

General Description

The MAX4372 low-cost, precision, high-side currentsense amplifier is available in a tiny, space-saving SOT23-5 package. Offered in three gain versions (T = +20V/V, F = +50V/V, and H = +100V/V), this device operates from a single +2.7V to +28V supply and consumes only 30µA. It features a voltage output that eliminates the need for gain-setting resistors and is ideal for today's notebook computers, cell phones, and other systems where battery/DC current monitoring is critical.

High-side current monitoring is especially useful in battery-powered systems since it does not interfere with the ground path of the battery charger. The input common-mode range of 0 to +28V is independent of the supply voltage and ensures that the current-sense feedback remains viable even when connected to a 2cell battery pack in deep discharge.

The user can set the full-scale current reading by choosing the device (T, F, or H) with the desired voltage gain and selecting the appropriate external sense resistor. This capability offers a high level of integration and flexibility, resulting in a simple and compact current-sense solution. For higher bandwidth applications, refer to the MAX4173T/F/H data sheet.

Applications

Power-Management Systems

General-System/Board-Level Current Monitoring

Notebook Computers

Portable/Battery-Powered Systems

Smart-Battery Packs/Chargers

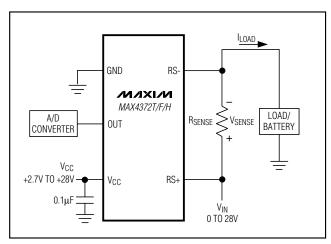
Cell Phones

Precision-Current Sources

Features

- **♦ Low-Cost, Compact Current-Sense Solution**
- ♦ 30µA Supply Current
- ♦ +2.7V to +28V Operating Supply
- **♦ 0.18% Full-Scale Accuracy**
- **♦** Low 1.5Ω Output Impedance
- **♦ Three Gain Versions Available**
 - +20V/V (MAX4372T)
 - +50V/V (MAX4372F)
 - +100V/V (MAX4372H)
- ♦ Wide 0 to +28V Common-Mode Range, Independent of Supply Voltage
- ♦ Available in Space-Saving SOT23-5 Package

Ordering Information


PART	TEMP. RANGE	PIN-PACKAGE	TOP MARK
MAX4372TEUK-T	-40°C to +85°C	5 SOT23-5	ADIU
MAX4372TESA	-40°C to +85°C	8 SO	_
MAX4372FEUK-T	-40°C to +85°C	5 SOT23-5	ADIV
MAX4372FESA	-40°C to +85°C	8 SO	_
MAX4372HEUK-T	-40°C to +85°C	5 SOT23-5	ADIW
MAX4372HESA	-40°C to +85°C	8 SO	_

Note: Gain values are as follows: +20V/V for the T version. +50V/V for the F version, and +100V/V for the H version.

Pin Configurations

Typical Operating Circuit

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

V _{CC} , RS+, RS- to GND	0.3V to +30V
OUT to GND	0.3V to +15V
Differential Input Voltage (V _{RS+} - V _{RS-})	±0.3V
Current into Any Pin	±10mA

Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
5-Pin SOT23 (derate 7.1mW/°C above +70°C	C)571mW
8-Pin SO (derate 5.88mW/°C above +70°C).	471mW
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10sec)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{RS+} = 0 \text{ to } +28V, V_{CC} = +2.7V \text{ to } +28V, V_{SENSE} = 0, R_{LOAD} = 1M\Omega, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
Operating Voltage Range (Note 2)	Vcc		2.7		28	V		
Common-Mode Input Range (Note 3)	VCMR		0		28	V		
Common-Mode Rejection	CMR	V _{RS+} > 2V			85		dB	
Supply Current	Icc	V _{RS+} > 2V, V _{SENSE} = 5	ōmV		30	60	μΑ	
Leakage Current	I _{RS+} , I _{RS-}	$V_{CC} = 0$			0.05	1.2	μΑ	
	Inc	V _{RS+} > 2V		0		1		
Input Dica Current	I _{RS+}	V _{RS+} ≤ 2V		-25		2		
Input Bias Current	1	V _{RS+} > 2V		0		2	<u>μ</u> Α	
	I _{RS} -	V _{RS+} ≤ 2V		-50		2	7	
Full-Scale Sense Voltage		Gain = +20V/V or +50V/V			150		mV	
(Note 4)	VSENSE V SENSE V S			100				
Full-Scale Accuracy (Note 5)		Vsense = 100mV, V _{CC} = 12V, V _{RS+} = 12V, T _A = +25°C (Note 6)			±0.18	±3	%	
		Vsense = 100mV, Vcc VRS+ = 12V (Note 6)	= 12V,			±6		
Total OUT Voltage Error (Note 5)		V _{SENSE} = 100mV, V _{CC} = 28V, V _{RS+} = 28V (Note 6)			±0.15	±7	%	
		V _{SENSE} = 100mV, V _{CC} = 12V, V _{RS+} = 0.1V (Note 6)			±1	±28		
		VSENSE = 6.25mV, V _{CC} = 12V, V _{RS+} = 12V (Note 7)			±0.15			
OLIT Law Voltage		Vcc = 2.7V	I _{OUT} = 10μA		2.6		mV	
OUT Low Voltage			I _{OUT} = 100μA		9	65	5 1110	
OUT High Voltage	Vcc - Voh	Vcc = 2.7V, lout = -500μA			0.1	0.25	V	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{RS+} = 0 \text{ to } +28V, V_{CC} = +2.7V \text{ to } +28V, V_{SENSE} = 0, R_{LOAD} = 1M\Omega, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
-3dB Bandwidth	BW	V _{RS+} = 12V, V _{CC} = 12V, C _{LOAD} = 10pF	VSENSE = 100mV, gain = +20V/V		275		kHz	
			V _{SENSE} = 100mV, gain = +50V/V		200			
			V _{SENSE} = 100mV, gain = +100V/V		110			
			V _{SENSE} = 6.25mV		50			
		MAX4372T		20				
Gain		MAX4372F			50		V/V	
		MAX4372H			100			
Coin Aggurgou		Vsense = 20mV to 100mV	T _A = +25°C		±0.25	±2.5	%	
Gain Accuracy			$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			±5.5		
OUT Settling Time to 1% of Final Value		Gain = +20V/V, VCC = 12V,	Vsense = 6.25mV to 100mV		20		— µs	
	$V_{RS+} = 12V,$ $C_{LOAD} = 10pF$, , ,	VSENSE = 100mV to 6.25mV		20			
Capacitive Load Stability		No sustained oscillations			1000		рF	
OUT Output Resistance	Rout	VSENSE = 100mV			1.5		Ω	
Power-Supply Rejection	PSR	$V_{OUT} = 2V, V_{RS+} > 2V$		75	85		dB	
Power-Up Time to 1% of Final Value		VCC = 12V, V _{RS+} = 12V, V _{SENSE} = 100mV, C _{LOAD} = 10pF			0.5		ms	
Saturation Recovery Time (Note 8)		V _{CC} = 12V, V _{RS+} =		0.1		ms		

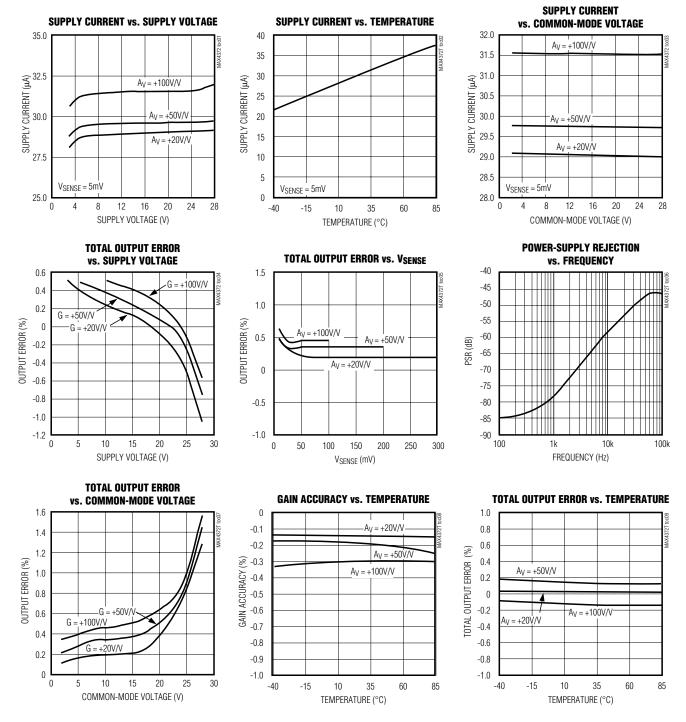
Note 1: All devices are 100% production tested at T_A = +25°C. All temperature limits are guaranteed by design.

