

PRELIMINARY CUSTOMER PROCUREMENT SPECIFICATION

Z86193 CMOS Z8[®] MICROCONTROLLER

MULTIPLIER/DIVIDER/SEARCH/MERGE

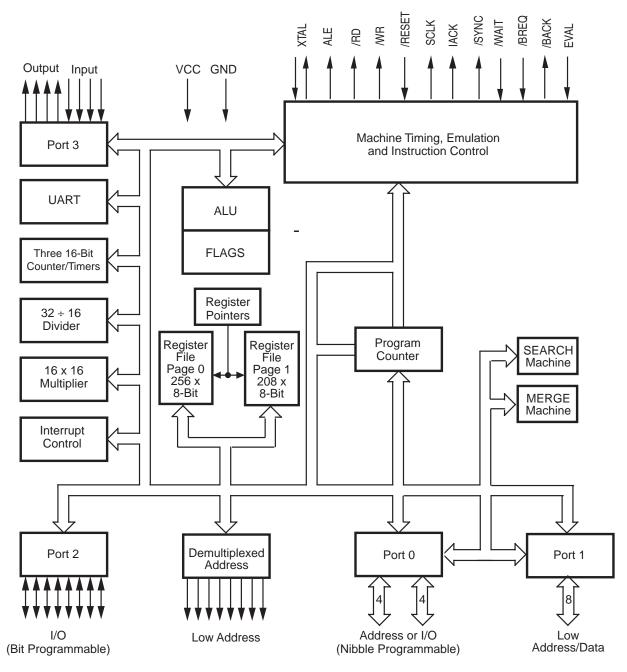
GENERAL DESCRIPTION

The Z86193 is a CMOS ROMless Z8[®] microcontroller enhanced with a hardwired 16-bit x 16-bit multiplier, 32-bit/16-bit divider, three 16-bit counter/timers, search and merge instructions, Evaluation mode and a Bus Request mode. The device is code compatible with other Z8 family devices, yet it offers more powerful mathematical capabilities, data searching capabilities, and bit manipulation. The Z86193 is offered in a 64-pin VQFP package.

The Z86193 provides up to 16 output address lines permitting an address space of up to 64 Kbytes each of Program or Data memory. Eight address outputs are provided by a de-multiplexed 8-bit Address Bus (A7-A0) or by a multiplexed 8-bit Address/Data Bus (AD7-AD0). The remaining eight address lines (A15-A8) can be provided by the software configuration of Port0 to output address.

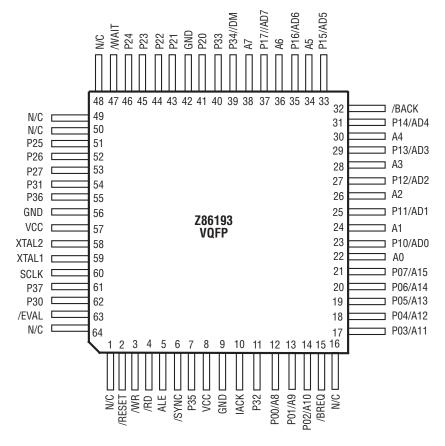
The Z86193 includes a bus which differs from other Z8 devices. The Z86193 provides bus control signals /RD (Read Strobe), /WR (Write Strobe), and ALE (Address Latch Enable).

There are 464 8-bit registers located on-chip and organized as 444 general-purpose registers, 16 control and status registers, one reserved register, and up to three I/O port registers. The Register File is partitioned into two Register Pages. Page0 contains 208 registers and Page1 contains 208 registers. The 48 other registers are common to both Register Pages. The Register file is also divided into 29 working register groups of 16 registers each. Configuration of the registers in this format allows the use of short format instructions. There are 17 additional registers implemented in the Expanded Register file in Banks D and E. Two of the registers may be used as general-purpose, while the other 15 are used to supply data and control for the multiplier/divider unit and the additional counter/timers.


