Complete ThermalandSystem ManagementController

Preliminary Technical Data

FEATURES

Up to 19 Analog Measurement Channels (Including Internal Measurements)
Up to 8 Fan Speed Measurement Channels
Up to 17 General-Purpose Logic I/O Pins
Remote TemperatureMeasurement with Remote Diode (Two Channels)
On-Chip TemperatureSensor
Analog and PWM Fan Speed Control Outputs
2-wire serial System Management Bus (SMBus)
8K bytes on-chipE²PROM
Full SMBus 1.1 support including Packet Error Checking (PEC)

FUNCTIONAL BLOCK DIAGRAM

REV. PrP 9/01
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^0]
PRODUCT DESCRIPTION

TheAD M 1026 is completesystem hardwaremonitor for microprocessor-based systems, providingmeasurement and limit comparison of various system parameters. T heAD M 1026 has up to 19 analog measurement channels. Fifteen analog voltageinputs are provided, of which fiveare dedicated to monitoring $+3.3 \mathrm{~V},+5 \mathrm{~V}$ and $\pm 12 \mathrm{~V}$ power supplies and the processor core voltage. TheADM 1026 can monitor two further power-supply voltages by measuring its own analog and digital V_{cc}. O ne input (two pins) is dedicated to a remotetemperature-sensing diode. T wo further pins can be configured as general-purpose analog inputs to measure 0 to 2.5 V , or as a second temperature sensing input.T he 8 remaining inputs are general-purpose analog inputs with a range of 0 to 2.5 V or 0 to 3 V . F inally, the AD M 1026 has on on-chip temperature sensor.
TheADM 1026 has eight pins that can be configured for fan-speed measurement or as general purpose logic l/O pins. A further 8 pins arededicated to general-purpose logic I/O. An additional pin can be configured as a general purpose I/O or as the bidirectional THERM pin.
M easured values can be read out via a 2-wire serial System M anagement Bus, and values for limit comparisons can be programmed in over the sameserial bus. Thehigh-speed successive-approximation ADC allowsfrequent sampling of all analog channels to ensure a fast interrupt response to any out-of-limit measurement.
The AD M 1026 's 3 V to 5.5 V supply voltage range, low supply current, and serial interface make it ideal for a wide range of applications. These includehardware monitoring and protection applicationsin personal computers, telecommunications equipment, and officeelectronics.
ADM1026-SPECIFICATIONS

Parameter	Min	Typ	Max	Units	Test Conditions/Comments
POWER SUPPLY Supply Voltage, 3.3V ST BY, 3.3V M AIN Supply Current, Icc	3.135	$\begin{aligned} & 3.3 \\ & 1.4 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 3.0 \\ & 250 \end{aligned}$	V mA mA μA	InterfaceInactive, ADC Active ADC Inactive, DAC Active Shutdown M ode
TEMP. -TO-DIGITAL CONVERTER Internal Sensor Accuracy Resolution External DiodeSensor Accuracy Resolution RemoteSensor SourceC urrent		$\begin{aligned} & \pm 1 \\ & \pm 1 \\ & 90 \\ & 5.5 \end{aligned}$	± 3 ± 3	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$	$60^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{D}} \leq+100^{\circ} \mathrm{C}$ High Level Low Level
ANALOG-TO-DIGITAL CONVERTER (INCLUDING MUX AND ATTENUATORS) T otal U nadjusted E rror, T U E D ifferential N on-Linearity, D N L Power Supply Sensitivity ConversionT ime(AnalogInput or Int.T emp) Conversion T ime(External T emperature) Input Resistance($+12 \mathrm{~V},+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCP}}$, AIN $0-\mathrm{AIN} 5$) Input Resistance of -12 V pin Input Resistance(AIN 6-AIN 9) Input Resistance of $V_{\text {BAT }}$ pin $V_{\text {BAT }}$ C urrentD rain (when measuring) $V_{B A T}$ Current D rain (when not measuring)	100 100	$\begin{gathered} \pm 1 \\ 11.38 \\ 34.13 \\ 140 \\ 10 \\ 140 \\ 97 \\ 105 \\ 16 \end{gathered}$	$\begin{gathered} \pm 2 \\ \pm 1 \\ \\ 12.06 \\ 36.18 \\ 200 \\ 200 \\ \\ 500 \end{gathered}$	$\begin{gathered} \% \\ \mathrm{LSB} \\ \mathrm{LS} \mathrm{~B} \\ \mathrm{~m} \\ \mathrm{~ms} \\ \mathrm{~ms} \\ \mathrm{k} \Omega \\ \mathrm{k} \Omega \\ \mathrm{k} \Omega \\ \mathrm{k} \Omega \\ \mathrm{nA} \\ \mathrm{nA} \end{gathered}$	See N ote 3 See N ote 4 See N ote 4 See N ote 3 Gives CR2032 Battery life > 10 years
ANALOG OUTPUT Output Voltage Range T otal U nadjusted E rror, T U E Full-ScaleError ZeroError Differential N on-Linearity, D N L Integral N on-Linearity OutputSourceC urrent Output Sink C urrent	0	$\begin{gathered} \pm 1 \\ 2 \\ \pm 1 \\ 2 \\ 1 \end{gathered}$	$\begin{aligned} & 2.5 \\ & \pm 3 \\ & \pm 3 \\ & \pm 1 \end{aligned}$	$\begin{gathered} \text { V } \\ \% \\ \% \\ \text { LSB } \\ \text { LSB } \\ \text { LSB } \\ \mathrm{mA} \\ \mathrm{~mA} \end{gathered}$	$\mathrm{I}_{\mathrm{L}}=2 \mathrm{~mA}$ NoLoad M onotonicby D esign
REFERENCE OUTPUT Output V oltage Output V oltage LineR egulation Load Regulation Short-Circuit Current Output C urrent Source Output C urrent Sink	$\begin{gathered} 1.8 \\ 2.47 \end{gathered}$	$\begin{gathered} 1.82 \\ 2.50 \\ \text { TBD } \\ \text { TBD } \\ \text { TBD } \\ 2 \\ 2 \end{gathered}$	$\begin{aligned} & 1.84 \\ & 2.53 \end{aligned}$	$\begin{gathered} V \\ V \\ \% N \\ \mu \mathrm{~V} / \mathrm{mA} \\ \mathrm{~mA} \\ \mathrm{~mA} \\ \mathrm{~mA} \end{gathered}$	Bit 2 of Register 07h $=0$ Bit 2 of Register 07h = 1

Specifications (Continued)

Parameter	Min	Typ	Max	Units	Test Conditions/Comments
FAN RPM-TO-DIGITAL CONVERTER Accuracy Full-ScaleC ount FAN OTO FAN 7 Nominal Input RPM (N ote5) Internal Clock F requency	21.1	$\begin{aligned} & 8800 \\ & 4400 \\ & 2200 \\ & 1100 \\ & 22.5 \end{aligned}$	$\begin{gathered} \pm 6 \\ 255 \end{gathered}$ 23.9	\% RPM RPM RPM RPM kHz	See N ote 5 $\begin{aligned} & \text { D ivisor }=1, F \text { an Count }=153 \\ & \text { D ivisor }=2, F \text { an Count }=153 \\ & \text { D ivisor }=4, F \text { an Count }=153 \\ & \text { D ivisor }=8, F \text { an } C \text { ount }=153 \end{aligned}$
OPEN-DRAIN O/P'S, PWM, GPIOO-16 O utput High Voltage, $\mathrm{V}_{\text {OH }}$ Output L ow Voltage, V $\mathrm{V}_{\text {L }}$ PWM OutputF requency	2.4	75	0.4	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~Hz} \end{gathered}$	$\begin{aligned} & I_{\text {OUT }}=3.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ & \text { IOUT }=-3.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$
OPEN-DRAIN DIGITAL OUTPUTS ($\overline{\mathrm{I}} \overline{\mathrm{N}} \overline{\mathrm{T}}, \overline{\mathrm{R}} \overline{\mathrm{E}} \overline{\mathrm{S}} \overline{\mathrm{E}} \overline{\mathrm{T}} \bar{M} \overline{\mathrm{~A}} \overline{\mathrm{I}} \overline{\mathrm{N}}, \overline{\mathrm{R}} \overline{\mathrm{E}} \overline{\mathrm{S}} \overline{\mathrm{E}} \overline{\mathrm{T}} \overline{\mathrm{S}} \overline{\mathrm{B}} \overline{\mathrm{Y}}$) Output Low Voltage, V High Level Output Leakage Current, $I_{\text {OH }}$ $\overline{\text { RESET }}$ Pulse Width	140	$\begin{aligned} & 0.1 \\ & 180 \end{aligned}$	$\begin{gathered} 0.4 \\ 1 \\ 240 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mu \mathrm{~A} \\ \mathrm{~ms} \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=-3.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$
OPEN-DRAIN SERIAL DATA BUS OUTPUT (SDA) Output Low Voltage, $\mathrm{V}_{\text {OL }}$ High Level Output L eakage C urrent, I_{OH}		0.1	$\begin{gathered} 0.4 \\ 1 \end{gathered}$	$\begin{gathered} V \\ \mu A \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=-3.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$
SERIAL BUS DIGITAL INPUTS (SCL, SDA) Input High Voltage, $\mathrm{V}_{\text {IH }}$ Input L ow Voltage, VIL H ysteresis	2.2	500	0.8	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{mV} \end{gathered}$	
DIGITAL INPUT LOGIC LEVELS (ADD, CI, FANO-7, GPIOO-16) Input H igh V oltage, $\mathrm{V}_{\text {IH }}$ Input L ow Voltage, $\mathrm{V}_{\text {IL }}$ Hysteresis (F an 0-7)	2.4	250	0.8	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{mV} \end{gathered}$	See N otes 6 and 7 $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$
		$\begin{gathered} 2.94 \\ 3.08 \\ 60 \\ 50 \end{gathered}$		V mV mV	RESETMAIN triggered from $\mathrm{AV}_{\mathrm{Cc}}$ RESETSTBY triggered from $\mathrm{DV}_{\mathrm{Cc}}$
DIGITAL INPUT CURRENT Input H igh Current, $\mathrm{I}_{\text {H }}$ Input Low Current, IIL Input C apacitance, $\mathrm{C}_{\text {IN }}$	-1	20	1	$\mu \mathrm{A}$ $\mu \mathrm{A}$ pF	$\begin{aligned} & V_{\text {IN }}=V_{C C} \\ & V_{I N}=0 \end{aligned}$
EEPROM RELIABILITY Endurance D ataR etention	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	700		K cycles Y ears	See N ote 9 See N ote 10
SERIAL BUS TIMING C lock F requency, $\mathrm{f}_{\text {ScLk }}$ G litch Immunity, t_{sw} Bus Free Time, $\mathrm{t}_{\text {buf }}$ Start Setup Time, $\mathrm{t}_{\mathrm{su} \text {;STA }}$ Start H old Time, $\mathrm{t}_{\mathrm{HD} ; \mathrm{STA}}$ SCL Low Time, thow SCL High Time, $\mathrm{t}_{\text {HIGH }}$ SCL, SDA RiseT ime, t_{r} SCL, SD A F all Time, t_{f}	$\begin{gathered} 4.7 \\ 4.7 \\ 4 \\ 4.7 \\ 4 \end{gathered}$		$\begin{gathered} 400 \\ 50 \end{gathered}$ $\begin{gathered} 1000 \\ 300 \end{gathered}$	$\begin{gathered} \mathrm{kHz} \\ \mathrm{~ns} \\ \mu \mathrm{~S} \\ \mathrm{nS} \\ \mu \mathrm{~S} \end{gathered}$	SeeFigure 1 SeeFigure 1

ADM1026

Specifications(Continued)

Parameter	Min \quad Typ \quad Max	Units	Test Conditions/Comments	
Data Setup Time, $\mathrm{t}_{\mathrm{SU} ; \mathrm{DAT}}$	250			ns
Data H old T ime, $\mathrm{t}_{\mathrm{HD} ; \mathrm{DAT}}$	300		SeeFigure1	

NOTES

${ }^{1}$ All voltages are measured with respect to GND , unless otherwise specified
${ }^{2}$ Typicals are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and represent most likely parametric norm. Shutdown current typ is measured with $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
${ }^{3}$ TUE (T otal U nadjusted Error) includes Offset, G ain and Linearity errors of the ADC, multiplexer and on-chip input attenuators. VBAT input is only linear for VBAT voltages greater than 1.5 V .
${ }^{4}$ Total analog monitoring cycle time is nominally 273 ms , made up of $18 \times 11.38 \mathrm{~ms}$ measurements on analog input and internal temperature channels, and $2 \times 34.13 \mathrm{~ms}$ measurements on external temperaturechannels.
5 The total fan count is based on 2 pulses per revolution of the fan tachometer output. The total fan monitoring time depends on the number of fans connected and the fan speed. See section on F an Speed M onitoring for more details.
${ }^{6}$ ADD is a three-state input that may be pulled high, low or left open-circuit.
${ }^{7}$ Logic inputs will accept input high voltages up to 5 V even when device is operating at supply voltages below 5 V .
${ }^{8}$ Timing specifications are tested at logic levels of $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ for a falling edge and $\mathrm{V}_{\mathrm{IH}}=2.1 \mathrm{~V}$ for a rising edge.
${ }^{9}$ Endurance is qualified to 100,000 cycles as per JEDEC Std. 22 method A117 and measured at $-40^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$. Typical Endurance at $25^{\circ} \mathrm{C}$ is 700,000 cycles.
${ }^{10}$ Retention lifetime equivalent at junction temperature $(\mathrm{Tj})=55^{\circ} \mathrm{C}$ as per JEDEC Std. 22 method A 117 . Retention lifetime based on an activation energy of 0.6 eV will derate with junction temperature as shown in F igure 2.

