

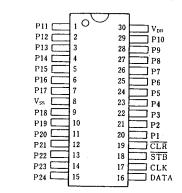
24-BIT SERIAL TO PARALLEL CONVERTER

GENERAL DESCRIPTION

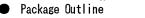
The NJU3719 is a 24-bit serial to parallel converter especially apply to MPU outport expander.

The effective outport assignment of MPU is available as the connection between NJU3719 and MPU is required only 4 lines.

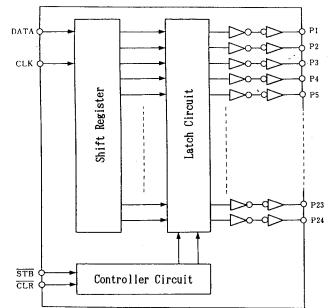
Up to 5MHz signal can be input to the serial data input terminal and the data is output from parallel output buffer through serial in parallel out shift register and parallel data latches.


The hysteresis input circuit realized wide noise margin and high driverbility output buffer (25mA) can drive LED directly.

PACKAGE OUTLINE


NJU3719L

PIN CONFIGURATION



F	EATURES		
۲	24-Bit Serial In Paral	lel Ou	t
	Hysteresis Input		0.5V typ
\bullet	Operating Voltage		5V±10%
\bullet	Operating Frequency		5MHz or more
	0		05

- **Output Current** 25mA
 - C-MOS Technology SDIP 30

BLOCK DIAGRAM

New Japan Radio Co., Ltd.

TERMINAL DESCRIPTION

NO.	SYMBOL	FUNCTION	NO.	SYMBOL	FUNCTION	
1	P11	- Parallel Converts - Data Output Terminals 	16	DATA	Serial Data Input Terminal	
2	P12		17	CLK	Clock Signal Input Terminal	
3	P13			18	STB	Strove Signal Input Terminal
4	P14		19	CLR	Clear Signal Input Terminal	
5	P15		20	P1		
6	P16		.21	P2		
7	P17		22	P3		
8	Vss	GND	23	P4		
9	P18	Parallel Converts Data Output Terminals	24	P5	Parallel Converts	
10	P19		25	P6	Data Output Terminals	
11	P20		26	P7		
12	P21		27	P8		
13	P22		28	P9		
14	P23		29	P10		
15	P24		30	Vdd	Power Supply Terminal	

FUNCTIONAL DESCRIPTION

(1) Reset

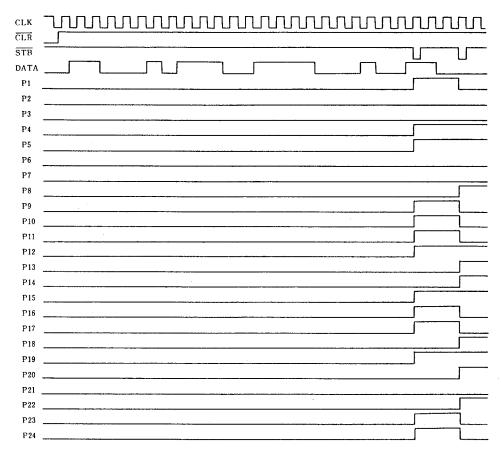
When the "L" level is input to the $\overline{\text{CLR}}$ terminal, all latches are reset and all parallel conversion output are "L" level.

Normally, the CLR terminal should be "H" level.

(2) Data Transmission

In the STB terminal is "H" level and input the clock signal to the CLK terminal, the serial data input from DATA terminal shift in the shift register by synclonizing at rising edge of the clock signal.

When the $\overline{\text{STB}}$ terminal change to "L" level, the data in the shift register transfer to the latch. Even if the STB terminal is "L" level, the input clock signal shift the data in the shift register, therefore, the clock signal control is needed.


Furthermore, the 4 input circuits have a hysteresis characteristics by using the schmitt trigger structure to protect the noise.

