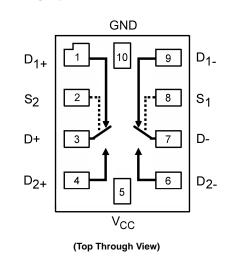
FAIRCHILD

SEMICONDUCTOR

FSUSB11 Low Power High Bandwidth USB Switch Dual SPDT Multiplexer/Demultiplexer

General Description

The FSUSB11 is a high performance Dual Single Pole Double Throw (SPDT) analog switch specially designed for the switching of both analog audio signal and USB 1.1 signals. The device features ultra low R_{ON} of 1.3Ω maximum at 4.5V V_{CC} and 4.3Ω at 2.7V supply. High bandwidth and ultra low ON Resistance (R_{ON}) make this switch to be able to pass both USB low and full speed signal with minimum signal distortion. The device is fabricated with sub-micron CMOS technology to achieve fast switching speeds and is designed for break-before-make operation. The select input is TTL level compatible.


Features

- Space saving MicroPak[™] packaging (1.6mm x 2.1mm)
- USB 1.1 signal switching compliant
- -3db bandwidth: >350MHz
- Maximum 1.15Ω ON Resistance at 4.5V V_{CC} and 4Ω for 2.7V supply
- $\blacksquare 0.3\Omega \text{ maximum R}_{\text{ON}} \text{ flatness for +5V supply}$
- Broad V_{CC} operating range: 1.65V to 5.5V
- Fast turn-on and turn-off time
- Break-before-make enable circuitry
- Over-voltage tolerant TTL compatible control input

Ordering Code:

		Product			ġ
Order	Package	Code	Package Description	Supplied As	5
Number	Number	Top Mark			9
FSUSB11L10X	MAC010A	ET	10-Lead MicroPak, 1.6 mm x 2.1mm	5K Units on Tape and Reel	l

Analog Symbols

Truth Table

Control Input(s)	Function
L	D1 Connected to D+/D-
Н	D ₂ Connected to D+/D-
H = HIGH Logic Level	

L = LOW Logic Level

Pin Descriptions

Pin Names	Function
D, D ₁ , D ₂	Data Ports
S	Control Input

 $\label{eq:microPakt} \mbox{MicroPakt}^{\mbox{\tiny IM}} \mbox{ is a trademark of Fairchild Semiconductor Corporation}.$

© 2004 Fairchild Semiconductor Corporation DS500885

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

	-	O a m all41
Supply Voltage (V _{CC})	-0.5V to +6.0V	Conditi
Switch Voltage (V _S) (Note 2)	–0.5V to V_{CC} + 0.5V	Supply Volta
Input Voltage (V _{IN}) (Note 2)	-0.5V to +6.0V	Control Inpu
Input Diode Current	–50 mA	Switch Inpu
Switch Current	200 mA	Operating T
Peak Switch Current (Pulsed at		
1 ms duration, <10% Duty Cycle)	400 mA	Note 1: The "At
Storage Temperature Range (T_{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	the safety of the operated at the
Maximum Junction Temperature (T_J)	+150°C	Characteristics t The "Recommen
Lead Temperature (T _L)		for actual device
Soldering, 10 seconds	+260°C	Note 2: The inp
ESD		the input and ou Note 3: Unused
Human Body Model	8000V	Note 5: Unused

Recommended Operating Conditions

Supply Voltage (V _{CC})	1.65V to 5.5V
Control Input Voltage (VIN) (Note 3)	0V to V_{CC}
Switch Input Voltage (V _{IN})	0V to V _{CC}
Operating Temperature (T _A)	-40°C to +85°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed. Note 3: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics (All typical values are @ 25°C unless otherwise specified)