ABSOLUTE MAXIMUM RATINGS*

Positive Supply Voltage (V_{cc}) 6.5 V

Voltage on -12V $\mathrm{V}_{\text {IN }}$ Pin 20 V
Voltage on Analog Pins-0.3V to ($\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$)
Voltage on Open Drain Digital Pins-0.3V to 6.5 V
Input Current at any pin.......................... $\pm 5 \mathrm{~mA}$
Package Input Current $\pm 20 \mathrm{~mA}$
M aximum Junction Temperature (T , max) $150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature, Soldering
Vapor Phase 60 sec . $+215^{\circ} \mathrm{C}$
Infra-Red 15 sec $200^{\circ} \mathrm{C}$
ESD Rating - $12 \mathrm{~V}_{\text {IN }}$ pin 1000 V
ESD Rating all other pins 2000 V
*Stresses abovethoselisted under "AbsoluteM aximum Ratings" may causepermanent damage to the device. T his is a stress rating only; functional operation of the device at theseor any other conditions abovethoseindicated in theoperational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect devicereliability.

THERMAL CHARACTERISTICS

48-Pin LQFP Package:
$\theta_{\mathrm{JA}}=50^{\circ} \mathrm{C} / \mathrm{Watt}, \theta_{\mathrm{J}} \mathrm{C}=10^{\circ} \mathrm{C} / \mathrm{W}$ att

PIN CONFIGURATION

Model	Temperature Range	Package Description	Package Option
ADM 1026JST	$0^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$48-$ Pin LQFP	ST 48

Figure 1. Diagram for Serial Bus Timing

PIN FUNCTION DESCRIPTION

PIN NO.	MNEMONIC	TYPE	DESCRIPTION
1	GPIO 9	Digital $1 / 0^{1}$	General purpose I/O pin can be configured as a digital input or output.
2	GPIO 8	Digital $1 / 0^{1}$	General purpose I/O pin can be configured as a digital input or output.
3	FAN 0/G PIOO	Digital I/O	Fan tachometer input, or can be re-configured as a general purpose digital I/O pin. This has an internal $10 \mathrm{k} \Omega$ pullup resistor to 3.3 VSTBY
4	FAN 1/GPIO1	Digital I/O	Fan tachometer input, or can be re-configured as a general purpose digital I/O pin. This has an internal $10 \mathrm{k} \Omega$ pullup resistor to 3.3 VSTBY
5	FAN 2/GPIO2	Digital I/O	Fan tachometer input, or can be re-configured as a general purpose digital I/O pin. This has an internal $10 \mathrm{k} \Omega$ pullup resistor to 3.3 VSTBY
6	FAN 3/GPIO3	Digital I/O	Fan tachometer input, or can be re-configured as a general purpose digital I/O pin. This has an internal $10 \mathrm{k} \Omega$ pullup resistor to 3.3 VSTBY
7	3.3V MAIN	Analog Input	M onitors the main 3.3V system supply. Does NOT power device.
8	DGND	Ground	Ground pin for digital circuits.
9	FAN 4/GPIO 4	Digital I/O	Fan tachometer input, or can be re-configured as a general purpose digital I/O pin. This has an internal $10 \mathrm{k} \Omega$ pullup resistor to 3.3 VSTBY
10	FAN 5/GPIO 5	Digital I/O	Fan tachometer input, or can be re-configured as a general purpose digital I/O pin. This has an internal $10 \mathrm{k} \Omega$ pullup resistor to 3.3 VSTBY
11	FAN 6/GPIO 6	Digital I/O	Fan tachometer input, or can be re-configured as a general purpose digital I/O pin. This has an internal $10 \mathrm{k} \Omega$ pullup resistor to 3.3 VSTBY
12	FAN 7/GPIO 7	Digital I/O	Fan tachometer input, or can be re-configured as a general purpose digital I / O pin. This has an internal $10 \mathrm{k} \Omega$ pullup resistor to 3.3 VSTBY
13	SCL	Digital Input	Open-drain Serial Bus Clock. Requires $2.2 \mathrm{k} \Omega$ pullup resistor.
14	SD A	Digital I/O	Serial Bus Data. Open-drain output. Requires $2.2 \mathrm{k} \Omega$ pullup resistor.
15	ADD/ NTESTOUT	Digital Input	This is a threestate input that controls the two LSBs of the Serial Bus Address. It also functions as the output for NAND tree testing.
16	Cl	Digital Input	An active high input which captures a Chassis Intrusion event in Bit 6 of Status Register 4. This bit will remain set until cleared, so long as battery voltage is applied to the $\mathrm{V}_{\text {BAT }}$ input, even when the ADM 1026 is powered off.
17	$\overline{\mathrm{I}} \overline{\mathrm{N}} \mathrm{T}$	Digital Output	Interrupt Request (open drain). The output is enabled when Bit 1 of the Configuration Register is set to 1 . The default state is disabled. It has an on-chip $100 \mathrm{k} \Omega$ pullup resistor.
18	PW M	Digital Output	Open drain Pulse-width modulated output for control of fan speed. This pin defaults to being high for 100% duty cycle for use with n MOS drive circuitry. If a p -MOS device is used to drive the fan the PWM output may be inverted by setting bit 1 of Test Register $1=1$.
19	$\overline{\mathrm{R}} \overline{\mathrm{E}} \overline{\mathrm{S}} \overline{\mathrm{T}} \overline{\mathrm{S}} \overline{\mathrm{T}} \overline{\mathrm{B}} \bar{Y}$	Digital Output	Power-on Reset. 5 mA driver (open drain), active low output with a 180 ms typical pulse width. $\overline{\text { RESETSTBY }}$ is asserted whenever 3.3VSTBY is below the reset threshold. It remains asserted for approx. 180ms after 3.3VSTBY rises above the reset threshold.
20	$\overline{\mathrm{R}} \overline{\mathrm{E}} \overline{\mathrm{S}} \overline{\mathrm{E}} \overline{\mathrm{M}} \overline{\mathrm{M}} \overline{\mathrm{I}} \overline{\mathrm{N}}$	Digital I/O	Power-on Reset. 5 mA driver (open drain), active low output with a 180 ms typical pulse width. $\overline{\text { RESETMAIN }}$ is asserted whenever 3.3V MAIN is below the reset threshold. It remains asserted for approx. 180 ms after 3.3 V MAIN rises above the reset threshold. If, however, 3.3V STBY rises with or before 3.3 V MAIN, then RESETMAIN remains asserted for 180 ms after RESETSTBY is deasserted. Pin 20 also functions as an active low RESET input.

ADM1026

		PIN FUNCTION DESCRIPTION (CONTINUED)	
PIN NO.	MNE MONIC	TYPE	DESCRIPTION
21	AGND	Ground	Ground pin for analog circuits
22	3.3 V STBY	Power Supply	Supplies 3.3 V power for the ADM 1026. Also monitors 3.3V standby power rail.
23	DAC	Analog Output	0 to 2.5 V output for analog control of fan speed.
24	VREF	Analog Output	Reference voltage output. Can be selected as 1.8 V (default) or 2.5 V .
25	D1-/NTESTIN	Analog Input	Connected to cathode of 1st remote temperature sensing diode. If held high at power up it activates NAND tree test mode.
26	D $1+$	Analog Input	Connected to anode of 1st remote temperature sensing diode.
27	D 2-/AIN 9	Programmable Analog Input	Connected to cathode of 2 nd remote temperature sensing diode, or may be re-configured as a $0-2.5 \mathrm{~V}$ analog input
28	D 2+/AIN 8	Programmable Analog Input	Connected to anode of 2nd remote temperature sensing diode, or may be re-configured as a $0-2.5 \mathrm{~V}$ analog input
29	$\mathrm{V}_{\text {BAT }}$	Analog Input	M onitors battery voltage, nominally +3 V .
30	$+5 \mathrm{~V}_{\text {IN }}$	Analog Input	M onitors +5 V supply.
31	$-12 \mathrm{~V}_{\text {IN }}$	Analog Input	M onitors -12 V supply.
32	$+12 V_{\text {IN }}$	Analog Input	M onitors +12 V supply.
33	$+\mathrm{V}_{\text {CCP }}$	Analog Input	M onitors processor core voltage (0 to 3.0 V).
34	AIN 7	Analog Input	General-purpose 0 to 2.5 V analog input.
35	AIN 6	Analog Input	General-purpose 0 to 2.5 V analog input.
36	AIN 5	Analog Input	General-purpose 0 to 3 V analog input.
37	AIN 4	Analog Input	General-purpose 0 to 3 V analog input.
38	AIN 3	Analog Input	General-purpose 0 to 3 V analog input.
39	AIN 2	Analog Input	General-purpose 0 to 3 V analog input.
40	AIN 1	Analog Input	General-purpose 0 to 3 V analog input.
41	AIN 0	Analog Input	General-purpose 0 to 3 V analog input.
42	$\frac{\mathrm{GPIO}}{\mathrm{~T}} \overline{\mathrm{H}} \overline{\mathrm{E}} \overline{\mathrm{R}} \overline{\mathrm{M}}$	Digital $1 / 0^{1}$	General purpose I/O pin can be configured as a digital input or output. Can also be configured as à bidirectional THERM pin (open drain).
43	G PIO 15	Digital $1 / 0^{1}$	General purpose I/O pin can be configured as a digital input or output.
44	G PIO 14	Digital $1 / 0^{1}$	General purpose I/O pin can be configured as a digital input or output.
45	GPIO 13	Digital $1 / 0^{1}$	General purpose I/O pin can be configured as a digital input or output.
46	GPIO 12	Digital $1 / 0^{1}$	General purpose I/O pin can be configured as a digital input or output.
47	GPIO 11	Digital $1 / 0^{1}$	General purpose I/O pin can be configured as a digital input or output.
48	G PIO 10	Digital $1 / 0^{1}$	General purpose I/O pin can be configured as a digital input or output.

NOTES

${ }^{1}$ GPIO pinsareopen-drain and requireexternal pullup resistors.

FUNCTIONAL DESCRIPTION

GENERAL DESCRIPTION

The ADM 1026 is a complete system hardware monitor for microprocessor-based systems. The device communicates with the system via a serial System M anagement Bus. The serial bus controller has a hardwired address line for device selection (ADD, pin 15), a serial data line for reading and writing addresses and data (SDA, pin 14), and an input line for the serial clock (SCL, pin 13). All control and programming functions of the ADM 1026 are performed over the serial bus.

MEASUREMENT INPUTS

Programmability of the analog and digital measurement inputs makes the ADM 1026 extremely flexible and versatile. The device has an 8 bit A-to-D converter, and 17 analog measurement input pins that can be configured in different ways.
Pins 25 and 26 are dedicated temperature inputs and may be connected to the cathode and anode of a remote tem-perature-sensing diode.
Pins 27 and 28 may be configured as a temperature input and connected to a second temperature-sensing diode, or they may be re-configured as analog inputs with a range of 0 to +2.5 V .
Pins 29 to 33 are dedicated analog inputs with on-chip attenuators, configured to monitor $\mathrm{V}_{\mathrm{BAT}},+5 \mathrm{~V},-12 \mathrm{~V},+12 \mathrm{~V}$, and the processor core voltage $\mathrm{V}_{C C P}$, respectively.
Pins 34 to 41 are general-purpose analog inputs with a range of 0 to +2.5 V or 0 to +3 V . These are mainly intended for monitoring SCSI termination voltages, but may be used for other purposes.
The ADC also accepts input from an on-chip bandgap temperature sensor that monitors system ambient temperature.
Finally, the ADM 1026 monitors the supply from which it is powered, 3.3VSTBY, so there is no need for a separate pin to monitor this power supply voltage.
The ADM 1026 has 8 pins that are general-purpose logic I/O pins (pins 1,2 and 43 to 48), a pin that can be configured as GPIO or as a bidirectional thermal interrupt ($\overline{\text { THERM }}$) pin (pin 42) and 8 pins that can be configured for fan speed measurement or as general-purpose logic pins (pins 3 to 6 and 9 to 12).

SEQUENTIAL MEASUREMENT

When the ADM 1026 monitoring sequence is started, it cycles sequentially through the measurement of analog inputs and the temperature sensor, while at the same time the fan speed inputs are independently monitored. M easured values from these inputs are stored in Value Registers. These can be read out over the serial bus, or can be compared with programmed limits stored in the Limit Registers. The results of out of limit comparisons are stored in the Interrupt Status Registers, and will generate an interrupt on the INT line (pin 17).
Any or all of the Interrupt Status Bits can be masked by appropriate programming of the Interrupt M ask Registers.