Notes:

All Signals with a preceding front slash, "/", are active Low, e.g.: B//W (WORD is active Low); /B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:


Connection	Circuit	Device
Power	V _{cc}	V _{DD}
Ground	GND	V _{SS}

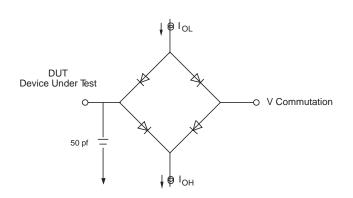
GENERAL DESCRIPTION (Continued)

Z86193 Functional Block Diagram

PIN CONFIGURATION

64-Pin VQFP Package

ABSOLUTE MAXIMUM RATINGS


Symbo	I Description	Min	Max	Units
V _{CC}	Supply Voltage*	0.0	+7.0	V
T _{STG}	Storage Temp		+150	C
T _A	Oper Ambient Temp		†	C

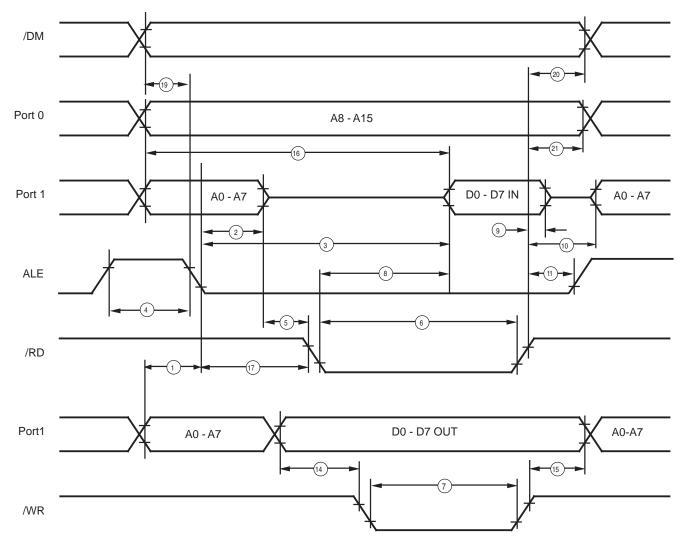
* Voltages on all pins with respect to GND.

+ See Ordering Information

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Test Load Diagram). Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.

Test Load Diagram


DC ELECTRICAL CHARACTERISTICS VCC = $5.0V \pm 10\%$

Sym	Parameter	T _A = Min	0°C to +70°C Max	Typical @ 25°C	Units	Conditions
	Max Input Voltage		7		V	I _{IN} 250 μA
V _{CH}	Clock Input High Voltage	3.8	V _{cc}		V	Driven by External Clock Generator
V _{CL}	Clock Input Low Voltage	-0.03	0.8		V	Driven by External Clock Generator
V	Input High Voltage (PO,P1,P	2) 2.0	V _{cc}		V	
V _{IH}	Input High Voltage (P3)	2.2	V _{cc}		V	
V _{IL}	Input Low Voltage	-0.3	0.8		V	
V _{oh}	Output High Voltge	2.4			V	I _{он} = -2.0 mA
V _{OH}	Output High Voltage \	√ _{cc} –100mV			V	$I_{0H}^{0} = -100 \ \mu A$
V _{OL}	Output Low Voltage	00	0.4		V	$I_{01} = +4 \text{ mÅ}$
VRH	Reset Input High Voltage	3.8	V _{cc}		V	0L
V _{RI}	Reset Input Low Voltage	-0.03	0.8		V	
	Input Leakage	-2	2		μA	Test at 0V, V _{cc}
OL	Output Leakage	-2	2		μA	Test at OV, V _{cc}
IR	Reset Input Current		-180		μA	$V_{\rm BI} = 0V$
CC	Supply Current		120	70	mA	@ 40 MHz [1]
CC1	Standby Current (HALT Mod	de)	30	20	mA	HALT Mode $V_{IN} = 0V$, V_{CC} @ 40 MHz [1]
CC2	Standby Current		20	6	μA	STOP Mode $V_{IN} = OV, V_{CC} [1]$
AL	Auto Latch Current	-16	16	5	μA	

Note:

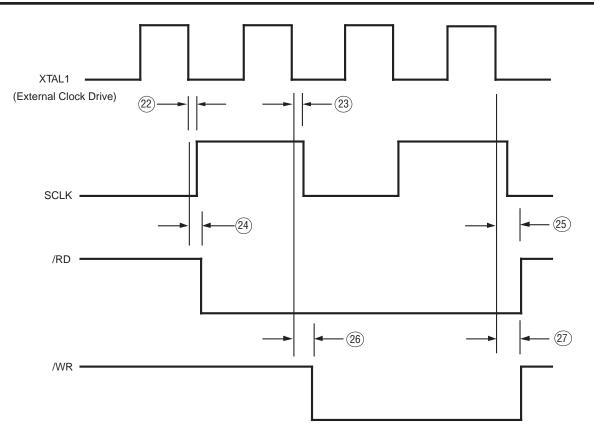
[1] All inputs driven to 0V, or V_{cc} and outputs floating. [2] Values are preliminary engineering estimates.

