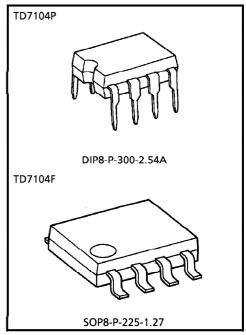
TOSHIBA TD7104P/F

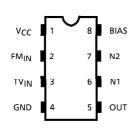
TOSHIBA BIPOLAR DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

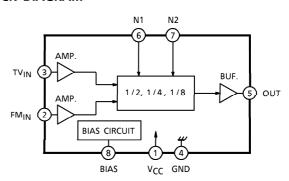

TD7104P, TD7104F

ECL PRESCALER FOR DIGITAL SYNTHESIZED TUNER

TD7104P, TD7104F are general-purpose fixed dividing prescaler developed for digital tuning system of PLL frequency synthesizer type, and can operate up to 1GHz.

FEATURES


- Maximum operating frequency 1GHz. (at 1/8 dividing mode)
- Dividing ratios of 1/8, 1/4, and 1/2 are provided.
- Independent TV and FM inputs are provided. In FM mode, this IC can function as a buffer amplifier (1 /1 dividing).
- The built-in input amplifier contributes to realizing high input voltage sensitivity.
- Built-in stand-by circuit


Weight

DIP8-P-300-2.54A : 0.45g (Typ.) SOP8-P-225-1.27 : 0.76g (Typ.)

PIN CONNECTION

BLOCK DIAGRAM

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

 The products described in this document are subject to foreign exchange and foreign trade laws.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

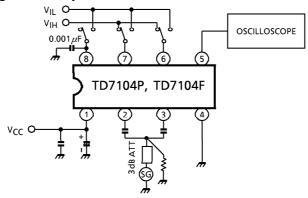
PIN FUNCTION

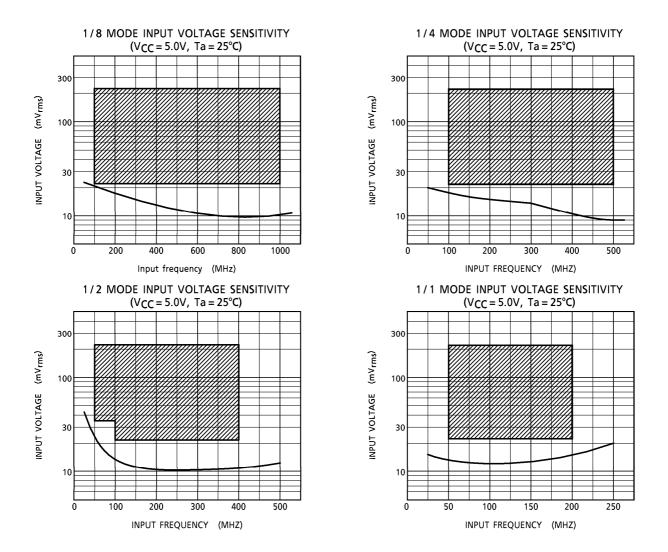
PIN No.	SYMBOL	PIN NAME	FUNCTION AND DESCRIPTION	REMARKS	
1	Vcc	Power supply terminal	Applies voltage of $V_{CC} = 3.0$ to 5.5V.	_	
2	FM _{IN}	FM local OSC. signal input terminal	Inputs local oscillation signal in FM band. $f_{IN} = 50$ to 200MHz, FM_{IN} input signal is output by 1/1 dividing (buffer amplifier).	Built-in input Amp. provided	
3	TV _{IN}	TV local OSC. signal input terminal	Inputs local oscillation signal in TV band. $F_{IN} = 50M$ to 1.0GHz, TV_{IN} input signal is output by 1/8, 1/4, or 1/2 dividing, which is controlled with N1 and N2 input.	Built-in input Amp. provided	
4	GND	Ground terminal	Grounds.	_	
5	OUT	Dividing signal output terminal	Outputs dividing signal.	_	
6	N1	Dividing ratio selecting	These inputs control the selection of a dividing ratio among 1/1, 1/2, 1/4, and 1/8.		
7	N2	control terminal	FM _{IN} terminal is selected at $N1 = N2 = "L"$ level (1/1 dividing). The truth table is shown below.	_	
8	BIAS	BIAS terminal	Connects capacitors on bias circuit. Change this pin into Low, the IC is turned stand-by mode.	_	