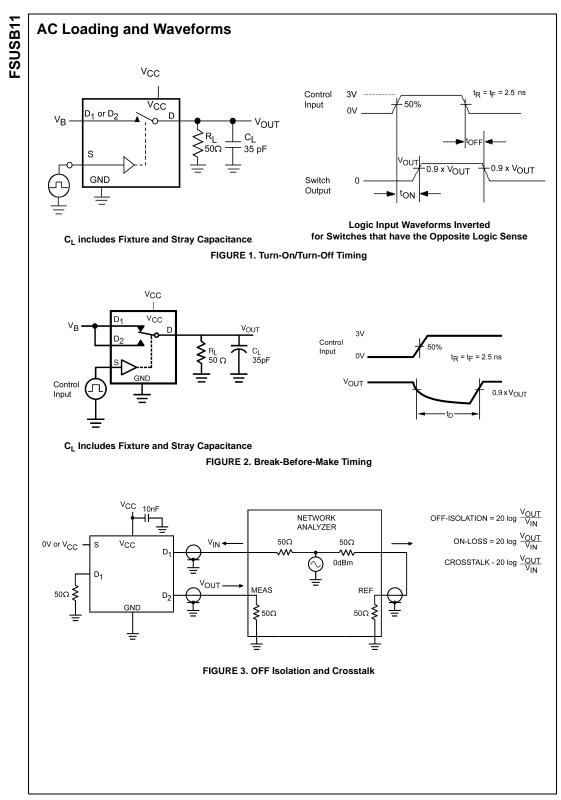
Symbol	Parameter	V _{CC}	Τ,	A = +25	°C	T _A =-40°C	to +85°C	Units	Conditions
Gymbol	raneter	(V)	Min	Тур	Max	Min Max		onita	Conditions
V _{IH}	Input Voltage High	2.7 to 3.6				2.0		v	
		4.5 to 5.5				2.4		v	
V _{IL}	Input Voltage Low	2.7 to 3.6					0.6	v	
		4.5 to 5.5					0.8	v	
I _{IN}	Control Input Leakage	2.7 to 3.6				-1.0	1.0	μA	$V_{IN} = 0V$ to V_{CC}
		4.5 to 5.5				-1.0	1.0	μΛ	VIN - OV IO VCC
I _{NO(OFF)} ,	OFF-Leakage Current	5.5	-50.0		50.0	-100	100	nA	A = 1V, 4.5V
I _{NC(OFF)}	of Port D ₁ and D ₂	5.5	-30.0		50.0	-100	100	ΠA	B ₀ or B ₁ = 1V, 4.5V
I _{A(ON)}	ON Leakage Current	E	5.5 -50.0 50.0 -100 100	nA	A = 1V, 4.5V				
	of Port D	5.5	-50.0		50.0	-100	100	ΠA	B_0 or $B_1 = 1V$, 4.5V or Floating
R _{ON}	Switch ON Resistance	2.7		2.6	4.0	4.3 Ω I _{OUT}		0	$I_{OUT} = 100 \text{ mA}, D_1 \text{ or } D_2 = 1.5 \text{V}$
	(Note 4)	4.5		0.95	1.15				$I_{OUT} = 100 \text{ mA}, D_1 \text{ or } D_2 = 3.5 \text{V}$
ΔR_{ON}	ON Resistance Matching	2.7						Ω	$I_{OUT} = 100 \text{ mA}, D_1 \text{ or } D_2 = 1.5 \text{V}$
	Between Channels (Note 5)	4.5		0.06	0.12		0.15	52	$I_{OUT} = 100 \text{ mA}, D_1 \text{ or } D_2 = 3.5 \text{V}$
R _{FLAT(ON)}	ON Resistance Flatness	2.7		1.4				Ω	$I_{OUT} = 100 \text{ mA}, D_1 \text{ or } D_2 = 0V, 0.75V, 1.5V$
	(Note 6)	4.5		0.2	0.3		0.4	52	$I_{OUT} = 100 \text{ mA}, B_0 \text{ or } B_1 = 0V, 1V, 2V$
I _{CC}	Quiescent Supply Current	3.6		0.1	0.5		1.0	μA	$V_{IN} = 0V$ or V_{CC} , $I_{OUT} = 0V$
		5.5		0.1	0.5		1.0	μΑ	$v_{\rm IN} = 0$ $v_{\rm CC}$, $v_{\rm OUT} = 0$ $v_{\rm CC}$