CHASSIS INTRUSION

A chassis intrusion input (pin 16) is provided to detect unauthorised tampering with the equipment. This event is latched in a battery-backed register bit.

RESETS

The ADM 1026 has two power on reset outputs, RESETMAIN and RESETSTBY, that are asserted when 3.3VMAIN or 3.3VSTBY fall below the reset threshold. These give a 180 ms reset pulse at power up. $\overline{\text { RESETMAIN }}$ also functions as an active-low RESET input.

FAN SPEED CONTROL OUTPUTS

The ADM 1026 has two outputs intended to control fan speed, though they can also be used for other purposes.
Pin 18 is an open-drain pulse-width modulated (PWM) output with a programmable duty-cycle and an output frequency of 75 Hz .
Pin 23 is connected to the output of an on-chip, 8-bit digital-to-analog converter with an output range of zero to 2.5V.

Either or both of these outputs may be used to implement a temperature-controlled fan by controlling the speed of a fan dependent upon the temperature measured by the onchip temperature sensor or remote temperature sensors.

INTERNAL REGISTERS OF THE ADM1026

The ADM 1026 contains a large number of data registers. A brief description of the principal registers is given below. M ore detailed descriptions are given in the relevant sections and in the tables at the end of the data sheet.
Address Pointer Register: This register contains the address that selects one of the other internal registers. When writing to the ADM 1026, the first byte of data is always a register address, which is written to the Address Pointer Register.
Configuration Registers: Provide control and configuration for various operating parameters of the ADM 1026.
Fan Divisor Registers: Contain counter pre-scaler values for fan speed measurement.
DAC/PWM Control Registers: Contain speed values for PWM and DAC fan drive outputs.
GPIO Configuration Registers: These configure the GPIO pins as input or output and for signal polarity.
Value and Limit Registers: The results of analog voltage inputs, temperature and fan speed measurements are stored in these registers, along with their limit values.
Status Registers: These registers store events from the various interrupt sources.
Mask Registers: Allow masking of individual interrupt sources.

EEPROM

The ADM 1026 has 8 K bytes of non-volatile, ElectricallyErasable Programmable Read-Only M emory (EEPROM), from register addresses 8000 h to 9 FFFh. This may be used for permanent storage of data that will not be lost when the ADM 1026 is powered down, unlike the data in

ADM1026

the volatile registers. Although referred to as Read Only Memory, the EEPROM can be written to (as well as read from) via the serial bus in exactly the same way as the other registers. The only major differences between the E^{2} PROM and other registers are:

1. An EEPROM location must be blank before it can be written to. If it contains data, it must first be erased.
2. Writing to EEPROM is slower than writing to RAM.
3. Writing to the EEPROM should be restricted because it has a limited write/cycle life of 100,000 write operations, due to the usual EEPROM wear-out mechanisms.
The E ${ }^{2}$ PROM in the ADM 1026 has been qualified for two key E2PROM memory characteristics:- memory cycling endurance and memory data retention.
Endurance qualifies the ability of the E ${ }^{2}$ PROM to be cycled through many Program, Read and Erase cycles. In real terms, a single endurance cycle is composed of four independent, sequential events. These events are defined as follows:
(a) initial page erase sequence
(b) read/verify sequence
(c) program sequence
(d) second read/verify sequence

In reliability qualification, every byte is cycled from 00h to FFh until a first fail is recorded signifying the endurance limit of the E ${ }^{2}$ PROM memory.
Retention quantifies the ability of the memory to retain its programmed data over time. The E2PROM in the ADM 1026 has been qualified in accordance with the formal JEDEC Retention Lifetime Specification (A117) at a specific junction temperature ($\mathrm{Tj}=55^{\circ} \mathrm{C}$). As part of this qualification procedure, the E ${ }^{2}$ PROM memory is cycled to its specified endurance limit described above, before data retention is characterized. This means that the E^{2} PROM memory is guaranteed to retain its data for its full specified retention lifetime every time the E ${ }^{2}$ PROM is reprogrammed. It should be noted that retention lifetime
based on an activation energy of 0.6 eV will derate with Tj as shown in Figure 2.

Figure 2. E ${ }^{2}$ PROM Memory Retention

SERIAL BUS INTERFACE

Control of the ADM 1026 is carried out via the serial System M anagement Bus (SM Bus). The ADM 1026 is connected to this bus as a slave device, under the control of a master device.
The ADM 1026 has a 7-bit serial bus slave address. When the device is powered up, it will do so with a default serial bus address. The five M SB's of the address are set to 01011, the two LSB's are determined by the logical states of pin 15 (ADD/NTESTOUT). This is a three-state input that can be grounded, connected to V_{Cc} or left opencircuit to give three different addresses.
TABLE 1. ADDRESS PIN TRUTH TABLE

ADD Pin	A1	A0
GND	0	0
No Connect	1	0
$V_{C C}$	0	1

Figure 3a. General SMBus Write Timing Diagram

Figure 3b. General SM Bus Read Timing Diagram

If ADD is left open-circuit the default address will be 0101110. ADD is sampled only at power-up, so any changes made while power is on will have no immediate effect.
The facility to make hardwired changes to device address allows the user to avoid conflicts with other devices sharing the same serial bus, for example if more than one ADM 1026 is used in a system.

GENE RAL SMBUS TIMING

Figures 3 a and 3 b show timing diagrams for general read and write operations using the SM Bus. The SM Bus specification defines specific conditions for different types of read and write operation, which are discussed later.
The general SMBus protocol operates as follows:

1. The master initiates data transfer by establishing a START condition, defined as a high to low transition on the serial data line SDA whilst the serial clock line SCL remains high. This indicates that a data stream will follow. All slave peripherals connected to the serial bus respond to the START condition, and shift in the next 8 bits, consisting of a 7-bit slave address (M SB first) plus a R/W bit, which determines the direction of the data transfer, i.e. whether data will be written to or read from the slave device ($0=$ write, $1=$ read).
The peripheral whose address corresponds to the transmitted address responds by pulling the data line low during the low period before the ninth clock pulse, known as the Acknowledge Bit, and holding it low during the high period of this clock pulse. All other devices on the bus now remain idle whilst the selected device waits for data to be read from or written to it. If the $\mathrm{R} / \overline{\mathrm{W}}$ bit is a 0 then the master will write to the slave device. If the R / \bar{W} bit is a 1 the master will read from the slave device.
2. Data is sent over the serial bus in sequences of 9 clock pulses, 8 bits of data followed by an Acknowledge Bit from the slave device. Data transitions on the data line must occur during the low period of the clock signal and remain stable during the high period, as a low to high transition when the clock is high may be interpreted as a STOP signal.
If the operation is a write operation, the first data byte
after the slave address is a command byte. This tells the slave device what to expect next. It may be an instruction such as telling the slave device to expect a block write, or it may simply be a register address that tells the slave where subsequent data is to be written.
Since data can flow in only one direction as defined by the $R / \overline{\mathrm{W}}$ bit, it is not possible to send a command to a slave device during a read operation. Before doing a read operation, it may first be necessary to do a write operation to tell the slave what sort of read operation to expect and/or the address from which data is to be read.
3. When all data bytes have been read or written, stop conditions are established. In WRITE mode, the master will pull the data line high during the 10th clock pulse to assert a STOP condition. In READ mode, the master device will release the SDA line during the low period before the 9th clock pulse, but the slave device will not pull it low. This is known as No Acknowledge. The master will then take the data line low during the low period before the 10th clock pulse, then high during the 10th clock pulse to assert a STOP condition.
N ote:
If it is required to perform several read or write operations in succession, the master can send a repeat start condition instead of a stop condition to begin a new operation.

SMBUS PROTOCOLS FOR RAM AND EEPROM

The ADM 1026 contains volatile registers (RAM) and non-volatile EEPROM. RAM occupies address locations from 00 h to 6 Fh , whilst EEPROM occupies addresses from 8000h to 9FFFh.
Data can be written to and read from both RAM and EEPROM as single data bytes and as block (sequential) read or write operations of 32 data bytes, which is the maximum block size allowed by the SM Bus specification.
Data can only be written to unprogrammed EEPROM locations. To write new data to a programmed location it is first necessary to erase it. EEPROM erasure cannot be done at the byte level; the EEPROM is arranged as 128 pages* of 64 bytes, and an entire page must be erased.
The EEPROM has three RAM registers associated with it,

ADM1026

EEPROM Registers 1,2 and 3 at addresses $06 \mathrm{~h}, 0 \mathrm{Ch}$ and 13h. EEPROM Registers 1 and 2 are for factory use only. EEPROM Register 3 is used to set up the EEPROM operating mode.
Setting bit 0 of EEPROM Register 3 puts the EEPROM into Read Mode. Setting bit 1 puts it into Programming M ode. Setting Bit 2 puts it into Erase Mode.
One, and only one of these bits must be set before the EEPROM may be accessed, setting no bits or more than one of them will cause the device to respond with No Acknowledge if an EEPROM read, program or erase operation is attempted.
It is important to distinguish between SM Bus write operations such as sending an address or command, and EEPROM programming operations. It is possible to write an EEPROM address over the SM Bus whatever the state of EEPROM register 3. However, EEPROM Register 3 must be correctly set before a subsequent EEPROM operation can be performed. For example, when reading from the EEPROM, bit 0 of EEPROM Register 3 can be set, even though SM Bus write operations are required to set up the EEPROM address for reading.
Bit 3 of EEPROM Register 3 is used for EEPROM write protection. Setting this bit will prevent accidental programming or erasure of the EEPROM. If a an EEPROM write or erase operation is attempted with this bit set, the ADM 1026 will respond with No Acknowledge. This bit is write once and can only be cleared by power-on reset.
EEPROM Register bit 7 is used for clock extend. Programming an EEPROM byte takes approximately $250 \mu \mathrm{~s}$, which would limit the SM Bus clock for repeated or block write operations. Since EEPROM block read/write access is slow, it is recommended that this Clock Extend bit normally be set to 1 . This allows the ADM 1026 to pull SCL low and extend the clock pulse when it cannot accept any more data.
*Although the EEPROM is arranged into 128 pages, only 124 pages are available to the user. The last 4 pages are reserved for manufacturing purposes and cannot be erased/ rewritten.

ADM 1026 WRITE OPERATIONS

The SM Bus specification defines several protocols for different types of read and write operations. The ones used in the ADM 1026 are discussed below. The following abbreviations are used in the diagrams:

```
S - START
P - STOP
R - READ
W - WRITE
A - ACKNOWLEDGE
\overline{A}
```

The ADM 1026 uses the following SM Bus write protocols:

Send Byte

In this operation the master device sends a single command byte to a slave device, as follows:

1. The master device asserts a start condition on SDA.
2. The master sends the 7-bit slave address followed by the write bit (low).
3. The addressed slave device asserts ACK on SDA.
4. The master sends a command code.
5. The slave asserts ACK on SDA.
6. The master asserts a STOP condition on SDA and the transaction ends.
In the ADM 1026, the send byte protocol is used to write a register address to RAM for a subsequent single byte read from the same address or block read or write starting at that address. This is illustrated in Figure 4a.

Figure 4a. Setting A RAM Address For Subsequent Read
If it is required to read data from the RAM immediately after setting up the address, the master can assert a repeat start condition immediately after the final ACK and carry out a single byte read, block read or block write operation, without asserting an intermediate stop condition.

WriteByte/Word

In this operation the master device sends a command byte and one or two data bytes to the slave device, as follows:

1. The master device asserts a start condition on SDA.
2. The master sends the 7-bit slave address followed by the write bit (low).
3. The addressed slave device asserts ACK on SDA.
4. The master sends a command code.
5. The slave asserts ACK on SDA.
6. The master sends a data byte.
7. The slave asserts ACK on SDA.
8. The master sends a data byte (or may assert STOP at this point).
9. The slave asserts ACK on SDA.
10.T he master asserts a STOP condition on SDA to end the transaction.
In the ADM 1026, the write byte/word protocol is used for four purposes. The ADM 1026 knows how to respond by the value of the command byte and EEPROM register 3.
10. Write a single byte of data to RAM. In this case the command byte is the RAM address from 00 h to 6 Fh and the (only) data byte is the actual data. This is illustrated in Figure 4b.

Figure 4b. Single Byte Write To RAM
2. Set up a two byte EEPROM address for a subsequent read or block read. In this case the command byte is
the high byte of the EEPROM address from 80h to $9 F \mathrm{~h}$. The (only) data byte is the low byte of the EEPROM address. This is illustrated in Figure 4c.