Note 2: Guaranteed by PSR test.

Note 3: Guaranteed by OUT Voltage Error test.

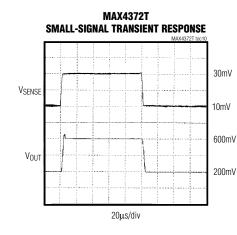
Note 4: Output voltage is internally clamped not to exceed 12V.

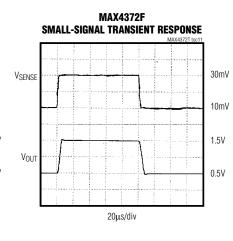
Note 5: Total OUT voltage error is the sum of gain and offset voltage errors.

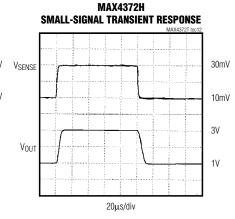

Note 6: Measured at $I_{OUT} = -500\mu A$ ($R_{LOAD} = 4k\Omega$ for gain = +20V/V, $R_{LOAD} = 10k\Omega$ for gain = +50V/V, $R_{LOAD} = 20k\Omega$ for gain = +100V/V).

Note 7: +6.25mV = 1/16 of +100mV full-scale voltage (C/16).

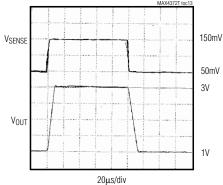
Note 8: The device will not reverse phase when overdriven.

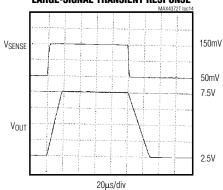

Typical Operating Characteristics

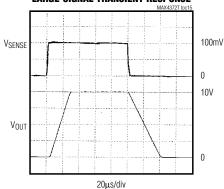

 $(V_{CC} = +12V, V_{RS+} = 12V, V_{SENSE} = 100 \text{mV}, T_A = +25 ^{\circ}\text{C}, \text{ unless otherwise noted.})$

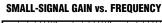


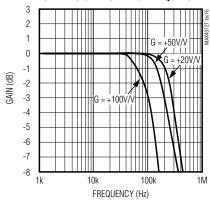
Typical Operating Characteristics (continued)


(V_{CC} = +12V, V_{RS+} = 12V, V_{SENSE} = 100mV, T_A = +25°C, unless otherwise noted.)




MAX4372T LARGE-SIGNAL TRANSIENT RESPONSE





MAX4372H Large-Signal Transient Response

Pin Description

P	IN	NAME	FUNCTION		
SOT23-5	so	INAINIL	TONOTION		
1	3	GND	Ground		
2	4	OUT	Output Voltage. V _{OUT} is proportional to the magnitude of V _{SENSE} (V _{RS+} - V _{RS-}).		
3	1	Vcc	Supply Voltage		
4	8	RS+	Power Connection to the External Sense Resistor		
5	6	RS-	Load-Side Connection to the External Sense Resistor		
_	2, 5, 7	N.C.	No Connection. Not internally connected.		

Detailed Description

The MAX4372 high-side current-sense amplifier features a 0 to +28V input common-mode range that is independent of supply voltage. This feature allows the monitoring of current flow out of a battery in deep discharge, and also enables high-side current sensing at voltages far in excess of the supply voltage (VCC).

Current flows through the sense resistor, generating a sense voltage (Figure 1). Since A1's inverting input is high impedance, the voltage on the negative terminal equals V_{IN} - V_{SENSE}. A1 forces its positive terminal to match its negative terminal; therefore, the voltage across RG₁ (V_{IN} - V₁-) equals V_{SENSE}. This creates a current to flow through RG₁ equal to V_{SENSE} / RG₁. The transistor and current mirror amplify the current by a factor of β . This makes the current flowing out of the current mirror equal to:

$$IM = \beta VSENSE / RG1$$

A2's positive terminal presents high impedance, so this current flows through R_{GD}, with the following result:

$$V_{2+} = RGD \beta \cdot V_{SENSE} / RG1$$

R1 and R2 set the closed-loop gain for A2, which amplifies V_{2+} , yielding:

$$VOUT = RGD \cdot \beta \cdot VSENSE / RG1 (1 + R2 / R1)$$

The gain of the device equals:

$$\frac{V_{OUT}}{V_{SENSE}} = R_{GD} \cdot \beta (1 + R2 / R1) / R_{G1}$$

_Applications Information

Recommended Component Values

The MAX4372 operates over a wide variety of current ranges with different sense resistors. Table 1 lists common resistor values for typical operation of the MAX4372.

