C/W	10.5 mW/°C
8L SOIC	175° C/W	45° C/W	5.7 mW/°C

Electrical Characteristics

Electrical Characteristics are guaranteed over full junction temperature range (0 to 105° C). Ambient temperature must be derated based on power dissipation and package thermal characteristics. Unless otherwise specified, the conditions of test are V_{CC} = 15 V; BOK = 3 V; OV = 0V; R_T = 680 Ω ; C_T = 10 nF. To override UVLO, V_{CC} should be raised above 18 V prior to test.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
5 V Regulator					•	
Output Voltage	V _{REG}	I _{REG} = 1 mA, T _J = 25° C	4.90	5.00	5.10	V
Line Regulation	PSRR	9 ≤ V _{CC} ≤ 18 V		5	15	mV
Load Regulation		1≤ I _{REG} ≤ 20mA		5	15	mV
Temperature Stability	TC _{REG}			0.2	0.4	mV/°C
Total Output Variation		Line, Load,Temperature	4.85		5.15	V
Long-Term Stability		Over 1,000 hrs at 25°C		5	25	mV
Output Noise Voltage	V _{NOISE}	10 ≤ f ≤ 100kHz, T _J = 25°C		50		μV
Maximum Source Current	I _{MAX}	V _{REG} = 4.8 V	30	120	180	mA
Oscillator			·			
Initial Accuracy	Fosc	T _J =25°C	108	120	132	kHz
Voltage Stability		9 ≤ V _{CC} ≤ 18 V		0.2	1	%
Temperature Stability	TC _F	$T_{MIN} \le T_J \le T_{MAX}$		5		%
Amplitude	Vosc	V _{RT/CT} peak-to-peak		1.55		V
Upper Trip Point	V _H			2.80		V
Lower Trip Point	V _L			1.25		V
Discharge Current	I _{DSC}		7.50	8.70	9.50	mA
Duty cycle Limit		R _T =680 Ω, C _T =10nF, T _J =25°C	46	50	55	%
Over-Temperature Shutdown	T _{OT}			140		°C
Current Sense Comparator					•	
Transfer Gain	AV ISNS	-0.2 ≤ V _{ISNS} ≤ 0.8 V	2.85	3.00	3.15	V/V
ISNS Level Shift	V _{LS}	V _{ISNS} = 0 V		1.50		V
Maximum Input Signal	V _{ISNS MAX}	V _{COMP} =+5 V	1.00	1.08	1.20	V
Input Bias Current	I _{BIAS} ISNS	V _{COMP} =+5 V		-1	-10	μА
COMP Source Current	Ісомрн	V _{COMP} =+5 V	0.6	1.0		mA
COMP Swing High	V _{СОМРН}		5.2	5.6		V
Power Supply Rejection Ratio	PSRR	9 ≤ V _{CC} ≤ 18 V		70		dB
Propagation Delay to Output	t _{PB}			85	150	ns

Electrical Characteristics (cont'd)

Electrical Characteristics are guaranteed over full junction temperature range (0 to 105° C). Ambient temperature must be derated based on power dissipation and package thermal characteristics. Unless otherwise specified, the conditions of test are $V_{CC} = 15 \text{ V}$; BOK = 3 V; OV = 0V; $R_T = 680 \Omega$; $C_T = 10 \text{ nF}$. To override UVLO, V_{CC} should be raised above 18 V prior to test.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output						
Output Low Level	V _{OL}	I _{SINK} = 20 mA		0.1	0.4	V
Output Low Level	V _{OL}	I _{SINK} = 150 mA		1.5	2.2	V
Output High Level	V _{OH}	I _{SOURCE} = 20 mA	13	13.5		V
Output High Level	V _{OH}	I _{SOURCE} = 150 mA	12	13		V
Rise Time	t _R	C _L = 1 nF		50	150	ns
Fall Time	t _F	C _L = 1 nF		50	150	ns
Maximum Duty Cycle	D _{MAX}		94	97	100	%
Minimum Duty Cycle	D _{MIN}		0			%
Over-Voltage Input						
OV Threshold	Vov		2.50	2.80	3.10	V
OV Reset Threshold	V _{VOVH}		3.80	4.00	4.50	V
OV Clear Threshold	V _{VOVL}		1.10	1.75	2.20	V
OV Bias Current	I _{BIAS OV}	V _{REG} = 5 V, V _{OV} ≤ OV Threshold	-1	-0.2	1	μΑ
Under Voltage Lockout						
Startup Threshold	V _{CC} (ON)		12.5	14.0	15.8	V
Minimum Operating Voltage after Turn-on	V _{CC} (OFF)		7.3	8.0	8.5	AV
Startup Current	Icc	V _{CC} = 13 V		105	150	μΑ
Operating Supply Current	Icc			12	20	mA
Supply Voltage Clamp	V _{CC} Zener	I _{CC} = 30 mA		18		V
Output Impedance to GND in UVLO State	Z _{OUT}	V _{CC} = 6 V		22.0		kΩ

ASTEC reserves the right to make changes without further notice to any products described herein to improve reliability, function, or design. ASTEC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights or the rights of others. ASTEC products are not authorized for use as components in life support devices or systems intended for surgical implant into the body or intended to support or sustain life. Buyer agrees to notify ASTEC of any such intended end use whereupon ASTEC will determine availability and suitability of its products for the intended use. ASTEC and the ASTEC logo are trademarks of ASTEC (BSR) PLC.

ASTEC SEMICONDUCTOR

255 Sinclair Frontage Road • Milpitas, California 95035 • Tel. (408) 263-8300 • FAX (408) 263-8340

Notes