Figure 4c. Setting An EEPROM Address
If it is required to read data from the EEPROM immediately after setting up the address, the master can assert a repeat start condition immediately after the final ACK and carry out a single byte read, block read or block write operation, without asserting an intermediate stop condition. In this case bit 0 of EEPROM Register 3 should be set.
3. Erase a page of EEPROM memory. EEPROM memory can be written to only if it is unprogrammed. Before writing to one or more EEPROM memory locations that are already programmed, the page or pages containing those locations must first be erased.
EEPROM memory is erased by writing an EEPROM page address plus an arbitrary byte of data with bit 2 of EEPROM Register 3 set to 1.
As the EEPROM consists of 128 pages of 64 bytes, the EEPROM page address consists of the EEPROM address high byte (from 80h to 9Fh) and the two MSB's of the low byte. The lower 6 bits of the EEPROM address low byte only specify addresses within a page and are ignored during an erase operation.

Figure 4d. EEPROM Page Erasure
Page erasure takes approximately 20 ms . If the EEPROM is accessed before erasure is complete, it will respond with No Acknowledge.
4. Write a single byte of data to EEPROM. In this case the command byte is the high byte of the EEPROM address from 80 h to 9 Fh . The first data byte is the low byte of the EEPROM address and the second data byte is the actual data. Bit 1 of EEPROM Register 3 must be set. This is illustrated in Figure 4 e .

Figure 4e. Single Byte Write To EEPROM

Block Write

In this operation the master device writes a block of data to a slave device. The start address for a block write must previously have been set. In the case of the ADM 1026 this is done by a Send Byte operation to set a RAM address or a Write Byte/Word operation to set an EEPROM address.

1. The master device asserts a start condition on SDA.
2. The master sends the 7-bit slave address followed by the write bit (low).
3. The addressed slave device asserts ACK on SDA.
4. The master sends a command code that tells the slave device to expect a block write. The ADM 1026 command code for a block write is AOh (10100000).
5. The slave asserts ACK on SDA.
6. The master sends a data byte (20h) that tells the slave device 32 data bytes will be sent to it. The master should always send 32 data bytes to the ADM 1026.
7. The slave asserts ACK on SDA.
8. The master sends 32 data bytes.
9.T he slave asserts ACK on SDA after each data byte.
9. The master sends a PEC (Packet Error Checking) byte.
10. The ADM 1026 checks the PEC byte and issues an ACK if correct. If incorrect (NACK), the master should resend the data bytes.
11. The master asserts a STOP condition on SDA to end the transaction.

Figure 4f. Block Write To EEPROM Or RAM
When performing a block write to EEPROM, bit 1 of EEPROM Register 3 must be set.
Unlike some EEPROM devices which limit block writes to within a page boundary, there is no limitation on the start address when performing a block write to EEPROM, except:

1. There must be at least 32 locations from the start address to the highest EEPROM address (9FFF), to avoiding writing to invalid addresses.
2. If the addresses cross a page boundary, both pages must be erased before programming.

ADM1026 READ OPERATIONS

The ADM 1026 uses the following SM Bus read protocols:

RECEIVE BYTE

In this operation the master device receives a single byte from a slave device, as follows:
1.T he master device asserts a START condition on SDA.
2.T he master sends the 7-bit slave address followed by the read bit (high).
3.The addressed slave device asserts ACK on SDA.
4.The master receives a data byte.
5.T he master asserts NO ACK on SDA.
6.T he master asserts a STOP condition on SDA and the transaction ends.

In the ADM 1026, the receive byte protocol is used to read a single byte of data from a RAM or EEPROM location whose address has previously been set by a send byte or

ADM1026

write byte/word operation. This is illustrated in Figure 4 g . When reading from EEPROM, Bit 0 of EEPROM register 3 must be set.

Figure 4g. Single Byte Read From EEPROM Or RAM

BLOCK READ

In this operation the master device reads a block of data from a slave device. The start address for a block read must previously have been set. In the case of the ADM 1026 this is done by a Send Byte operation to set a RAM address, or a Write Byte/Word operation to set an EEPROM address. The block read operation itself consists of a Send Byte operation that sends a block read command to the slave, immediately followed by a repeated start and a read operation that reads out multiple data bytes, as follows:
1.The master device asserts a START condition on SDA.
2.The master sends the 7-bit slave address followed by the write bit (low).
3.The addressed slave device asserts ACK on SDA.
4.The master sends a command code that tells the slave device to expect a block read. The ADM 1026 command code for a block read is Alh (10100001).
5.The slave asserts ACK on SDA.
6.The master asserts a repeat start condition on SDA.
7.The master sends the 7 -bit slave address followed by the read bit (high).
8.The slave asserts ACK on SDA.
9. The ADM 1026 sends a byte count data byte that tells the master how many data bytes to expect. The ADM 1026 will always return 32 data bytes (20h), which is the maximum allowed by the SM Bus 1.1 specification.
10. The master asserts ACK on SDA.
11. The master receives 32 data bytes.
12. The master asserts ACK on SDA after each data byte.
13. The ADM 1026 issues a PEC byte to the master. The master should check the PEC byte and issue another block read if the PEC byte is incorrect.
14. A NACK is generated after the PEC byte to signal the end of the read.
15. The master asserts a STOP condition on SDA to end the transaction.

Figure 4h. Block Read From EEPROM or RAM
When block reading from EEPROM, bit 0 of EEPROM register 3 must be set.

Note: Although the ADM 1026 supports Packet Error Checking (PEC), its use is optional. The PEC byte is calculated using CRC-8. The Frame Check Sequence (FCS) conforms to CRC-8 by the polynomial:-
$C(x)=x^{8}+x^{2}+x^{1}+1$
Consult SM Bus 1.1 specification for more information.

MEASUREMENT INPUTS

The ADM 1026 has 17 external analog measurement pins, which can be configured to perform various functions. It also measures two supply voltages, 3.3 V MAIN and 3.3 V STBY, and the internal chip temperature.
Pins 25 and 26 are dedicated to remote temperature measurement, whilst pins 27 and 28 can be configured as analog inputs with a range of 0 to +2.5 V or as inputs for a second remote temperature sensor.
Pins 29 to 33 are dedicated to measuring $\mathrm{V}_{\text {BAT }},+5 \mathrm{~V}$, $-12 \mathrm{~V},+12 \mathrm{~V}$ supplies and the processor core voltage $\mathrm{V}_{\mathrm{Ccp}}$. The remaining analog inputs, pins 34 to 41 are generalpurpose analog inputs with a range of 0 to +2.5 V (pins 34 and 35) or 0 to +3 V (pins 36 to 41).

A TO D CONVERTER

These inputs are multiplexed into the on-chip, successive approximation, analog-to-digital converter. This has a resolution of 8 bits. The basic input range is zero to +2.5 V , which is the input range of $A_{\text {IN } 6}$ to $A_{\text {IN } 9,}$, but five of the inputs have built-in attenuators to allow measurement of $\mathrm{V}_{\text {BAT }},+5 \mathrm{~V},-12 \mathrm{~V},+12 \mathrm{~V}$ and the processor core voltage $\mathrm{V}_{\text {CCP }}$, without any external components. To allow for the tolerance of these supply voltages, the A to D converter produces an output of $3 / 4$ full-scale (decimal 192) for the nominal input voltage, and so has adequate headroom to cope with overvoltages. Table 2 shows the input ranges of the analog inputs and output codes of the A to D converter.
When the ADC is running, it samples and converts an analog or local temperature input every 711μ s (typical value). Each input is measured 16 times and the measurements averaged to reduce noise, so the total conversion time for each input is 11.38 ms .
M easurements on the remote temperature (D1 and D2) inputs take 2.13 ms . These are also measured 16 times and averaged, so the total conversion time for a remote temperature input is 34.13 ms .

INPUT CIRCUITS

The internal structure for the analog inputs are shown in Figure 5. Each input circuit consists of an input protection diode, an attenuator, plus a capacitor to form a firstorder lowpass filter which gives the input immunity to high frequency noise. The -12 V input also has a resistor connected to the on-chip reference to offset the negative voltage range so that it is always positive and can be handled by the ADC. The $\mathrm{V}_{\text {BAT }}$ input allows the condition of a battery such as a CMOS backup battery to be monitored. To reduce current drain from the battery, the lower resistor of the $\mathrm{V}_{\text {BAT }}$ attenuator is not connected, except when a $\mathrm{V}_{\text {BAT }}$ measurement is being made. T he total

TABLE 2. A/D OUTPUT CODE VS. VIN

I nput Voltage								A/D Output	
$+12 V_{\text {IN }}$	$-12 V_{\text {IN }}$	$+5 \mathrm{~V}_{\text {IN }}$	3.3VMAIN 3.3VSTBY	$V_{\text {BAT }}$	$\mathbf{V}_{\text {CCP }}$	AIN (0-5)	AlN(6-9)	Decimal	B inary
<0.0625	<-15.928	<0.026	<0.0172	<0.016	<0.012	<0.012	<0.010	0	00000000
0.062-0.125	$-15.928 \rightarrow-15.855$	0.026-0.052	0.017-0.034	0.016-0.031	0.012-0.023	0.012-0.023	0.010-0.019	1	00000001
0.125-0.187	$-15.855 \rightarrow-15.783$	0.052-0.078	0.034-0.052	0.031-0.047	0.023-0.035	0.023-0.035	0.019-0.029	2	00000010
0.188-0.250	$-15.783 \rightarrow-15.711$	0.078-0.104	0.052-0.069	0.047-0.063	0.035-0.047	0.035-0.047	0.029-0.039	3	00000011
0.250-0.313	$-15.711 \rightarrow-15.639$	0.104-0.130	0.069-0.086	0.063-0.077	0.047-0.058	0.047-0.058	0.039-0.049	4	00000100
0.313-0.375	$-15.639 \rightarrow-15.566$	0.130-0.156	0.086-0.103	0.077-0.093	0.058-0.070	0.058-0.070	0.049-0.058	5	00000101
0.375-0.438	$-15.566 \rightarrow-15.494$	0.156-0.182	0.103-0.120	0.093-0.109	0.070-0.082	0.070-0.082	0.058-0.068	6	00000110
0.438-0.500	$-15.494 \rightarrow 15.422$	0.182-0.208	0.120-0.138	0.109-0.125	0.082-0.094	0.082-0.094	0.068-0.078	7	00000111
0.500-0563	$-15.422 \rightarrow-15.349$	0.208-0.234	0.138-0.155	0.125-0.140	0.094-0.105	0.094-0.105	0.078-0.087	8	00001000
4.000-4.063	$-11.375 \rightarrow-11.303$	1.665-1.691	1.110-1.127		0.750-0.780	0.750-0.780	0.625-0.635	64 (1/4-scale)	01000000
8.000-8.063	$-6.750 \rightarrow-6.678$	3.330-3.560	2.220-2.237		1.500-1.512	1.500-1.512	1.250-1.260	128 (1/2-scale)	10000000
12.000-12.063	$-2.125 \rightarrow-2.053$	4.995-5.021	3.330-3.347	$3.000-3.016$	2.250-2.262	2.250-2.262	1.875-1.885	192 (3/4 scale)	11000000
15.313-15.375	$1.705 \rightarrow 1.777$	6.374-6.400	4.249-4.267	$\left\|\begin{array}{r} \bullet \\ \bullet \\ \bullet \\ 3.828-3.844 \end{array}\right\|$	2.871-2.883	2.871-2.883	2.392-2.402	245	11110101
15.375-15.437	$1.777 \rightarrow 1.850$	6.400-6.426	4.267-4.284	3.844-3.860	2.883-2.895	2.883-2.895	2.402-2.412	246	11110110
15.437-15.500	$1.850 \rightarrow 1.922$	6.426-6.452	4.284-4.301	3.860-3.875	2.895-2.906	2.895-2.906	2.412-2.422	247	11110111
15.500-15.563	$1.922 \rightarrow 1.994$	6.452-6.478	4.301-4.319	3.875-3.890	2.906-2.918	2.906-2.918	2.422-2.431	248	11111000
15.562-15.625	$1.994 \rightarrow 2.066$	6.478-6.504	4.319-4.336	3.890-3.906	2.918-2.930	2.918-2.930	2.431-2.441	249	11111001
15.625-15.688	$2.066 \rightarrow 2.139$	6.504-6.530	4.336-4.353	3.906-3.921	2.930-2.941	2.930-2.941	2.441-2.451	250	11111010
15.688-15.750	$2.139 \rightarrow 2.211$	6.530-6.556	4.353-4.371	3.921-3.937	2.941-2.953	2.941-2.953	2.451-2.460	251	11111011
15.750-15.812	$2.211 \rightarrow 2.283$	6.556-6.582	4.371-4.388	3.937-3.953	2.953-2.965	2.953-2.965	2.460-2.470	252	11111100
15.812-15.875	$2.283 \rightarrow 2.355$	6.582-6.608	4.388-4.405	3.953-3.969	2.965-2.977	2.965-2.977	2.470-2.480	253	11111101
15.875-15.938	$2.355 \rightarrow 2.428$	6.608-6.634	4.405-4.423	3.969-3.984	2.977-2.988	2.977-2.988	2.480-2.490	254	11111110
>15.938	>2.428	>6.634	>4.423	>3.984	>2.988	>2.988	>2.490	255	11111111

