M-I-X-E-D S-I-G-N-A-L S-O-L-U-T-I-O-N-S

1.0 Features

- For FX105A Product Evaluation
- Easily Adjustable Centre Frequency, Bandwidth and Timing
- Easy Access to Test Points
- Simple Component Selection with Excel Spreadsheet Enclosed
- On-Board Regulator
- User's Prototyping Area

1.1 Brief Description

The EV1050 Evaluation Kit comprises a single board containing an FX105A. Switches select variable resistors for adjusting the detect frequency, bandwidth and response time. Many of the fixed components are socketed so that they can be changed by the user.

The EV1050 board is powered from a single 8-35V external dc power supply; an on-board regulator sets 3.0 V or 5.0 V operation. An LED indicates the status of the detect output.

The supply current of the FX105A may be measured by removing the appropriate jumper. Test points are provided for the signal input, the VCO output and the detect output. A user prototyping area is provided.

CONTENTS

Section Page
1.0 Features 1
1.1 Brief Description
1.2 Preliminary Information 3
1.2.1 Laboratory Equipment 3
1.2.2 Handling Precautions 3
1.3 Quick Start 4
1.3.1 Setting-Up 4
1.3.2 Operation 4
1.3.3 Spreadsheet 4
1.4 Signal Lists 5
1.5 Circuit Schematics and Board Layouts 6
1.6 Detailed Description 7
1.6.1 Hardware Description 7
1.7 Performance Specification 8
1.7.1 Electrical Performance 8

Note: As this product is still in development, it is likely that a number of changes and additions will be made to this specification. Items marked TBD or left blank will be included in later issues. Information in this data sheet should not be relied upon for final product design.

Figure 1 Block Diagram

1.2 Preliminary Information

1.2.1 Laboratory Equipment

The following laboratory equipment is needed to use this evaluation kit:
1.2.1.1 8 - 35V dc power supply.
1.2.1.2 An input signal source.

1.2.2 Handling Precautions

Like most evaluation kits, this product is designed for use in office and laboratory environments. The following practices will help ensure its proper operation.

1.2.2.1 Static Protection

This product uses low power CMOS circuits which may be damaged by electrostatic discharge. Partially damaged circuits may function erroneously, leading to misleading results. Observe ESD precautions at all times when handling this product.

1.2.2.2 Contents - Unpacking

Please ensure that you have received all of the items listed on the separate information sheet (EK1050) and notify CML within 7 working days if the delivery is incomplete.

1.3 Quick Start

This section provides instructions for users who wish to experiment immediately with the evaluation kit. A fuller description of the kit and its use appears later in this document.

1.3.1 Setting-Up

THE EV1050 COMES PRE-CONFIGURED FOR OPERATION AT 5.0V.

To select 3.0V operation, short circuit JP1 with an insulated jumper socket.

WHEN THE SWITCHES (SW1 TO SW4) ARE SET TO USE THE FIXED VALUE RESISTORS, THE EV1050 DETECTS A 440 Hz SIGNAL WITH A 6\% (APPRox.) BANDWIDTH.

The default settings in the spreadsheet reflect the fixed component values used in the EV1050.

1.3.2 Operation

Apply an input signal between testpoint TP9 and $\mathrm{V}_{\text {SS }}$. The detect output can be monitored at testpoints TP1 or TP2 and is indicated by LED D2.

Select R1V with switch SW1 to adjust f_{o}.
Select R2V with switch SW2 and RVV with switch SW4 to adjust the bandwidth. Select RWV with switch SW3 to adjust the response and de-response times.

For all switches, setting the paddle away from the prototype area selects variable resistors and setting the paddle towards prototype area selects fixed resistors. Please refer to the FX105A data sheet for further information on the operation of this integrated circuit and for details of the circuit design equations which govern the choice of component values.

1.3.3 Spreadsheet

An Excel spreadsheet has been included with this kit to simplify the selection of component values. The design requirements should be entered into column "B" in the area shaded green on the spreadsheet. The calculations will be automatically updated and intermediate results are shown in the non-shaded area of column "B".

A convenient value for C 1 A and C 1 B is chosen (these values should be identical) and the corresponding value of R1 is read from column "F" in the same row. Column "G" indicates whether this choice of values is "OK" or "out of range". In the latter case, the FX105A will probably still operate, but the actual component values may require adjustment from the calculated spreadsheet values.