CLK	STB	CLR	OPERATION
X	x		All latch are reset (the data in the shift register is no change).
	.^	L	All of Parallel convert output are "L".
₼	Н	н	The serial data input from DATA terminal input to the shift register.
	11		In this stage, the data in the latch is no change.
L			The data in the shift register transfer to the latch. And the data
Н		н	in the latch output from parallel output.
	L.		The CLK input in the $\overline{\text{STB}}=$ "L" and $\overline{\text{CLR}}=$ "H" state, the data shift in
1			the shift register and latched data also change in accordance with
			the shift register.

Note) X: Don't care

TIMING CHART

ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

,			(10-200)
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage Range	Vod	-0.5 ~ 7.0	V
Input Voltage Range	Vi	Vss-0.5 ~ Vod+0.5	V
Output Voltage Range	Vo	Vss-0.5 \sim Vdd+0.5	٧
Output Current	10	±25	mA
Power Dissipation	Po	700 (SDIP)	mW
Operating Temperature Range	Topr	-25 ~ +85	Ĵ
Storge Temperature Range	Tstg	-65 ~ +150	Ĵ

DC ELECTRICAL CHARACTERISTICS

					(V _{DD} =4.5~	∙5. 5V, Vs	ss=0V, Ta	=25°C)
PARAMETER		SYMBOL	CONDITION		MIN	TYP	MAX	UNIT
Operating Curr	ent	lods	VIH=VDD, VIL=Vss				0.1	mA
Input Voltage	High-Level	ViH			0. 7V _{dd}		V _{DD}	v
input voitage	Low-Level	VrL			Vss		0. 3V _{DD}	v
Input Leakage	Current	l L i	V1=0~VDD	V1=0~VDD			10	μA
High-Level Output Voltage		Vond	Iон ≕−25mA	P1∼P24 Terminals (Note 1)	V₀₀−1. 5		VDD	v
			Iон ≕−15mA		V _{DD} -1.0		VDD	
			Iон≕—10mA		V _{DD} -0.5		Vdd	
Low-Level Output Voltage		Vold	lo∟ =+25mA		Vss		1.5	
			l₀∟≕+15mA		Vss		0.8	۷
			IoL=+10mA		Vss		0.4	
Quetrout Shout (Current	Current losp	Vo=7V, V1=0V	P1~P24			20	
Output Snort (Output Short Current		Vo=0V, V1=7V	Terminals (Note 2)			-20

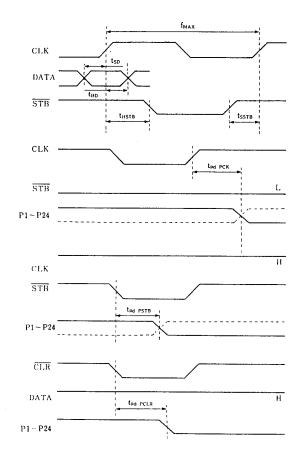
Note 1) Specified value represent output current per pin. When use, total current consideration and less than power dissipation rating operation should be required.

Note 2) $V_{\text{DD}}{=}7V,~V_{\text{SS}}{=}0V,~1$ second per pin.

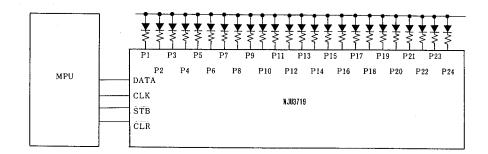
SWITCHING CHARACTERISTICS

 $(V_{DD}=4.5V \sim 5.5V, V_{SS}=0V, Ta=-20 \sim 75^{\circ}C)$

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Set-Up Time	tsp	data – Clk	20			ns
Hold Time	t _{HD}	CLK - DATA	20			ns
Set-Up Time	tsstb	STB - CLK	30			ns
Hold Time	t HSTB	CLK – STB	30			ns
A MALE 1999 - 11 - 7	tpd PCK	CLK - P1~P24			100	ns
Output Delay Time	tpd PSTB	STB − P1~P24			80	ns
	tpd PCLR	CLR - P1~P24			80	ns
Max. Operating Frequency	fмаx		5			MHz.


New Japan Radio Co., Ltd.

*) Cour=50pF


7-55

SWITCHING CHARACTERISTICS TEST WAVEFORM

JRO

■ APPLICATION CIRCUIT

7

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.