ADM1026

current drain on the $\mathrm{V}_{\text {BAT }}$ pin is 105 nA typical (for a maximum $\mathrm{V}_{\text {BAT }}$ voltage $=4 \mathrm{~V}$) so a CR2032 CMOS battery will function in a system in excess of the expected 10 years. Note that when a measurement is not being made of $\mathrm{V}_{\text {BAT }}$ the current drain is reduced to 16 nA typical. U nder normal operating conditions, all measurements are made in a round-robin format, and each measurement result is actually 16 digitally averaged measurements. A veraging is not carried out on the $\mathrm{V}_{\text {BAT }}$ measurement to reduce measurement time and hence reduce the current drain from the battery. The $\mathrm{V}_{\text {BAT }}$ current drain when a measurement is being made is calculated by: -
$\mathrm{I}=\left(\mathrm{V}_{\mathrm{BAT}} / 100 \mathrm{k}\right) *\left(\mathrm{~T}_{\text {PULSE }} / \mathrm{T}_{\text {PERIOD }}\right)$
For $\mathrm{V}_{\text {BAT }}=3 \mathrm{~V}$;
$I=(3 / 100 k) *(711 \mu s / 273 m s)=78 n A$
$\mathrm{T}_{\text {PULSE }}=\mathrm{V}_{\text {BAT }}$ measurement time $=711 \mu$ s typical
$\mathrm{T}_{\text {PERIOD }}=$ Time to measure all analog inputs $=273 \mathrm{~ms}$ typical

Figure 5. Structure of Analog Inputs

SETTING OTHER INPUT RANGES

$A_{\text {IN } 0}$ to $A_{\text {IN } 9}$ can easily be scaled to voltages other than 2.5 V or 3 V . If the input voltage range is zero to some positive voltage, then all that is required is an input attenuator, as shown in Figure 6.
However, when scaling $A_{\text {IN } 0}$ to $A_{I N 5}$, it should be noted that these inputs already have an on-chip attenuator, as their primary function is to monitor SCSI termination voltages. This attenuator will load any external attenuator. The input resistance of the on-chip attenuator can be between $100 \mathrm{k} \Omega$ and $200 \mathrm{k} \Omega$. For this tolerance not to affect the accuracy, the output resistance of the external attenuator should be very much lower than this, e.g. $1 \mathrm{k} \Omega$ in order to add not more than 1% to the TUE. Alternatively, the input can be buffered using an op-amp.

Figure 6. Scaling AIN(0-9)

$$
\begin{aligned}
& \mathrm{R} 1 / R 2=\left(\mathrm{V}_{\mathrm{f}^{5}} 3.0\right) / 3.0\left(\text { for } A_{\text {IN } 0} \text { to } A_{I N_{5} 5}\right) \\
& \left.\mathrm{R} 1 / R 2=\left(\mathrm{V}_{\mathrm{s}^{5}} 2.5\right) / 2.5 \text { (for } A_{\text {IN } 6} \text { to } A_{I N 9}\right)
\end{aligned}
$$

Negative and bipolar input ranges can be accommodated by using a positive reference voltage to offset the input voltage range so that it is always positive.
To monitor a negative input voltage, an attenuator can be used as shown in Figure 7.

Figure 7. Scaling and Offsetting AIN(0-9) for Negative Inputs
This offsets the negative voltage so that the ADC always sees a positive voltage. R1 and R2 are chosen, so that the ADC input voltage is zero when the negative input voltage is at its maximum (most negative) value, i.e.

$$
\mathrm{R} 1 / \mathrm{R} 2=\left|\mathrm{V}_{\mathrm{FS}}\right| / \mathrm{V}_{\mathrm{OS}}
$$

This is a simple and cheap solution, but the following point should be noted.

1. Since the input signal is offset but not inverted, the input range is transposed. An increase in the magnitude of the negative voltage (going more negative), will cause the input voltage to fall and give a lower output code from the ADC. Conversely, a decrease in the
magnitude of the negative voltage will cause the ADC code to increase. The maximum negative voltage corresponds to zero output from the ADC. This means that the upper and lower limits will be transposed.
2. For the ADC output to be full-scale when the negative voltage is zero, $\mathrm{V}_{\text {OS }}$ must be greater than the full-scale voltage of the ADC, because $\mathrm{V}_{\text {os }}$ is attenuated by R1 and $R 2$. If $V_{0 s}$ is equal to or less than the full-scale voltage of the ADC the input range is bipolar, but not necessarily symmetrical.
This is only a problem if the ADC output must be fullscale when the negative voltage is zero.
Symmetrical bipolar input ranges can easily be accommodated by making $\mathrm{V}_{\text {os }}$ equal to the full-scale voltage of the analog input and adding a third resistor to set the positive full-scale.

Figure 8. Scaling and Offsetting AIN(0-9) for Bipolar Inputs

$$
R 1 / R 2=\left|V_{F S}\right| / V_{O S}
$$

(R3 has no effect as the input voltage at the device pin is zero when $\mathrm{V}_{\mathrm{IN}}=$ minus full-scale)

$$
\begin{aligned}
& \mathrm{R} 1 / \mathrm{R} 3=\left(\mathrm{V}_{\mathrm{FS}+}-3.0\right) / 3.0\left(\text { for } A_{\text {IN } 0} \text { to } A_{\text {IN } 5}\right) \\
& \mathrm{R} 1 / \mathrm{R} 3=\left(\mathrm{V}_{\mathrm{FS}+}-2.5\right) / 2.5\left(\text { for } A_{I N 6} \text { to AINg }\right)
\end{aligned}
$$

($R 2$ has no effect as the input voltage at the device pin is equal to $\mathrm{V}_{\text {OS }}$ when $\mathrm{V}_{\text {IN }}=$ plus full-scale).

REFERENCE OUTPUT

The on-chip reference voltage is scaled and buffered at pin 24 to provide a 1.82 V or 2.5 V reference. This output can source or sink a load current of 2 mA . The reference voltage is set to 1.82 V if bit 2 of Configuration Register 3 (address 07 h) is $0,2.5 \mathrm{~V}$ if it is 1 . The voltage reference output can be used to provide a stable reference voltage to external circuitry such as LDO's.

TEMPERATURE MEASUREMENT SYSTEM

LOCAL TEMPERATURE MEASUREMENT

The ADM 1026 contains an on-chip bandgap temperature sensor, whose output is digitized by the on-chip ADC. The temperature data is stored in the Local Temperature Value Register (address 1Fh). As both positive and negative temperatures can be measured, the temperature data is stored in two's complement format, as shown in Table 3. Theoretically, the temperature sensor and ADC can measure temperatures from $-128^{\circ} \mathrm{C}$ to $+127^{\circ} \mathrm{C}$ with a resolution of $1^{\circ} \mathrm{C}$. However, temperatures below $\mathrm{T}_{\text {MIN }}$ and above $\mathrm{T}_{\text {max }}$ are outside the operating temperature range of the device, so local temperature measurements outside this range are not possible. Temperature measurement from $-128^{\circ} \mathrm{C}$ to $+127^{\circ} \mathrm{C}$ is possible using a remote sensor.

REMOTE TEMPERATURE MEASUREMENT

The ADM 1026 can measure the temperature of two remote diode sensors or diode-connected transistors, connected to pins 25 and 26 or 27 and 28.

Pins 25 and 26 are a dedicated temperature input channel. Pins 27 and 28 can be configured to measure a diode sensor by clearing bit 3 of Configuration Register 1 (address 00 h) to 0 . If this bit is 1 then pins 27 and 28 are $A_{\text {IN } 8}$ and Alng.
The forward voltage of a diode or diode-connected transistor, operated at a constant current, exhibits a negative temperature coefficient of about $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. U nfortunately, the absolute value of V_{be}, varies from device to device, and individual calibration is required to null this out, so the technique is unsuitable for mass-production.

Figure 9. Signal Conditioning for Remote Diode temperature Sensors

ADM1026

The technique used in the ADM 1026 is to measure the change in $\mathrm{V}_{\text {be }}$ when the device is operated at two different currents.
This is given by:
$\Delta \mathrm{V}_{\mathrm{be}}=\mathrm{KT} / \mathrm{q} \times \ln (\mathrm{N})$
where:
K is Boltzmann's constant
q is charge on the carrier
T is absolute temperature in K elvins
N is ratio of the two currents
Figure 9 shows the input signal conditioning used to measure the output of a remote temperature sensor. This figure shows the external sensor as a substrate transistor, provided for temperature monitoring on some microprocessors, but it could equally well be a discrete transistor such as a 2N 3904.
If a discrete transistor is used, the collector will not be grounded, and should be linked to the base. If a PNP transistor is used the base is connected to the D-input and the emitter to the D+input. If an NPN transistor is used, the emitter is connected to the D - input and the base to the $D+$ input.

TABLE 3. TEMPERATURE DATA FORMAT

Temperature	Digital Output
$-128{ }^{\circ} \mathrm{C}$	10000000
$-125^{\circ} \mathrm{C}$	10000011
$-100^{\circ} \mathrm{C}$	10011100
$-75^{\circ} \mathrm{C}$	10110101
$-50{ }^{\circ} \mathrm{C}$	11001110
$-25{ }^{\circ} \mathrm{C}$	11100111
$-10{ }^{\circ} \mathrm{C}$	11110110
$0{ }^{\circ} \mathrm{C}$	00000000
$+10{ }^{\circ} \mathrm{C}$	00001010
$+25^{\circ} \mathrm{C}$	00011001
$+50^{\circ} \mathrm{C}$	00110010
$+75{ }^{\circ} \mathrm{C}$	01001011
$+100{ }^{\circ} \mathrm{C}$	01100100
$+125{ }^{\circ} \mathrm{C}$	01111101
$+127{ }^{\circ} \mathrm{C}$	01111111

To prevent ground noise interfering with the measurement, the more negative terminal of the sensor is not referenced to ground, but is biased above ground by an internal diode at the D - input.
To measure $\Delta \mathrm{V}_{\text {be, }}$, the sensor is switched between operating currents of I and $\mathrm{N} \times \mathrm{I}$. The resulting waveform is passed through a 65 kHz lowpass filter to remove noise,
and to a chopper-stabilized amplifier that performs the functions of amplification and rectification of the waveform to produce a DC voltage proportional to $\Delta \mathrm{V}_{\text {be }}$. This voltage is measured by the ADC to give a temperature output in 8-bit two's complement format. To further reduce the effects of noise, digital filtering is performed by averaging the results of 16 measurement cycles. A remote temperature measurement takes nominally 2.14 ms .
The results of external temperature measurements are stored in 8 bit, twos-complement format, as illustrated in Table 3.

LAYOUT CONSIDERATIONS

Digital boards can be electrically noisy environments, and care must be taken to protect the analog inputs from noise, particularly when measuring the very small voltages from a remote diode sensor. The following precautions should be taken:

1. Place the ADM 1026 as close as possible to the remote sensing diode. Provided that the worst noise sources such as clock generators, data/address buses and CRTs are avoided, this distance can be 4 to 8 inches.
2. Route the $D+$ and D - tracks close together, in parallel, with grounded guard tracks on each side. Provide a ground plane under the tracks if possible.
3. Use wide tracks to minimize inductance and reduce noise pickup. 10 mil track minimum width and spacing is recommended.

Figure 10. Arrangement of Signal Tracks
4. Try to minimize the number of copper/solder joints, which can cause thermocouple effects. Where copper/ solder joints are used, make sure that they are in both the $D+$ and D - path and at the same temperature.
Thermocouple effects should not be a major problem as $1^{\circ} \mathrm{C}$ corresponds to about $240 \mu \mathrm{~V}$, and thermocouple voltages are about $3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ of temperature difference. Unless there are two thermocouples with a big temperature differential between them, thermocouple voltages should be much less than $200 \mu \mathrm{~V}$.
5. Place a $0.1 \mu \mathrm{~F}$ bypass capacitor close to the ADM 1026.

6 . If the distance to the remote sensor is more than 8 inches, the use of twisted pair cable is recommended. This will work up to about 6 to 12 feet.
7. For really long distances (up to 100 feet) use shielded twisted pair such as Belden \#8451 microphone cable. Connect the twisted pair to $D+$ and D - and the shield to GND close to the ADM 1026. Leave the remote end
of the shield unconnected to avoid ground loops.
Because the measurement technique uses switched current sources, excessive cable and/or filter capacitance can affect the measurement. When using long cables, the filter capacitor may be reduced or removed.
Cable resistance can also introduce errors. 1Ω series resistance introduces about $0.5^{\circ} \mathrm{C}$ error.

LIMIT VALUES

Limit values for analog measurements are stored in the appropriate limit registers. In the case of voltage measurements, high and low limits can be stored so that an interrupt request will be generated if the measured value goes above or below acceptable values. In the case of temperature, a Hot Temperature or High Limit can be programmed, and a Hot Temperature Hysteresis or Low Limit, which will usually be some degrees lower. This can be useful as it allows the system to be shut down when the hot limit is exceeded, and re-started automatically when it has cooled down to a safe temperature.