The choice of component values for (C2A, C2B, RV) and (C3A, C3B, RW) is made in the same way. Note that it is not necessary to use the same row for (C2A, C2B, RV) and (C3A, C3B, RW) as was used for ($\mathrm{C} 1 \mathrm{~A}, \mathrm{C} 1 \mathrm{~B}, \mathrm{R} 1$). The value of R 2 is shown in column "B".

The choice of C 4 is made by reading the value in column " K " on the same row as was used for choosing the (C2A, C2B, RV) values.

This spreadsheet can only approximate to the actual component values required. Please note that some device parameters (particularly V_{TH}) can vary from one silicon batch to another, and in turn will cause a variation in detector performance. Component values should be carefully chosen to optimise this performance spread.

1.4 Signal Lists

CONNECTOR PINOUT - POWER				
Connector Ref.	Connector Pin No.	Signal Name	Signal Type	Description
J 1	1	$\mathrm{~V}_{\text {SS }}$	Power	OV power from external power supply. +ve power from external power supply.

TEST POINTS		
Test Point Ref.	Default Measurement	Description
TP1	OV	Detect output
TP2	$V_{D D}$	Detect output LED
TP3	8-35V	V_{IN} connection.
TP4	OV	$\mathrm{V}_{\text {SS }}$ connection.
TP5	OV	$V_{\text {SS }}$ connection.
TP6	OV	$V_{\text {SS }}$ connection.
TP7	3.0 V or 5.0V	$V_{\text {DD }}$ connection.
TP8	2640 Hz	VCO, monitoring here may affect VCO frequency.
TP9	-	Signal input.
TP10	$\mathrm{V}_{\mathrm{DD}} / 2$	Signal input at FX105A.
TP11	-	Used with arrow mark on R1 for measurement of R1V.
TP12	-	Used with arrow mark on R2 for measurement of R2V.
TP13	-	Used with arrow mark on RW for measurement of RWV.
TP14	-	Used with arrow mark on RV for measurement of RVV.

JUMPERS			
Link Ref.	Positions	Default Position	Description
JP1	$1-2$	o / c	Sets $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ (closed) or $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ (open)
JP2	$1-2$	$\mathrm{~s} / \mathrm{c}$	Remove to measure I IDD of FX 105 A.

SWITCHES			
Switch Ref.	Positions	Default Position	Description
SW1	$1-2 / 2-3$	$1-2$	R1 Select: Fixed [R1A] (default) or Variable [R1V]
SW2	$1-2 / 2-3$	$1-2$	R2 Select: Fixed [R2A] (default) or Variable [R2V]
SW3	$1-2 / 2-3$	$2-3$	RW Select: Fixed [RWA] (default) or Variable [RWV]
SW4	$1-2 / 2-3$	$2-3$	RV Select: Fixed [RVA] (default) or Variable [RVV]

1.5 Circuit Schematics and Board Layouts

Figure 2 Evaluation Board - Circuit Schematic

Figure 3 Evaluation Board - Layout

1.6 Detailed Description

1.6.1 Hardware Description

JP1 is used to select the operating voltage. Open circuit selects 5.0 V operation (default) and short circuit selects 3.0 V operation.
1.6.1.1 Discrete components around the FX105A which the user may wish to alter are socketed.

Required values for a particular application can be calculated from the formulae given in the FX105A datasheet.

Alternatively, a spreadsheet is provided in this kit to aid the user in selecting component values. The required circuit parameters are entered in the green area and suggested component values are shown to the right of the spreadsheet.

1.6.1.2 $I_{D D}$ Measurement

The current consumption of the FX105A may be measured by removing the jumper on JP2 and replacing it with a multimeter.

1.7 Performance Specification

1.7.1 Electrical Performance

Absolute Maximum Ratings

Exceeding these maximum ratings can result in damage to the Evaluation Kit.

	Min.	Max.	Units
Supply $\left(\mathrm{V}_{I N}-\mathrm{V}_{S S}\right)$	-0.3	40.0	V
Supply $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)$	-0.3	7.0	V
Voltage on any connector pin to $\mathrm{V}_{S S}$	-0.3	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
Current into or out of $\mathrm{V}_{I N}$ and $\mathrm{V}_{\text {SS }}$ pins	0	+1.5	A
Storage Temperature	-10	+70	${ }^{\circ} \mathrm{C}$
Operating Temperature	+10	+35	${ }^{\circ} \mathrm{C}$

Operating Limits

Correct operation of the Evaluation Kit outside these limits is not implied.

