JRC

Ş

10

Vout2

NC

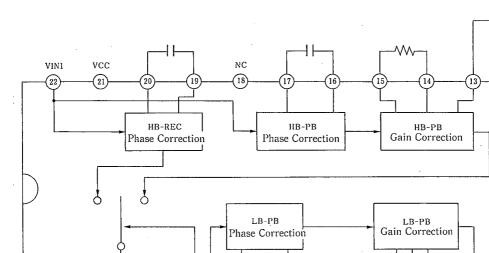
(12)

(11

NC

VIDEO EQUALIZER

GENERAL DESCRIPTION


NJM2258 is the IC functioning the gain high pass correction, as well as for equalizing function of wave distortion correction, generated by bright signal of group delay feature like low band filter. It has internalizing REC line, one circuit, and then the playback line 2 circuit.

FEATURES

- 5V Spec, (Recmmended Operating Voltage Range)
- Wide Band Width, 10MHz
- REC/PLAYBCK Change over function attached
- Package Outline SDIP22
- Bipolar Technology

Application

- VCR (S-VHS compatible)
- Video Camera
- Laser Disc

- 1

BLOCK DIAGRAM

2

GND

Vouri

3

V_{IN2}

4

PB/REC

NJM2258L

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+ .	7	v
Power Dissipation	Po	700	mW
Operating Temperature Range	Topr	-20~+75	Ĵ
Storage Temperature Range	Tstg	-40~+125	r