ANALOG MONITORING CYCLE TIME

The analog monitoring cycle begins when a one is written to the Start Bit (bit 0), and a zero to the INT_Clear Bit (bit 2) of the Configuration Register. INT_Enable (Bit 1) should be set to one to enable the $\overline{\mathrm{INT}}$ output. The ADC measures each analog input in turn, starting with remote temperature channel 1 and ending with local temperature. As each measurement is completed the result is automatically stored in the appropriate value register. This "round-robin" monitoring cycle continues until it is disabled by writing a 0 to bit 0 of the Configuration Register.
As the ADC will normally be left to free-run in this manner, the time taken to monitor all the analog inputs will normally not be of interest, as the most recently measured value of any input can be read out at any time.
For applications where the monitoring cycle time is important, it can easily be calculated.
The total number of channels measured is:
5 dedicated supply voltage inputs
10 general purpose analog inputs
$3.3 V_{\text {MAIN }}$
$3.3 \mathrm{~V}_{\text {St BY }}$
Local temperature
2 remote temperature
Pins 28 and 27 are measured both as analog inputs AIN 8/ AIN 9 and as remote temperature input D2+/D2-, irrespective of which configuration is selected for these pins.
If pins 28 and 27 are configured as AIN8/AIN9, the measurements for these channels are stored in registers 27 h and 29 h and the invalid temperature measurement is discarded. On the other hand, if pins 28 and 27 are configured as D2+/D 2-, the temperature measurement is stored in register 29 h and there will be no valid result in register 27 h .
As mentioned previously, the ADC performs a conversion every $711 \mu \mathrm{~s}$ on the analog and local temperature inputs and every 2.13 ms on the remote temperature inputs. Each input
is measured 16 times and averaged to reduce noise.
The total monitoring cycle time for voltage and temperature inputs is therefore nominally:
$(18 \times 16 \times 0.711)+(2 \times 16 \times 2.13)=273 \mathrm{~ms}$
The ADC uses the internal 22.5 kHz clock, which has a tolerance of $\pm 6 \%$, so the worst case monitoring cycle time is 290 ms .
The fan speed measurement uses a completely separate monitoring loop, as described later.

INPUT SAFETY

Scaling of the analog inputs is performed on chip, so external attenuators are normally not required. However, since the power supply voltages will appear directly at the pins, its is advisable to add small external resistors (e.g. 500Ω) in series with the supply traces to the chip to prevent damaging the traces or power supplies should an accidental short such as a probe connect two power supplies together.
As the resistors will form part of the input attenuators, they will affect the accuracy of the analog measurement if their value is too high.
The worst such accident would be connecting -12 V to +12 V - a total of 24 V difference, with the series resistors this would draw a maximum current of approx. 24 mA .

REFERENCE OUTPUT

The ADM 1026 has a buffered reference voltage output (pin 24), which can be programmed to 1.82 V or 2.5 V by clearing or setting bit 2 of Configuration Register 3 (address 07h).

ANALOG OUTPUT

The ADM 1026 has a single analog output from an unsigned 8 bit DAC which produces $0-2.5 \mathrm{~V}$ (independent of the reference voltage setting). The input data for this DAC is contained in the DAC Control register (address 04h) The DAC Control Register defaults to FFh during power-on reset, which produces maximum fan speed. The analog output may be amplified and buffered with external circuitry such as an op-amp and transistor to provide fan speed control. During automatic fan speed control, described later, the four MSBs of this register set the minimum fan speed.
Suitable fan drive circuits are given in Figures 11a to 11 e . When using any of these circuits, the following points should be noted:

1. All of these circuits will provide an output range from zero to almost +12 V , apart from Figure 11a which loses the base-emitter voltage drop of Q1 due to the emitter-follower configuration.
2. To amplify the 2.5 V range of the analog output up to 12 V , the gain of these circuits needs to be around 4.8.
3. Care must be taken when choosing the op-amp to en-

Figure 11a.Fan Drive Circuit with Op-Amp and EmitterFollower

Figure 11b. Fan Drive Circuit with Op-Amp and PNP Transistor

Figure 11c. Fan Drive Circuit with Op-Amp and P-Channel MOSFET

Figure 11d. Discrete Fan Drive Circuit with P-Channel MOSFET, SIngleSupply

Figure 11e.Discrete Fan Drive Circuit with P-Channel MOSFET, Dual Supply

Figure 11f. PWM Fan Drive Circuit using an N-Channel MOSFET
sure that its input common-mode range and output voltage swing are suitable.
4. The op-amp may be powered from the +12 V rail alone or from $\pm 12 \mathrm{~V}$. If it is powered from +12 V then the input common-mode range should include ground to accommodate the minimum output voltage of the DAC, and the output voltage should swing below 0.6 V to ensure that the transistor can be turned fully off.
5. If the op-amp is powered from -12 V then precautions such as a clamp diode to ground may be needed to prevent the base-emitter junction of the output transistor being reverse-biased in the unlikely event that the output of the op-amp should swing negative for any reason.
6. In all these circuits, the output transistor must have an $I_{\text {CMAX }}$ greater than the maximum fan current, and be capable of dissipating power due to the voltage dropped across it when the fan is not operating at fullspeed.
7. If the fan motor produces a large back e.m.f when switched off, it may be necessary to add clamp diodes to protect the output transistors in the event that the output goes from full-scale to zero very quickly.

PWM OUTPUT

Fan speed may also be controlled using pulse-width modulation (PWM). The PWM output (pin 18) produces a pulsed output with a frequency of approximately 75 Hz and a duty-cycle defined by the contents of the PWM Control Register (address 05h). During automatic fan speed control, described below, the four MSBs of this register set the minimum fan speed.
The open-drain PWM output must be amplified and buffered to drive the fans. The PWM output is intended to be used with an NMOS driver, but may be inverted by setting bit 1 of Test Register 1(address 14h) if using PMOS drivers. Figure 11f shows how a fan may be driven under PWM control using an N -channel MOSFET.

AUTOMATIC FAN SPEED CONTROL

The ADM 1026 offers a simple method of controlling fan speed according to temperature without intervention from the host processor.
To enable automatic fan speed control, monitoring must be enabled by setting Bit 0 of Configuration Register 1 (address 00h).
Automatic fan speed control can be applied to the DAC output, the PWM output, or both, by setting bit 5 and/or 6 of Configuration Register 1.
The $\mathrm{T}_{\text {MIN }}$ registers (addresses 10 h to 12 h) contain minimum temperature values for the three temperature channels (on-chip sensor and two remote diodes). This is the temperature at which a fan will start to operate when the temperature sensed by the controlling sensor exceeds $\mathrm{T}_{\text {MIN }}$. $\mathrm{T}_{\text {MIN }}$ can be the same or different for all three channels. $\mathrm{T}_{\text {MIN }}$ is set by writing a two's complement temperature value to the $\mathrm{T}_{\text {MIN }}$ registers. If any sensor channel is not required for automatic fan speed control, $\mathrm{T}_{\text {min }}$ for that channel should be set to $+127^{\circ} \mathrm{C}$ (01111111).

In Automatic Fan Speed Control Mode, the four M SBs of the DAC Control Register (address 04h) and PWM Control Register (address 05h) set the minimum values for the DAC and PWM outputs. Note: If both DAC Control and PWM Control is enabled (bits 5, 6 of Configuration Register $1=1$), the four MSBs of the DAC Control Register (address 04h) define the minimum fan speed values for both the DAC and PWM outputs. The value in the PWM Control Register (address 05h) has no effect.

M inimum DAC Code DAC $_{\text {MIN }}=16 \times \mathrm{D}$
(DAC output voltage $=2.5 \times$ Code/256)
M inimum PWM Duty-Cycle PWM MIN $=6.67 \times D$
where D is the decimal equivalent of bits 7 to 4 of the register.
When the temperature measured by any of the sensors exceeds the corresponding $T_{\text {MIN }}$, the fan is spun up for two seconds with the fan drive set to maximum (full-scale from the DAC or 100% PWM duty-cycle. The fan speed is then set to the minimum as previously defined. As the temperature increases, the fan drive will increase until the temperature reaches $\mathrm{T}_{\text {MIN }}+20^{\circ} \mathrm{C}$.
The fan drive at any temperature up to $20^{\circ} \mathrm{C}$ above $\mathrm{T}_{\text {MIN }}$ is given by:

$$
\left.P W M=P W M_{\text {MIN }}+\left(100-P W M_{\text {MIN }}\right) \times\left(T_{\text {ACTUAL }}-T_{\text {MIN }}\right) / 20\right)
$$

or
$\left.D A C=D A C_{\text {MIN }}+\left(240-D A C_{\text {MIN }}\right) \times\left(T_{\text {ACtUAL }}-T_{\text {MIN }}\right) / 20\right)$
For simplicity of the automatic fan speed algorithm, the DAC code increases linearly up to 240, not its full-scale of 255 . However, when the temperature exceeds $\mathrm{T}_{\text {min }}$ $+20^{\circ} \mathrm{C}$, the DAC output will jump to full-scale.

Figure 12a. Automatic PWM Fan Control Transfer Function

ADM1026

TEMPERATURE
Figure 12b. Automatic DAC Fan Control Transfer Function
To ensure that the maximum cooling capacity is always available, the fan drive is always set by the sensor channel demanding the highest fan speed.
If the temperature falls, the fan will not turn off until the temperature measured by all three temperature sensors has fallen to their corresponding $T_{\text {MIN }}-4^{\circ} \mathrm{C}$. This prevents the fan from cycling on and off continuously when the temperature is close to $\mathrm{T}_{\text {min }}$.
Whenever a fan starts or stops during automatic fan speed control, a one-off interrupt is generated at the $\overline{\text { INT }}$ output. This is described in more detail in the section on the ADM 1026 Interrupt Structure.

FAN INPUTS

Pins 3 to 6 and 9 to 12 may be configured as fan speed measuring inputs by clearing the corresponding bit(s) of Configuration Register 2 (address 01h) or as general-purpose logic inputs/outputs by setting bits in this register. The power-on default value for this register is 00 h , which means all the inputs are set for fan speed measurement.
Signal conditioning in the ADM 1026 accommodates the slow rise and fall times typical of fan tachometer outputs. The F an T ach inputs have internal $10 \mathrm{k} \Omega$ pullup resistors to $3.3 V$ ST BY. In the event that these inputs are supplied from fan outputs which exceed the supply, either resistive attenuation of the fan signal or diode clamping must be included to keep inputs within an acceptable range.
Figures 13a to 13d show circuits for most common fan tacho outputs.
If the fan tacho output is open drain or has a resistive pullup to $\mathrm{V}_{\text {cc }}$ then it can be connected directly to the fan input, as shown in Figure 13a.

Figure 13a. Fan With Tach Pullup To $+\mathrm{V}_{\mathrm{cc}}$.

If the fan output has a resistive pullup to +12 V (or other voltage greater than 3.3VSTBY) then the fan output can be clamped with a zener diode, as shown in Figure 13b. The zener voltage should be chosen so that it is greater than $\mathrm{V}_{I H}$ but less than 3.3VSTBY, allowing for the voltage tolerance of the zener.

Figure 13b. Fan with Tach. Pullup to Voltage $>V_{C C}$ e.g. 12V) Clamped with Zener Diode
If the fan has a strong pullup (less than $1 \mathrm{k} \Omega$) to +12 V , or a totem-pole output, then a series resistor can be added to limit the zener current, as shown in Figure 13c. Alternatively, a resistive attenuator may be used, as shown in Figure 13d.
R1 and R2 should be chosen such that:

$$
2 V<V_{\text {PULLLUP }} \times R 2 /\left(R_{\text {PuLLUP }}+R 1+R 2\right)<3.3 V S T B Y
$$

Figure 13c. Fan with Strong Tach. Pullup to $>\mathrm{V}_{\mathrm{cc}}$ or TotemPole Output, Clamped with Zener and Resistor

Figure 13d. Fan with Strong Tach. Pullup to $>\mathrm{V}_{\mathrm{cc}}$ or TotemPole Output, Attenuated with R1/R2

FAN SPEED MEASUREMENT

The fan counter does not count the fan tacho output pulses directly, because the fan speed may be less than 1000 RPM and it would take several seconds to accumulate a reasonably large and accurate count. Instead, the period of the fan revolution is measured by gating an on-chip 22.5 kHz oscillator into the input of an 8 -bit counter for two periods of the fan tacho output, as shown in Figure 14, so the accumulated count is actually proportional to the fan tacho period and inversely proportional to the fan speed.