	Notes	Min.	Max.	Units
Supply $\left(\mathrm{V}_{I N}-\mathrm{V}_{\mathrm{SS}}\right)$		8.0	35.0	V
Supply $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)$	3.0	5.5	$\mathrm{~V}^{2}$	
Operating Temperature		+10	+35	${ }^{\circ} \mathrm{C}$

Operating Characteristics

For the following conditions unless otherwise specified:
$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ or 5.0 V , $\mathrm{Tamb}=+25^{\circ} \mathrm{C}$.

	Notes	Min.	Typ.	Max.	Units
DC Parameters I_{DD}	1	-	-	10	mA

Notes: 1. Not including any current drawn from the board connector pins by external circuitry.

Operating Characteristics - Timing Diagrams

For FX105A timing information and operating characteristics, refer to the relevant CML Data Sheet.

Abstract

CML does not assume any responsibility for the use of any circuitry described. No IPR or circuit patent licences are implied. CML reserves the right at any time without notice to change the said circuitry and this evaluation kit specification. Evaluation kits are supplied for the sole purpose of demonstrating the operation of CML products and are supplied without warranty. They are intended for use in a laboratory environment only and are not for re-sale, end-use or incorporation into other equipments. Operation of evaluation kits outside a laboratory environment is not permitted within the European Community. All software is supplied "as is" and is without warranty. It forms part of the evaluation kit and is licensed for use only in this kit, for the purpose of demonstrating the operation of CML products. Whilst all reasonable efforts are made to ensure that software contained in this product is virus free, CML accepts no responsibility whatsoever for any contamination which results from using this software and the onus for checking that the software is virus free is placed on the purchaser of this evaluation kit.

M-I-X-E-D S-I-G-N-A-L S-O-L-U-T-I-O-N-S
1 WHEATON ROAD

WITHAM - ESSEX
CM8 3TD - ENGLAND

Telephone: +44 1376513833
Telefax: +44 1376518247
e-mail: sales@cmlmicro.co.uk http://www.cmlmicro.co.uk

CML Microcircuits

CML Product Data

In the process of creating a more global image, the three standard product semiconductor companies of CML Microsystems Plc (Consumer Microcircuits Limited (UK), MX-COM, Inc (USA) and CML Microcircuits (Singapore) Pte Ltd) have undergone name changes and, whilst maintaining their separate new names (CML Microcircuits (UK) Ltd, CML Microcircuits (USA) Inc and CML Microcircuits (Singapore) Pte Ltd), now operate under the single title CML Microcircuits.
These companies are all 100\% owned operating companies of the CML Microsystems Plc Group and these changes are purely changes of name and do not change any underlying legal entities and hence will have no effect on any agreements or contacts currently in force.

CML Microcircuits Product Prefix Codes

Until the latter part of 1996, the differentiator between products manufactured and sold from MXCOM, Inc. and Consumer Microcircuits Limited were denoted by the prefixes MX and FX respectively. These products use the same silicon etc. and today still carry the same prefixes. In the latter part of 1996, both companies adopted the common prefix: CMX.

This notification is relevant product information to which it is attached.

Company contact information is as below:

$\square \Omega$
 CML Microcircuits (UK) Ltd

COMMUNICATION SEMICONDUCTORS

Oval Park, Langford, Maldon, Essex, CM9 6WG, England Tel: $\quad+44(0) 1621875500$ Fax: +44 (0)1621875600 uk.sales@cmlmicro.com www.cmlmicro.com

CML Microcircuits (USA) Inc.
COMMUNICATION SEMICONDUCTORS

4800 Bethania Station Road, Winston-Salem, NC 27105, USA
Tel: +1 3367445050 , 08006385577
Fax: +1 3367445054
us.sales@cmlmicro.com
www.cmlmicro.com

CML Microcircuits (Singapore)Pte Ltd
COMMUNICATION SEMICONDUCTORS

No 2 Kallang Pudding Road, 09-05/ 06 Mactech Industrial Building, Singapore 349307
Tel: +65 7450426
Fax: +65 7452917
sg.sales@cmlmicro.com
www.cmlmicro.com