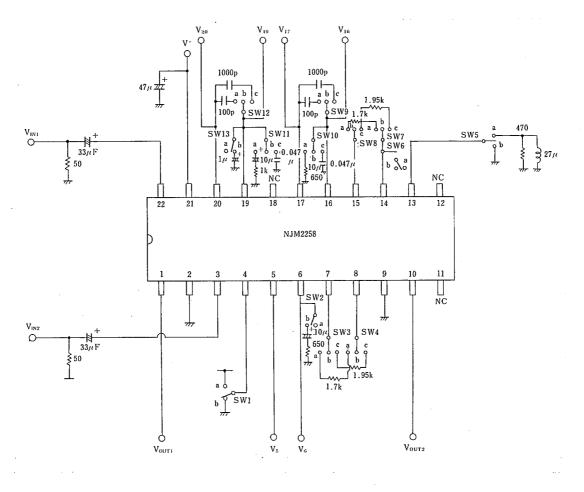
ELECTRICAL CHARACTERISTICS

 $(V^+=5V, Ta=25^{\circ}C)$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	l _p	No Signal		26	34	mA
HB-REC						
Phase Positive Gain	G _{af}	f _{IN} =100KHz 19PINOUT	-1	0	+1	dB
Phase Negative Gain	Gar	fin=100KHz 20PINOUT	-6.4	-5.4	-4.4	dB
19pin Impedance	AT19	f _{IN} =100KHz	-7.0	6.0	-5.0 +1	dB dB
Output Gain LOW	Gal	fin=100kHz	-1	0		
Output Gain HIGH	Gah	f _{IN} =5MEGHz	-1	0	+1	dB
Output Gain f Feature	ΔG_a	Gah-Gal	1 - 1	0 40	+1 -30	dB
Output Secondary Distortion	DA2	fIIN=5MEG vIN=1.0Vpp				dB
Output the third Distortion	DA3	fin5MEG vin=1.0Vpp		-36	-30	dB
НВ-РВ	I	<u> </u>				
Positiv Phase Gain	G _{bť}	IN=100KHz 16PINOUT	-1	0	+1	dB
Negative Phase Gain	G _{br}	f _{IN} =100KHz 17PINOUT	-0.2	0.8	1.8	dB
16 Impedance	AT16	$f_{\rm IN} = 100 \rm K Hz$	-7.0	-6.0	-5.0	dB
Output Gain	Gca	$f_{IN} = 100 \text{KHz}$	-6.1	-5.0	-4.0	dB
15-14 Impedance	ΔG_{c}	15PIN-14PIN=1.7KΩ	4.5	5.5	6.5	dB
Output Gain LOW	Gebl	$f_{IN} = 100 \text{KHz}$	-1	0	+1	dB
Output Gain HIGH	Gebh	f _{IN} =5MEGHz	2	3	4	dB
Output Gain f Feature	ΔG_b	Gcbh-Gcbl	2	3	4	dB
Output Secondary Distortion	DC2	$f_{IN}=5MEG v_{IN}=1.0V_{PD}$		-30	-25	dB
Output the third Distortion	DC3	$f_{IN}=5MEG v_{IN}=1.0V_{pp}$		-27	-22	dB
LB-PB		<u> </u>			1	ı
Positive Phase Gain	D _{df}	f _{IN} =100KHz 6PINOUT	-1	0	+1	dB
Negative Phase Gain	G _{dr}	f _{IN} =100KHz 5PINOUT	-0.2	0.8	1.8	Db
6 Impedance	AT6	$f_{\rm IN} = 100 \rm K Hz$	-7.0	-6.0	-5.0	dB
Output Gain	Gda	$f_{IN} = 100 \text{KHz}$	<u></u> −6.1	-5.1	-4.1	dB
7-8 Impedance	ΔG_d	7PIN-8PIN=1.7KΩ	4.5	5.5	6.5	dB
Output Gain LOW	Gehl	fin=100KHz		+1	0	dB
Output Gain HIGH	Gebh	f _{IN} =5MEGHz	-1	0	+1	dB
Output Gain f Feature	ΔG_{e}	Gebh-Gebl	-1	0	+1	dB
Output Secondary Distortion	DE2	$f_{1N}=5MEG v_{1N}=1.0V_{pp}$		-35	-28	dB
Output the third Distortion	DE3	$f_{IN}=5MEG v_{IN}=1.0V_{pp}$		-36	-30	dB

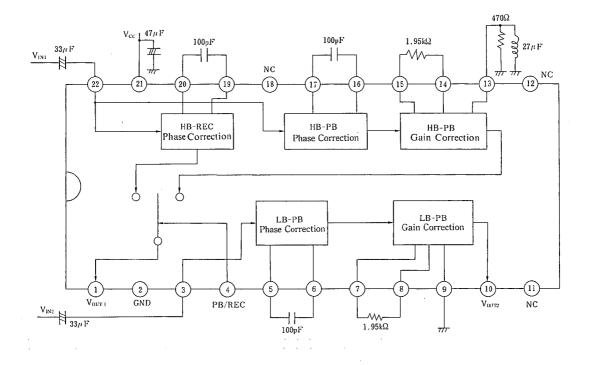
TERMINAL FUNCTION

PIN	PIN NAME	SYMBOL	FUNCTION
1	HB-REC/PB OUT	νουτι	HB type (S-VHS) Correction Output Pin
2	GND	GND	Ground
3	LB-PB IN	VIN2	LB type, (VHS) play-back signal Input Pin
4	HB-REC/PB Change over	PB REC	HB type, Change-over output of REC signal or Play-back signal High makes play-back signal output, and low makes REC signal output.
5	LB-PB Phase Correction Pin 1	LPCI	Connecting Capacitor between Pin $5\sim 6$, which helps to give feature of correcting the group delay.
6	LB-PB Phase Correction Pin 2	LPC2	Connecting Capacitor between Pin 5~6, which helps to give feature of correcting the group delay.
7	LB-PB Gain Correction Pin 1	LGC1	Setting up Gain by connecting resistor between Pin 7~8.
8	LB-PB Gain Correction Pin 2	LGC2	Setting up Gain by connecting resistor between Pin 7~8.
9	LB-PB Gain Correction Pin 3	LP	Connecting L-C parallel resonance between pin 9~GND, helps to give High banc keeping, and if not required of keeping connect to GND.
10	LB-PB OUT	VOUT2	LB type Output pin
ΞĒ.	N.C		N.C pin
12	N.C		N.C pin
13	LB-PB Gain Correction Pin 3	НР	Connecting L-C parallel resonance between pin 13~GND, helps to give High banc keeping, and if not required of keeping connect to GND.
14	LB-PB Gain Correction Pin 2	HPG1	Setting up Gain by connecting resistor between Pin 14~15.
15	LB-PB Gain Correction Pin 1	HPG2	Setting up Gain by connecting resistor between Pin 14~15.
16	LB-PB Phase Correction Pin 2	HPCI	Connecting Capacitor between Pin $16 \sim 17$, which helps to give feature of correcting the group delay.
17	LB-PB Phase Correction Pin 1	HPC2	Connecting Capacitor between Pin 16~17, which helps give feature of correcting the group delay.
18	N.C		N.C pin
19	LB-PB Phase Correction Pin 2	HRC1	Connecting Capacitor between Pin 19~20, which helps to give feature of correcting the group delay.
20	LB-PB Phase Correction Pin 1	HRC2	Connecting Capacitor between Pin 19~20, which helps to give feature of correcting the group delay.
21	V+	Vcc	Voltage Source.
22	HB-REC/PB IN		HB type Input pin.


