

Current Transducer LT 505-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data Α Primary nominal r.m.s. current 500 I_{PN} 0 .. ± 1200 Primary current, measuring range R_{M} Measuring resistance @ $T_{a} = 70^{\circ}C$ $\mathbf{T}_{A} = 85^{\circ}\mathrm{C}$ @ ± 500 A max 65 with ± 15 V 60 Ω @ ± 800 A _{max} Ω 0 15 0 12 @ ± 500 A max 140 0 145 15 Ω with ± 24 V @ ± 1200 A max 22 15 18 Ω Secondary nominal r.m.s. current 100 mΑ Conversion ratio 1:5000 Supply voltage (± 5 %) ± 15 .. 24 Current consumption $30(@\pm 24 V)+I_{s} mA$ R.m.s. voltage for AC isolation test, 50 Hz, 1 mn 6 kV R.m.s. rated voltage 1), safe separation 1750 basic isolation 3500

Accuracy - Dynamic performance data							
X _G	Overall accuracy @ I _{PN} , T _A = 25°C	± 0.6		%			
$\mathbf{e}_{\scriptscriptstyle\! \scriptscriptstyle L}$	Linearity	< 0.1		%			
		Тур	Max				
I _o	Offset current @ $I_P = 0$, $T_A = 25$ °C	Typ ± 0.3	± 0.4	mΑ			
I_{OT}	Thermal drift of I_{\odot} - 10°C + 85°C	± 0.3	± 0.5	mΑ			
t _r	Response time 2 @ 90 % of I _{P max}	< 1		μs			
di/dt	di/dt accurately followed	> 50		A/µs			
f	Frequency bandwidth (-1 dB)	DC '	150	kHz			

General data							
T _A	Ambient operating temperature		- 10 + 85	°C			
T _s	Ambient storage temperature		- 25 + 100	°C			
\mathbf{R}_{s}	Secondary coil resistance @	$T_A = 70^{\circ}C$	65	Ω			
		$T_A = 85^{\circ}C$	69	Ω			
m	Mass		400	g			
	Standards 3)		EN 50178				

$I_{PN} = 500 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Notes: 1) Pollution class 2. With a non insulated primary bar which fills the through-hole

- 2) With a di/dt of 100 A/µs
- ³⁾ A list of corresponding tests is available

980708/6

Dimensions LT 505-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Primary through-hole
- Connection of secondary
- \pm 0.5 mm
- 4 holes \varnothing 6.5 mm
- 40.5 x 40.5 mm
- Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.