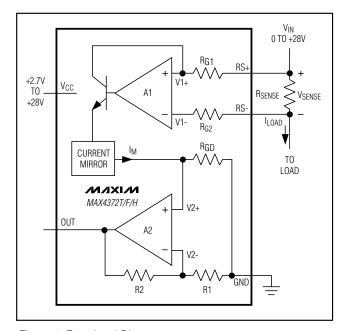


Figure 1. Functional Diagram

Choosing RSENSE

Given the gain and maximum load current, select RSENSE such that VCC - VOUT does not exceed +0.25V and VOUT does not exceed +10V. To measure lower currents more accurately, use a high value for RSENSE. A higher value develops a higher sense voltage, which overcomes offset voltage errors of the internal current amplifier.

In applications monitoring very high current, ensure RSENSE is able to dissipate its own I²R losses. If the resistor's rated power dissipation is exceeded, its value may drift or it may fail altogether, causing a differential voltage across the terminals in excess of the absolute maximum ratings.

Table 1. Recommended Component Values

FULL-SCALE LOAD CURRENT, ILOAD (A)	CURRENT-SENSE RESISTOR, RSENSE (mΩ)	GAIN (V/V)	FULL-SCALE OUTPUT VOLTAGE (FULL-SCALE VSENSE = 100mV), VOUT (V)
		20	2.0
0.1	1000	50	5.0
		100	10.0
		20	2.0
1	100	50	5.0
		100	10.0
		20	2.0
5	20	50	5.0
		100	10.0
		20	2.0
10	10	50	5.0
		100	10.0

Using a PC Board Trace as RSENSE

If the cost of RSENSE is an issue and accuracy is not critical, use the alternative solution shown in Figure 2. This solution uses copper PC board traces to create a sense resistor. The resistivity of a 0.1-inch-wide trace of 2-ounce copper is about $30m\Omega/\text{ft}$. The resistance temperature coefficient of copper is fairly high (approximately 0.4%/°C), so systems that experience a wide temperature variance must compensate for this effect. In addition, self-heating will introduce a nonlinearity error. Do not exceed the maximum power dissipation of the copper trace.

For example, the MAX4372T (with a maximum load current of 10A and an RSENSE of $5m\Omega$) creates a full-scale VSENSE of 50mV that yields a maximum VOUT of 1V. RSENSE, in this case, requires about 2 inches of 0.1-inch-wide copper trace.

Chip Information

TRANSISTOR COUNT: 225

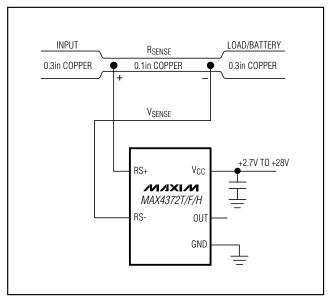
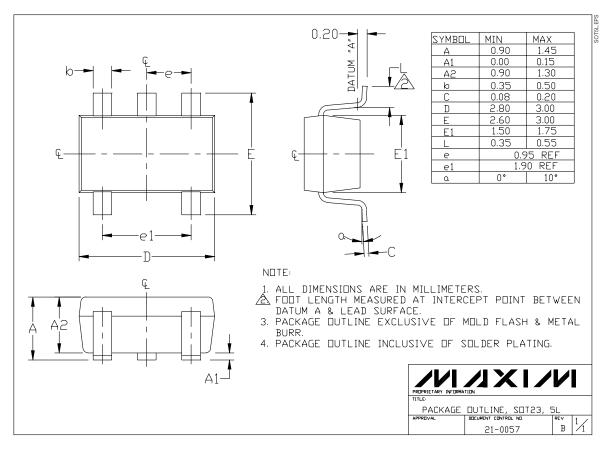



Figure 2. Connections Showing Use of PC Board

Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.