AC CHARACTERISTICS External Memory Read/Write Timing Diagram

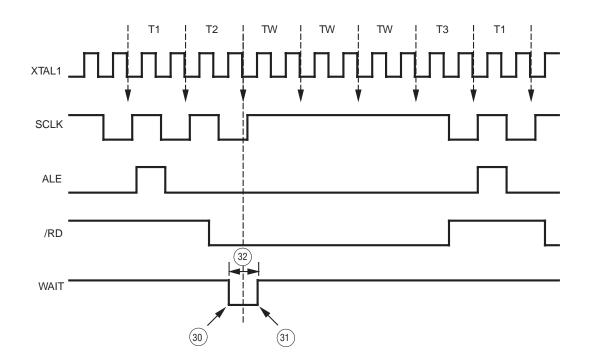
External I/O or Memory Read/Write Timing Diagram

AC CHARACTERISTICS External I/O or Memory Read/Write Timing Table

No	Sym	Parameter	Max	Max	Units	
1	TdA(ALE)	Address Valid To ALE Fall Delay	8		ns	
2	ThALE(A)	ALE Fall To Address Hold Time	15		ns	
3	TdALE(DI)	ALE Fall To Data In Req'd Valid Delay		75	ns	
4	TwALE	ALE HIGH Width	10		ns	
5	TdAZ(RD)	Address Float To /RD Fall	0		ns	
6	TwRD	/RD Low Width	60		ns	
7	TwWR	/WR Low Width	35		ns	
8	TdRD(DI)	/RD Fall To Data in Req'd Valid Delay		40	NS	
9	ThRD(DI)	/RD Rise to Data In Hold Time	0		ns	
10	TdRDWR(A)	/RD or /WR Rise To Address Active Delay	20		ns	
11	TdRDWR(ALE)	/RD or /WR Rise To ALE Delay	16		ns	
14	TdDO(WR)	Data Out To /WR Fall Delay	12		ns	
15	ThWR(DO)	/WR Rise To Data Out Hold Time	12		ns	
16	TdA(DI)	Address Valid To Data In Req'd Valid Delay		90	ns	
17	TdALE(RD)	ALE Fall To /RD Fall Delay	20		ns	
19	TdDM(ALE)	/DM Valid To ALE Fall Delay	10		ns	
20	TdRDWR(DM)	/RD or /WR Rise To /DM Valid Delay	15		ns	
21	ThRDWR(A)	/RD or /WR Rise To Adress Valid Hold Time	15		ns	
22	TdXT(SCR)	XTAL Falling To SCLK Rising		30	ns	
23	TdXT(SCF)	XTAL Falling To SCLK Falling		30	ns	
24	TdXT(RDF)	XTAL Falling To /RD Falling		40	ns	
25	TdXT(RDR)	XTAL Falling To /RD Rising		30	NS	
26	TdXT(WRF)	XTAL Falling To/WR Falling		40	ns	
27	TdXT(WRR)	XTAL Falling To/WR Rising		30	ns	
28	TsW(XT)	Wait Set Up Time			ns	
29	ThW(XT)	Wait Hold Time			ns	
30	TsW	Wait Width (One Wait Time)			ns	

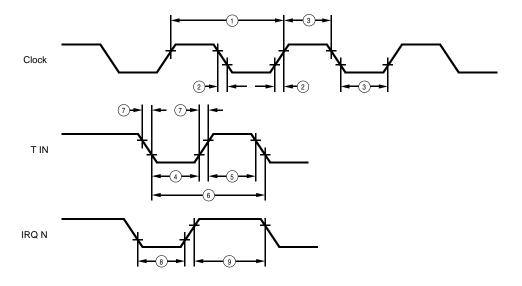

Notes:

1. Values based on external clock drive with a clock frequency.


2. Values are preliminary and are to be characterized.

3. When using extended memory timing, add 2TpC.

4. Timing numbers are given for minimum TpC.


XTAL/SCLK To DSR and DSW Timing

XTAL/SCLK To WAIT Timing

AC CHARACTERISTICS

Additional Timing Diagram

Additional Timing

AC CHARACTERISTICS

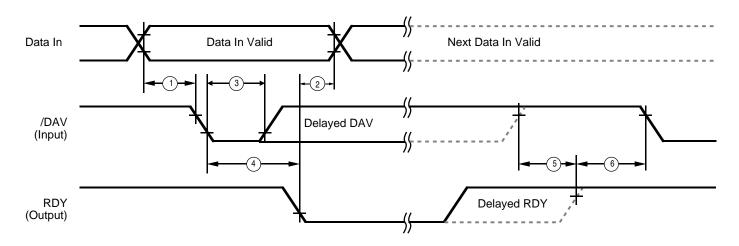
Additional Timing Table

	$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ 40 MHz						
No	Symbol	Parameter	Min	Max	Units	Notes	
1	ТрС	Input Clock Period	25	1000	ns	[1]	
2	TrC,TfC	Clock Imput Rise & Fall Times		4	ns	[1]	
3	TwC	Input Clock Width	8		ns	[1]	
4	TwTinL	Timer Input Low Width	75		ns	[2]	
5	TwTinH	Timer Input High Width	3 TpC		NS	[2]	
6	TpTin	Timer Input Period	8 TpC		ns	[2]	
7	TrTin,TfTin	Timer Input Rise & Fall Times	100		ns	[2]	
3A	TwIL	Interrupt Request Input Low Times	70		ns	[2,4]	
3B	TwIL	Interrupt Request Input Low Times	5 TpC		NS	[2,5]	
9	TwIH	Interrupt Request Input High Times	3 TpC		ns	[2,3]	

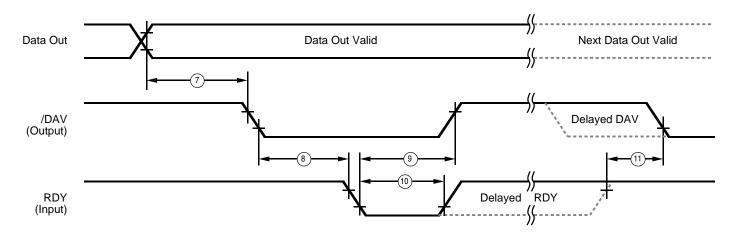
Notes:

[1] Clock timing references use 3.8V for a logic 1 and 0.8V for a logic 0.

[2] Timing references use 2.0V for a logic 1 and 0.8V for a logic 0.


[3] Interrupt references request through Port 3.

[4] Interrupt request through Port 3 (P33-P31)`.


[5] Interrupt request through Port 30.

AC CHARACTERISTICS

Handshake Timing Diagrams

Input Handshake Timing

Output Handshake Timing

⊗ Silæ

AC CHARACTERISTICS

Handshake Timing Table

			Τ, =	0°C to +70°C)	Data
	No	Symbol	Parameter	Min	Max	Units
Dire	ction					
1	TsDI(DAV)	Data In Setup Time to /DAV	0		ns	In
2	ThDI(DAV)	RDY to Data In Hold Time	0		ns	In
3	TwDAV	/DAV Width	80		ns	In
4	TdDAVIf(RDYf)	/DAV to RDY Delay		120	ns	In
5	TdDAVIr(RDYr)	DAV Rise to RDY Wait Time		40	ns	In
6	TdRDYOr(DAVIf)	RDY Rise to DAV Delay	0		ns	In
7	TdD0(DAV)	Data Out to DAV Delay		ТрС	ns	Out
8	TdDAV0f(RDYIf)	/DAV to RDY Delay	0		ns	Out
9	TdRDYIf(DAVOr)	RDY to /DAV Rise Delay		120	ns	Out
10	TwRDY	RDY Width	80		ns	Out
11	TdRDYIr(DAVOf)	RDY Rise to DAV Wait Time		40	ns	Out

Pre-Characterization Product:

The product represented by this CPS is newly introduced and Zilog has not completed the full characterization of the product. The CPS states what Zilog knows about this product at this time, but additional features or non-conformance with some aspects of the CPS may be found, either by Zilog or its customers in the course of further application and characterization work. In addition, Zilog cautions that delivery may be uncertain at times, due to start-up yield issues.

Low Margin:

Customer is advised that since this is a Preliminary CPS, this product does not meet Zilog's internal guardbanded test policies for the specification requested and is supplied on an exception basis. Customer is cautioned that delivery may be uncertain and that, in addition to all other

© 1995 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only. Zilog, Inc. makes no warranty, express, statutory, implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from intellectual property infringement. Zilog, Inc. makes no warranty of merchantability or fitness for any purpose. Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document. limitations on Zilog liability stated on the front and back of the acknowledgement, Zilog makes no claim as to quality and reliability under the CPS. The product remains subject to standard warranty for replacement due to defects in materials and workmanship.

Zilog's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the customer and Zilog prior to use. Life support devices or systems are those which are intended for surgical implantation into the body, or which sustains life whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 Telephone (408) 370-8000 Telex 910-338-7621 FAX 408 370-8056