$\div 4$	2200	27.27	1540	38.96	1320	45.45
$\div 8$	1100	54.54	770	77.92	660	90.9

Figure 14. Fan Speed Measurement
The monitoring cycle begins when a one is written to the M onitor Bit (bit 0 of Configuration Register 1). The INT Enable (Bit 1) should be set to one to enable the $\overline{\text { INT }}$ output.
Speed measurement of the Fan 0 channel is initialized on the first rising edge of the fan tach pulse after Start goes low, and oscillator pulses are actually counted from the second rising tach edge to the fourth rising edge. The measurement then switches to Fan 1. Here again, the measurement is initialized on the first tach pulse rising edge after the Fan 0 measurement finishes and oscillator pulses are counted from the second rising edge to the fourth rising edge. This is repeated for the other six fan channels.
To accommodate fans of different speed and/or different numbers of output pulses per revolution, a pre-scaler (divisor) of 1, 2, 4 or 8 may be added before the counter. Divisor values for F ans 0 to 3 are contained in the Fan 0 3 Divisor Register (address 02h) and those for Fans 4 to 7 in the Fan 4-7 Divisor Register (address 03h). The default value is 2 , which gives a count of 153 for a fan running at 4400 RPM producing two output pulses per revolution.
The count is calculated by the equation:
Count $=\left(22.5 \times 10^{3} \times 60\right) /(R P M \times$ Divisor $)$
For constant speed fans, fan failure is normally considered to have occurred when the speed drops below 70% of nominal, which would correspond to a count of 219. Fullscale (255) would be reached if the fan speed fell to 60% of its nominal value. For temperature-controlled variable speed fans the situation will be different.
Table 4 shows the relationship between fan speed and time per revolution at $60 \%, 70 \%$ and 100% of nominal RPM for fan speeds of $1100,2200,4400$ and 8800 RPM, and the divisor that would be used for each of these fans, based on two tacho pulses per revolution.

TABLE 4. FAN SPEEDS AND DIVISORS

Divisor	Nominal RPM	$\begin{gathered} \text { Time per } \\ \text { rev } \\ \text { (ms) } \end{gathered}$	$\begin{aligned} & \mathbf{7 0 \%} \\ & \text { R P M } \end{aligned}$	Time per rev (70\%) (ms)	$\begin{aligned} & \mathbf{6 0 \%} \\ & \text { R P M } \end{aligned}$	Time per rev (60\%) (ms)
$\div 1$	8800	6.82	6160	9.74	5280	11.36
$\div 2$	4400	13.64	3080	19.48	2640	22.73

LIMIT VALUES

Fans generally do not overspeed if run from the correct voltage, so the failure condition of interest is underspeed due to electrical or mechanical failure. For this reason only low-speed limits are programmed into the limit registers for the fans. It should be noted that, since fan period rather than speed is being measured, a fan failure interrupt will occur when the measurement exceeds the limit value.

FAN MONITORING CYCLE TIME

The fan speeds are measured in sequence from 0 to 7 . The monitoring cycle time depends on the fan speed, the number of tacho output pulses per revolution and the number of fans being monitored.
If a fan is stopped or running so slowly that the fan speed counter reaches 255 before the second tach pulse after initialization, or before the fourth tach pulse during measurement, the measurement will be terminated. This will also occur if an input is configured as GPIO instead of fan. Any channels so connected will time out after 255 clock pulses.
The worst-case measurement time for a fan-configured channel occurs when the counter reaches 254 from start to the 2 nd tach pulse and reaches 255 after the second tach pulse. Taking into account the tolerance of the oscillator frequency, the worst-case measurement time is:
$509 \times \mathrm{D} \times 0.047$ milliseconds
where:
509 is the total number of clock pulses.
D is the divisor, $1,2,4$ or 8 .
0.047 is the worst-case oscillator period in ms.

The worst-case fan monitoring cycle time is the sum of the worst case measurement time for each fan.
Although the fan monitoring cycle and the analog input monitoring cycle are started together, they are not synchronised in any other way.

FAN MANUFACTURERS

M anufacturers of cooling fans with tachometer outputs are listed below:

NMB Tech
9730 Independence Ave.
Chatsworth, California 91311
818-341-3355
818-341-8207

Model	Frame Size	Airflow CFM
2408 NL	2.36 in sq. $\times 0.79$ in (60 mm sq. $\times 20 \mathrm{~mm}$)	$9-16$
2410 ML	2.36 in sq. $\times 0.98$ in (60 mm sq. $\times 25 \mathrm{~mm}$)	$14-25$
3108 NL	3.15 in sq. $\times 0.79$ in (80 mm sq. $\times 20 \mathrm{~mm}$)	$25-42$
3110 KL	3.15 in sq. $\times 0.98$ in (80 mm sq. $\times 25 \mathrm{~mm}$)	$25-40$

M echatronis Inc.
P.O. Box 20

M ercer Island, WA 98040
800-453-4569
Models - Various sizes available with tach output option.
Sanyo Denki/K eymarc Electronics
2310 205th, Suite 101
Torrance, CA 90501
310-212-7724
Models - 109P Series

CHASSIS INTRUSION INPUT

The Chassis Intrusion input is an active high input intended for detection and signalling of unauthorised tampering with the system. When this input goes high, the event is latched in bit 6 of Status Register 4 and an interrupt will be generated. The bit will remain set until cleared by writing a zero to it, so long as battery voltage is connected to the $\mathrm{V}_{\text {BAT }}$ input, even if the ADM 1026 is powered off.

The Cl input will detect chassis intrusion events even when the ADM 1026 is powered off (provided battery voltage is applied to $\mathrm{V}_{\mathrm{BAT}}$) but will not immediately generate an interrupt. Once a chassis intrusion event has been detected and latched, an interrupt will be generated when the system is powered up.
The actual detection of chassis intrusion is performed by an external circuit that will detect (for example), when the cover has been removed. A wide variety of techniques may be used for the detection, for example:

- Microswitch that opens or closes when the cover is re moved.
- Reed switch operated by magnet fixed to the cover
- Hall-effect switch operated by magnet fixed to the cover.
- Phototransistor that detects light when cover is removed.

The Chassis Intrusion input can also be used for other types of alarm input. Figure 15 shows a temperature alarm circuit using an AD 22105 temperature switch sensor. This produces a low-going output when the preset temperature is exceeded, so the output is inverted by Q1 to make it compatible with the Cl input. Q1 can be almost any small-signal NPN transistor, or a TTL or CMOS inverter gate may be used if one is available. See the AD 22105 data sheet for information on selecting $\mathrm{R}_{\mathrm{SET}}$.

Figure 15. Using the CI Input with a Temperature Sensor

GENERAL-PURPOSE I/O PINS

The ADM 1026 has 8 pins that are dedicated to generalpurpose logic input/output (pins 1,2 and 43 to 48), 8 pins that can be configured as general-purpose logic pins or fan speed inputs (pins 3 to 6 and 9 to 12) and one pin that can be configured as GPIO16 or THERM output (pin 42). The GPIO/FAN pins are configured as general-purpose logic pins by setting bits 0 to 7 of Configuration Register 2 (address 01h). Pin 42 is configured as GPIO16 by setting bit 0 of Configuration Register 3, or as THERM output by clearing this bit.
Each GPIO pin has four data bits associated with it, two bits in one of the GPIO Configuration Registers (addresses 08h to OBh), one in the GPIO Status Registers (addresses 24h and 25h), and one in the GPIO Mask Registers (addresses 1Ch and 1Dh)
Setting a Direction Bit $=1$ in one of the GPIO Configuration Registers makes the corresponding GPIO pin an output. Clearing the direction bit to 0 makes it an input.
Setting a Polarity Bit = 1 in one of the GPIO Configuration Registers makes the corresponding GPIO pin active high. Clearing the polarity bit to 0 makes it active low.
When a GPIO pin is configured as an INPUT, the corresponding bit in one of the GPIO status registers is readonly, and is set when the input is asserted ("asserted" may be high or low depending on the setting of the Polarity Bit).
When a GPIO pin is configured as an OUTPUT, the corresponding bit in one of the GPIO status registers becomes read/write. Setting this bit will then assert the GPIO output. (here again, "asserted" may be high or low depending on the setting of the polarity bit).
The effect of a GPIO Status Register bit on the $\overline{\text { INT }}$ output can be masked out by setting the corresponding bit in one of the GPIO Mask Registers. When the pin is configured as an output, this bit will automatically be masked to prevent the data written to the status bit from causing an interrupt, with the exception of GPIO16 which must be masked manually by setting bit 7 of M ask Register 4.
When configured as inputs, the GPIO pins may be connected to external interrupt sources such as temperature sensors with digital output. Another application of the GPIO pins would be to monitor a processor's Voltage ID code (VID code).

Figure 16. ADM 1026 Interrupt Structure

ADM1026

THE ADM1026 INTERRUPT STRUCTURE

The Interrupt Structure of the ADM 1026 is shown in Figure 16. Interrupts can come from a number of sources, which are combined to form a common $\overline{\mathrm{INT}}$ output. When $\overline{\mathrm{INT}}$ is asserted, this output pulls low. The $\overline{\mathrm{INT}}$ pin has an internal, $100 \mathrm{k} \Omega$ pullup resistor.

1. Analog/TemperatureInputs

As each analog measurement value is obtained and stored in the appropriate value register, the value and the limits from the corresponding limit registers are fed to the high and low limit comparators. The result of each comparison ($1=$ out of limit, $0=$ in limit) is routed to the corresponding bit input of Interrupt Status Register 1, 2 or 4 via a data demultiplexer, and used to set that bit high or low as appropriate. Status bits are self-clearing. If a bit in a status register is set due to an out-of-limit measurement, it will continue to cause $\overline{\mathrm{INT}}$ to be asserted as long as it remains set, as described below. However, if a subsequent measurement is in limit it will be reset and will not cause $\overline{\mathrm{INT}}$ to be re-asserted. Status bits are unaffected by clearing the interrupt.
Interrupt Mask Registers, 1, 2 and 4 have bits corresponding to each of the Interrupt Status Register Bits. Setting an Interrupt M ask Bit high forces the corresponding Status Bit output low, whilst setting an Interrupt M ask Bit low allows the corresponding Status Bit to be asserted. After mask gating, the status bits are all OR'd together to produce the analog and fan interrupt, which is used to set a latch. The output of this latch is OR'd with other interrupt sources to produce the $\overline{\mathrm{INT}}$ output. This will pull low if any unmasked status bit goes high, i.e. when any measured value goes out of limit.
When an $\overline{\mathrm{INT}}$ output due to an out-of-limit analog/temp. measurement is cleared by one of the methods described later, the latch is reset. It will not be set again, and $\overline{\mathrm{INT}}$ will not be re-asserted, until the end of the next monitor-
ing cycle, even if the status bit remains set or a new analog/temp. event occurs. However, interrupts from other sources such as fan or GPIO can still be asserted. This is illustrated in Figures 17 and 18.
Status Register 4 also stores inputs from two other interrupt sources, which operate in a different way from the other status bits. If automatic fan speed control (AFC) is enabled, bit 4 of status register 4 will be set whenever a fan starts or stops. This bit causes a one-off $\overline{\text { INT }}$ output as shown in Figure 19. It is cleared during the next monitoring cycle and if $\overline{\text { INT }}$ has been cleared it will not cause $\overline{\mathrm{INT}}$ to be re-asserted.

Figure 19. Assertion Of INT Due To AFC Event
In a similar way, a change of state at the THERM output (described in more detail later), sets bit 3 of Status Register 4 and causes a one-off $\overline{\text { INT }}$ output. A change of state at the THERM output also causes bit 0 of Status Register 1, bit 1 of Status Register 1, or bit 0 of Status Register 4 to be set, depending on which temperature channel caused the $\overline{\text { THERM }}$ event. This bit will be reset during the next monitoring cycle, provided the temperature channel is within the normal high and low limits.

2. Fan Inputs

F an inputs generate interrupts in a similar way to analog/ temp. inputs, but as the analog/temp. inputs and fan inputs have different monitoring cycles, they have separate inter-

Figure 17. Delay After Clearing INT Before Re-assertion

Figure 18. Other Interrupt Sources Can Re-assert INT Immediately
rupt circuits. As the speed of each fan is measured, the output of the fan speed counter is stored in a value register. The result is compared to the fan speed limit and used to set or clear a bit in Status Register 3. In this case the fan is only monitored for under-speed (fan counter > fan speed limit). Mask Register 3 is used to mask fan interrupts. After mask gating, the fan status bits are OR'd together and used to set a latch, whose output is OR'd with other interrupt sources to produce the $\overline{\mathrm{INT}}$ output.
Like the analog/temp. interrupt, an $\overline{\text { INT }}$ output caused by an out-of-limit fan speed measurement, once cleared, will not be re-asserted until the end of the next monitoring cycle, although other interrupt sources may cause $\overline{\mathrm{INT}}$ to be asserted.

3. GPIO and CI Pins

When GPIO pins are configured as inputs, asserting a GPIO input (high or low, depending on polarity) sets the corresponding GPIO status bit in Status Registers 5 and 6 or bit 7 of Status Register 4 (GPIO16). A chassis intrusion event sets bit 6 of Status Register 4.
The GPIO and CI status bits, after mask gating, are OR'd together and OR'd with other interrupt sources to produce the $\overline{\mathrm{INT}}$ output. GPIO and CI interrupts are not latched and cannot be cleared by normal interrupt clearing. They can only be cleared by masking the status bits or by removing the source of the interrupt.

ENABLING AND CLEARING INTERRUPTS

The $\overline{\mathrm{INT}}$ output is enabled when Bit 1 of Configuration Register 1 ($\overline{\mathrm{INT}}$ _ Enable) is high, and Bit 2 ($\overline{\mathrm{INT}}$ C lear) is low.
$\overline{\mathrm{INT}}$ may be cleared if:

- Status Register 1 is read. Ideally, if polling the Status Registers trying to identify interrupt sources, Status Register 1 should be polled last, since a read of Status Register 1 clears all the other Interrupt Status R egisters.
- the ADM 1026 receives the Alert Response Address (0001 100) over the SM Bus.
- bit 2 of Configuration Register 1 is set.