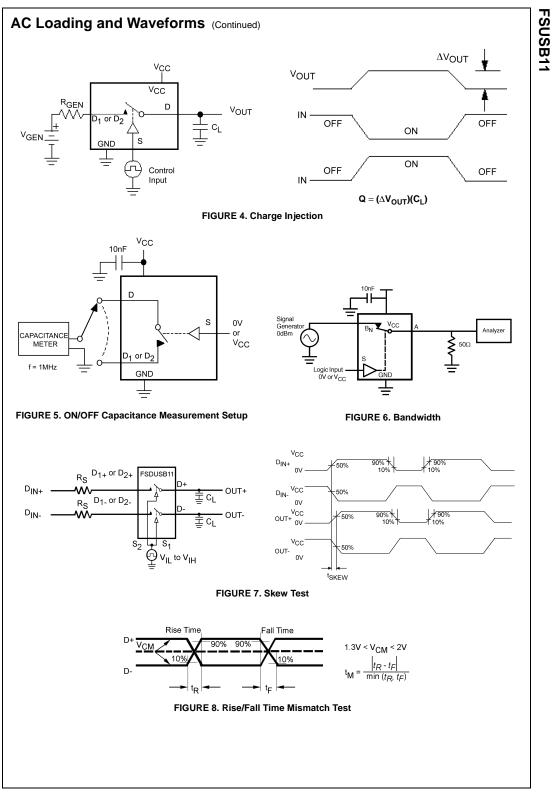
Note 4: ON Resistance is determined by the voltage drop between D and Dn pins at the indicated current through the switch.

Note 5: $\Delta R_{ON} = R_{ONmax} - R_{ONmin}$ measured at identical V_{CC}, temperature, and voltage.

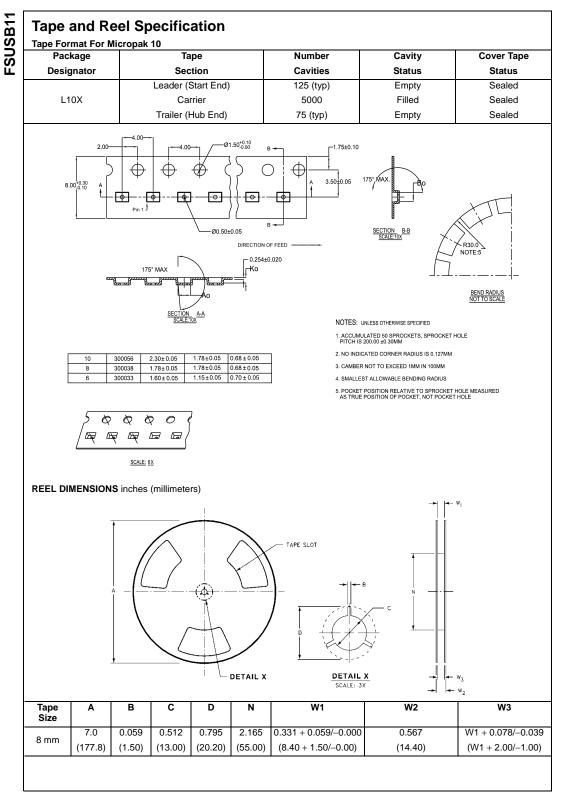
Note 6: Flatness is defined as the difference between the maximum and minimum value of ON Resistance over the specified range of conditions.