TEST CONDITION

	SW-CONDITION												TECT DIN	TOT CONDITION			
PARAMETER	I	2	3	4	5	6	7 ·	8	9	10	11	12	13	TEST PIN	TEST CONDITION		
In	a	a	b	Ь	b	а	b	b	b	b	b	b	a				
GAf	b								~					V 19	f=100kHz, V=0.5Vpp		
GAr	-												b	V 20	$f = 100 kHz$, $V = 0.5 V_{1'1'}$		
AT 19											a		a	V19	f=100kHz, V=0.5V		
Gal											b	a		VOUT1	f = 100 kHz, V = 0.5 VeV		
Gah											b	a		VOUT1	f=5MHz, $V=0.5Ver$		
DA 2												с		VOUT1	$f = 5 MHz, V = 1.0 V_{PP}$		
DA 3												c		VOUT1	$f=5MHz$, $V=1.0V_{PP}$		
Gbf														V16	f = 100 kHz, V = 0.5 Vm		
Gbr														V17	f = 100 kHz, V = 0.5 VeV		
AT 16										a				V16	f = 100 kHz, V = 0.5 Ver		
Gea	a								a	Ь				VOUT1	f=100kHz, V=0.5VPP		
△Gea							a	a						VOUT1	$f = 100 \mathrm{kHz}, V = 0.5 \mathrm{Ver}$		
Geb1					a		с	c						VOUT1	f = 100 kHz, V = 0.5 Ver		
Gebh					а		с	с						VOUT1	$f = 5 MHz$, $V = 0.5 V_{PP}$		
DC2					b		c	c	c					VOUT1	$f = 5 MHz$, $V = 1.0 V_{111}$		
DC3					b		с	c	c					VOUT1	$f = 5 MHz$, $V = 1.0 V_{PP}$		
Gdf	а										b	a		V6	f = 100 kHz, V = 0.5 Vm		
Gdr														V5	f = 100 kHz, V = 0.5 Vm		
AT6		Ь												V6	f = 100 kHz, V = 0.5 Ver		
Gda		a												VOUT2	$f = 100 \mathrm{kHz}, V = 0.5 \mathrm{Vm}$		
∆Gd			a	a										VOUT2	$f = 100 \mathrm{kHz}, V = 0.5 \mathrm{Vm}$		
Geb1			c	c										VOUT2	f = 100 kHz, V = 0.5 Vm		
Gebh			c	c										VOUT2	$f=5MHz$, $V=0.5V_{PP}$		
DE 2			с	с										VOUT2	$f=5MHz$, $V=1.0V_{PP}$		
DE3			c	c			1							VOUT2	$f = 5 MHz$, $V = 1.0 V_{1'1'}$		

5-192----


NJM2258

TEST CIRCUIT

-New Japan Radio Co.,Ltd.-

APPLICATION CIRCUIT

5

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.