TRUTH TABLE

RECEIVING BAND	INPUT TERMINAL	OPERATING FREQUENCY RANGE	DIVIDING RATIO	N1	N2
FM	FM _{IN}	50M~200MHz	÷ 1	0	0
	TVIN	50M~400MHz	÷ 2	1	0
TV		100M~500MHz	÷ 4	0	1
		100M~1.0GHz	÷8	1	1

MAXIMUM RATINGS (Ta = 25°C)


CHARACTERISTIC	SYMBOL	RATING	UNIT
Power Supply Voltage	Vcc	6.5	V
Power Dissipation	PD	450 (200) (*)	mW
Input Voltage	V _{in}	$-0.3 \sim V_{CC} + 0.3$	٧
Operating Temperature	T _{opr}	- 30~75	°C
Storage Temperature	T _{stg}	- 55∼150	°C


(*) Flat Package

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, $V_{CC} = 3.0 \sim 6.0 \text{V}$, $T_0 = -30 \sim 75 ^{\circ}\text{C}$)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Power Supply Voltage	Vcc	_	_	3.0	~	6.0	V
Onevetina Cumply	l _{CC1}	-	$V_{CC} = 5.0V, \div 8, \div 4$		14	20	
Operating Supply Current	I _{CC2}	_	$V_{CC} = 5.0V, \div 2$	-	11	18	mA
Current	I _{CC3}	_	$V_{CC} = 5.0V$, FM mode		7	13	
Stand-by Current	ICS	_	$V_{CC} = 5.0V$, BIAS = GND		30	70	μΑ
	f _{IN1}	f _{IN1} f _{IN2} 1 f _{IN3}	÷8, TV _{IN}	100	-	1000	- MHz
Operating Frequency	f _{IN2}		÷4, TV _{IN}	100		500	
Range	f _{IN3}		÷ 2, TV _{IN}	50	-	400	
	f _{IN4}		FM mode, FM _{IN}	50	-	200	
	V _{IN1}		TV_{IN} (÷8, ÷4)	22.0	1	220	
Innut Valtage Benge	V		$TV_{IN} (\div 2) \begin{cases} f_{IN} = 50 \sim 100 MHz \\ f_{IN} = 100 \sim 400 MHz \end{cases}$	35.0		220	mV _{rms}
Input Voltage Range	V _{IN2}			22.0	_	220	
	V _{IN3}		FM _{IN}	22.0	_	220	
Output Amplitude	Vout	1	OUT, C _L = 3pF	0.4	0.5	_	V _{p-p}
"H" Leve		_	N1, N2, BIAS	2.5	_	Vcc	V
Input Voltage "H" Leve		_	N1, N2, BIAS	0		0.8	
"H" Leve		_	N1, N2, BIAS, $V_{CC} = 5.0V V_{IH} = 4.0V$	_	_	100	μΑ
Input Current "H" Level	Ι _Ι L	_	N1, N2, BIAS, $V_{CC} = 5.0V V_{IL} = 1.0V$	_	_	10	

TEST CIRCUIT 1 (Input voltage sensitivity)

(Note) Operating range ($V_{CC} = 3.0 \sim 6.0 \text{V}$, $T_a = -30 \sim 75 ^{\circ}\text{C}$)

OUTLINE DRAWING DIP8-P-300-2.54A Unit : mm 10.1 MAX 9.6±0.2 0.85±0.1

0.5±0.1 0.25 M

Weight: 0.45g (Typ.)

0.99TYP

2.54 1.2±0.1

OUTLINE DRAWING SOP8-P-225-1.27 Unit:mm 0.595TYP 1.27 5.5MAX 5.0±0.2 70+4 1.27 0.525±0.2

Weight: 0.76g (Typ.)