С С
č
S
Ξ
-

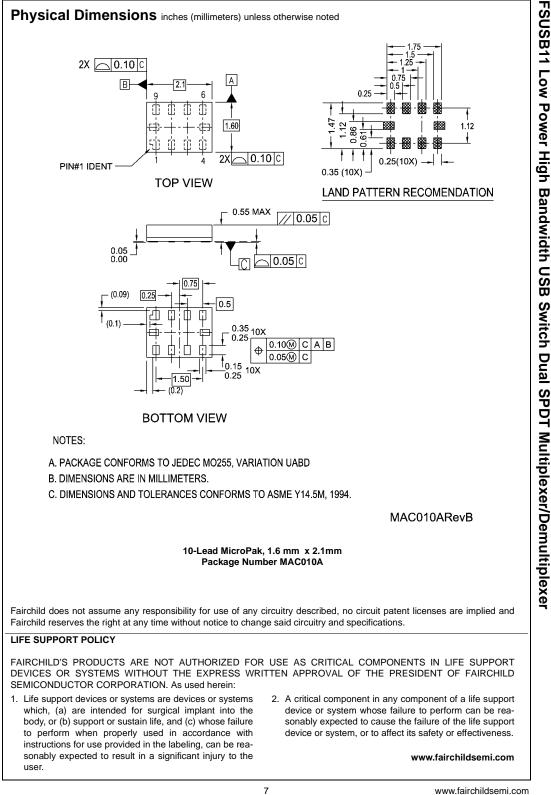

Symbol	Parameter	V _{CC}	$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	Figure		
Gymbol		(V)	Min	Тур	Max	Min	Max	Unito	conations	Number	
t _{ON}	Turn ON Time	2.7 to 3.6			50.0		60.0	ns	$D_1 \text{ or } D_2 = 1.5 \text{V}, \ \text{R}_L = 50 \Omega, \ \text{C}_L = 35 \ \text{pF}$	Figure 1	
		4.5 to 5.5			35.0		40.0	113	$D_1 \text{ or } D_2 = 3.0 \text{V}, \text{ R}_L = 50 \Omega, \text{ C}_L = 35 \text{ pF}$	r igure r	
t _{OFF}	Turn OFF Time	2.7 to 3.6			20.0		30.0	ns	$D_1 \text{ or } D_2 = 1.5 \text{V}, \ \text{R}_L = 50 \Omega, \ \text{C}_L = 35 \ \text{pF}$	Figure 1	
		4.5 to 5.5			15.0		20.0	115	$D_1 \text{ or } D_2 = 3.0 \text{V}, \ \text{R}_L = 50 \Omega, \ \text{C}_L = 35 \ \text{pF}$	Figure 1	
t _{B-M}	Break-Before-Make	2.7 to 3.6				1.0		ns	$D_1 \text{ or } D_2 = 1.5 \text{V}, \ \text{R}_L = 50 \Omega, \ \text{C}_L = 35 \ \text{pF}$	Figure 2	
	Time	4.5 to 5.5		20.0		1.0		115	$D_1 \text{ or } D_2 = 3.0 \text{V}, \ \text{R}_L = 50 \Omega, \ \text{C}_L = 35 \ \text{pF}$		
Q	Charge Injection	2.7 to 3.6		20.0				рC	$C_{L} = 1.0 \text{ nF}, V_{GEN} = 0V,$	Figure 4	
		4.5 to 5.5		10.0				ρc	$R_{GEN} = 0\Omega$	r igure 4	
OIRR	OFF-Isolation	2.7 to 3.6		-70.0				dB	$f = 1MHz, R_1 = 50\Omega$	Figure 3	
		4.5 to 5.5		-70.0				uв	1 = 10012, 10 = 3022	r igure 5	
Xtalk	Crosstalk	2.7 to 3.6		-75.0				dB	$f = 1MHz, R_1 = 50\Omega$	Figure 3	
		4.5 to 5.5		-75.0				uв	$I = IWHZ, R_L = 5022$	Figure 3	
BW	-3db Bandwidth	2.7 to 3.6		350				MHz	$R_1 = 50\Omega$	Figure 6	
		4.5 to 5.5		350				IVINZ	1/2 - 3022	i igule o	


USB Related AC Electrical Characteristics (All typical value are @25°C unless otherwise specified)

Symbol	I Parameter	V_{CC} $T_A = +25^{\circ}C$				Units	Conditions	Figure
Symbol		(V)	Min	Тур	Min	Units		Number
t _{SKEW}	Skew	2.7 to 3.6		0.15		ns	$R_S = 39\Omega, C_L = 50 \text{ pF}$ $t_R = t_F = 12\text{ns}$	Figure 7
		4.5 to 5.5		0.15		115	$t_R = t_F = 12ns$	Figure /
t _M	Rising/Fall Time	2.7 to 3.6			10.0	%	at 12Mbps	Figure 7
	Mismatch	4.5 to 5.5			10.0	-70	(Duty Cycle = 50%)	Figure /
tj	Total Jitter	2.7 to 3.6		1.7		ns	$R_S = 39\Omega$, $C^L = 50$ pF, $t_R = t_F = 12$ ns at	Figure 7
		4.5 to 5.5		1.6		115	12Mbps (PRBS = 2 ¹⁵ – 1)	rigule /


Capacitance

Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$				Units	Conditions
Cymbol	i arameter	(V)	Min	Тур	Max	onita	Conditiona
CIN	Control Pin Input Capacitance	0.0		3.5		pF	f = 1MHz (see Figure 5)
C _{OFF}	D _n Port OFF Capacitance	4.5		12.0		pF	f = 1MHz (see Figure 5)
C _{ON}	D Port ON Capacitance	4.5		55.0		pF	f = 1MHz (see Figure 5)



www.fairchildsemi.com

www.fairchildsemi.com

6

www.fairchildsemi.com