BIDIRECTIONAL THERM PIN

The ADM 1026 has a second interrupt pin
(GPIO16/THERM, pin 42) that responds only to thermal events, e.g. if any of the three temperature sensors exceeds its THERM temperature limit. This output is enabled by setting bit 4 of Configuration Register 1 (Reg.00h).
Three thermal limit registers are provided for the three temperature sensors at addresses ODh to OFh. These registers are dedicated to the THERM output and none of the other limit registers have any effect on the THERM output.
If any of the temperature inputs exceeds the corresponding limit, THERM will be asserted (low) and the DAC and PWM outputs will go to maximum to drive any cooling fans to full speed.

To avoid cooling fans cycling on and off continually when
the temperature is close to the limit, a fixed hysteresis of $5^{\circ} \mathrm{C}$ is provided. THERM will only be de-asserted when the measured temperature of all three sensors is $5^{\circ} \mathrm{C}$ below the limit.
Whenever the THERM output changes, $\overline{\text { INT }}$ will be asserted, as shown in Figure 20. However, this is edge-triggered, so if $\overline{\mathrm{INT}}$ is subsequently cleared by one of the methods previously described, it will not be re-asserted, even if THERM remains asserted. THERM will only cause $\overline{\mathrm{INT}}$ to be asserted again when it changes state. Note that the THERM pin is bidirectional, so THERM may be pulled low externally as an input. This will cause the PWM and DAC outputs to go to full-scale until THERM is returned high again.

Figure 20. Assertion Of $\overline{\mathrm{INT}}$ Due To $\overline{\text { THERM }}$ Event

RESET INPUT AND OUTPUTS

The ADM 1026 has two active-low, power-on reset outputs, $\overline{\text { RESETMAIN }}$ and $\overline{\text { RESETSTBY. }}$. These operate as follows:
RESETSTBY monitors 3.3V STBY. At power-up RESETSTBY will be asserted (pulled low) until 180ms after 3.3VSTBY rises above the reset threshold.
RESETMAIN monitors 3.3V MAIN. At power-up RESETMAIN will be asserted (pulled low) until 180 ms after 3.3V MAIN rises above the reset threshold.
If 3.3 V MAIN rises with or before $\mathrm{DV}_{\mathrm{Cc}}, \overline{\text { RESETMAIN }}$ will remain asserted until 180ms after RESETSTBY is negated. $\overline{\text { RESETMAIN }}$ can also function as a $\overline{\text { RESET }}$ input. Pulling this pin low will reset the system to power-on defaults.

Figure 21. Operation Of Reset Outputs

NAND TREE TESTS

A NAND tree is provided in the ADM 1026 for Auto-

ADM1026

mated Test Equipment (ATE) board level connectivity testing. This allows the functionality of all digital inputs to be tested in a simple manner and any pins that are nonfunctional or shorted together to be identified. The structure of the NAND tree is shown in Figure 22. The device is placed into NAND Tree Test Mode by powering up with pin 25 held high. This pin is sampled automatically after power-up and if it is connected high, then the NAND test mode is invoked.

Figure 22. NAND Tree
The NAND tree test may be carried out in one of two ways.

1. Start with all inputs low and take them high in turn, starting with the input nearest to NTEST_OUT (GPIO 16/THERM) and working back up the tree to the input furthest from NTEST OUT (INT). This should give the characteristic output pattern shown in Figure 23, with NTESTOUT toggling each time an input is taken high.

Figure 23. NAND Tree Test Taking Inputs High In Turn

1. Start with all inputs high and take them low in turn, starting with the input furthest from NTEST_OUT
(INT) and working down the tree to the input nearest to NTEST_OUT (GPIO16/THERM). This should give a similar output pattern to Figure 24.
N otes:
2. When generating test waveforms, a typical propagation delay of 500 ns through the NAND tree should be allowed for.
3. If any of the inputs shown in Figure 22 are unused, they should not be connected direct to ground, but via a resistor such as $10 k \Omega$. This will allow the ATE (Automatic Test Equipment) to drive every input high so that the NAND tree test can be properly carried out.

Figure 24. NAND Tree Test taking Inputs Low In Turn
In the event of an input being non-functional(stuck high or low) or two inputs shorted together, the output pattern will be different. Some examples are given in Figures 25 to 27.

Figure 25. NAND Tree Test With GPIO11 Stuck Low
Figure 25 shows the effect of one input being stuck low. The output pattern is normal until the stuck input is reached. Because that input is permanently low, neither it nor any inputs further up the tree can have any effect on the output.

Figure 26. NAND Tree Test With One Input Stuck High
Figure 26 shows the effect of one input being stuck high. Taking GPIO 12 high should take the output high. However, the next input up the tree, GPIO11, is already high, so the output immediately goes low again, causing a missing pulse in the output pattern.

Figure 27. NAND Tree Test With Two Inputs Shorted A similar effect occurs if two adjacent inputs are shorted together. The example in Figure 27 assumes that the current sink capability of the circuit driving the inputs is considerably higher than the source capability, so the inputs will be low if either is low, but high only if both are high.
When GPIO12 goes high the output should go high, but since GPIO12 and GPIO11 are shorted, they both go high together, causing a missing pulse in the output pattern.

USING THE ADM1026

When power is first applied, the ADM 1026 performs a power-on reset on all its registers (not EEPROM), which sets them to default conditions as shown in Table 6. In particular it should be noted that all GPIO pins are configured as inputs to avoid possible conflicts with circuits trying to drive these pins.
The ADM 1026 can also be initialized at any time by writing a 1 to Bit 7 of Configuration Register 1, which sets some registers to their default power-on conditions. This Bit should be cleared by writing a 0 to it.
After power-up, the ADM 1026 must be configured to the user's specific requirements. This consists of:

- writing values to the limit registers.
- configuring pins 3 to 6 and 9 to 12 as fan inputs or GPIO, using Configuration Register 2 (address 01h)
- setting the fan divisors using the Fan Divisor Registers (addresses 02h and 03h).
- configuring the GPIO pins for input/output, polarity, using GPIO Configuration Registers 1 to 4 (addresses 08h to 0 Bh) and bits 6 and 7 of Configuration Register 3.
- setting mask bits in M ask Registers 1 to 6 (addresses 18h to 1Dh) for any inputs that are to be masked out.
- setting up Configuration Registers 1 and 3, as follows:

Configuration Register 1

Bit 0 controls the monitoring loop of the ADM 1026. Setting Bit 0 low stops the monitoring loop and puts the ADM 1026 into a low power mode thereby reducing power consumption. Serial bus communication is still possible with any register in the ADM 1026 while in low-power
mode. Setting Bit 0 high starts the monitoring loop.
Bit 1 enables or disables the $\overline{\text { INT }}$ Interrupt output. Setting Bit 1 high enables the $\overline{\text { INT }}$ output, setting bit 1 low disables the output.
Bit 2 is used to clear the $\overline{\text { INT }}$ interrupt output when set high. GPIO pins and Interrupt Status register contents will not be affected.
Bit 3 configures pins 27 and 28 as the second external temperature channel when 0 , and as $A_{\text {IN } 8}$ and $A_{\text {IN } 9}$ when set to 1.
Bit 4 enables the THERM output when set to 1.
Bit 5 enables automatic fan speed control on the DAC output when set to 1.
Bit 6 enables automatic fan speed control on the PWM output when set to 1 .
Bit 7 performs a soft reset when set to 1 .

Configuration Register 3

Bit 0 configures pin 42 as GPIO when set to 1 or as THERM when cleared to 0.
Bit 1 clears the Cl latch when set to 1 . A 0 must be written thereafter to allow subsequent Cl detection.
Bit 2 selects VREF as 2.5 V when set to 1 or as 1.82 V when cleared to 0 .
Bits 3 to 5 are unused.
Bits 6 and 7 set up GPIO16 for direction and polarity.

STARTING CONVERSION

The monitoring function (Analog inputs, temperature, and fan speeds) in the ADM 1026 is started by writing to Configuration Register 1 and setting Start (Bit 0), high. The INT_Enable (Bit 1) should be set to 1, and INT Clear (Bit ${ }^{2}$) set to 0 to enable interrupts. The THERM enable bit (bit 4) should be set to 1 to enable temperature interrupts at the THERM pin. Apart from initially starting together, the analog measurements and fan speed measurements proceed independently, and are not synchronised in any way.

REDUCED POWER AND SHUTDOWN MODE

The ADM 1026 can be placed in a low-power mode by setting bit 0 of the Configuration register to 0 . This disables the internal ADC. Full shutdown mode may then be achieved by setting bit 7 of the Test Register 1 (address 14 h) to 1 . This turns off the analog output and stops the monitoring cycle, if running, but it does not affect the condition of any of the registers. The device will return to its previous state when this bit is reset to zero. However, it should be noted that if the device is placed into Shutdown Mode and woken up again, $\overline{\text { RSTMAIN }}$ and $\overline{\text { RSTSTBY }}$ will both assert low. Care must be taken since if either of these pins connect to the CPU then this can cause an entire system reset. In the Shutdown M ode, the ADM 1026 current consumption is reduced to $250 \mu \mathrm{~A}$ typical.

SOFTWARE RESET FUNCTION

As previously mentioned, the ADM 1026 can be reset in software by setting bit 7 of Configuration Register 1 (Reg. $00 h)=1$. This bit should then be cleared to $0 . N$ ote that the software reset differs from a power-on reset in that only some of the ADM 1026 registers get re-initialized to their power-on default values. The registers that are initialized to their default values by the Software Reset are: -

- Configuration Registers (Registers 00h to 0Bh)
- Mask Registers 1 to 6, Internal Temp Offset, and Status Registers 4,5 and 6 (Registers 18 h to 25 h)
- All value registers (Registers 1Fh, 20h to 3Fh)
- External 1 and External 2 Offset Registers (6Eh, 6Fh)

Note that the Limit Registers (0 Dh to 12 h , 40 h to 6 Dh) are not reset by the Software Reset function. This can be useful if you need to reset the part but do not want to have to reprogram all parameters again. Note that a Power-on Reset initializes all registers on the ADM 1026 including the Limit Registers.

ADM1026

ADM 1026 REGISTERS

TABLE 5. ADDRESS POINTER REGISTER

Bit	Name	R/W	Description
$7-0$	Address Pointer	Write	Address of ADM 1026 Registers. See the tables below for detail.

TABLE 6. LIST OF REGISTERS

Hex Address	Name	Power on Value (Hex or Binary Bit 7-0)	Description
00	Configuration 1	00h	Configures various operating parameters
01	Configuration 2	00h	Configures pins 3-6 and 9-12 as fan inputs or GPIO
02	Fan 0-3 Divisor	55h	Sets oscillator frequency for Fan 0-3 speed measurement
03	Fan 4-7 Divisor	55h	Sets oscillator frequency for F an 4-7 speed measurement
04	DAC Control	F F h	Contains value for fan speed DAC (analog fan speed control) or minimum value for automatic fan speed control
05	PWM Control	F F h	Contains value for PWM fan speed control or minimum value for automatic fan speed control
06	EEPROM Register 1	00h	For factory use only.
07	Configuration Register 3	00h	Config. register for THERM, VREF and GPIO 16
08	GPIO Config 1	00h	Configures GPIOO to GPIO3 as input or output and as active high or active low
09	GPIO Config 2	00h	Configures GPIO4 to GPIO7 as input or output and as active high or active low
OA	GPIO Config 3	00h	Configures GPIO8 to GPIO11 as input or output and as active high or active low
OB	GPIO Config 4	00h	Configures GPIO12 to GPIO15 as input or output and as active high or active low
OC	EEPROM Register 2	00h	For factory use only
OD	Int Temp $\overline{\text { THERM Limit }}$	$37 \mathrm{~h}\left(55^{\circ} \mathrm{C}\right)$	High limit for THERM interrupt output based on internal temperature measurement
OE	TDM 1 T $\overline{\text { He}} \overline{\mathrm{R}} \bar{M}$ Limit	$50 \mathrm{~h}\left(80^{\circ} \mathrm{C}\right)$	High limit for THERM interrupt output based on remote channel 1 (D1) temperature measurement
OF	TDM $2 \overline{\text { THE }} \overline{\mathrm{E}} \bar{M}$ Limit	$50 \mathrm{~h}\left(80^{\circ} \mathrm{C}\right)$	High limit for THERM interrupt output based on remote channel 2 (D2) temperature measurement
10	Int Temp $\mathrm{T}_{\text {min }}$	$28 \mathrm{~h}\left(40^{\circ} \mathrm{C}\right)$	$\mathrm{T}_{\text {min }}$ value for automatic fan speed control based on internal temperature measurement
11	TDM $1 \mathrm{~T}_{\text {MIN }}$	40h ($64{ }^{\circ} \mathrm{C}$)	$\mathrm{T}_{\text {MIN }}$ value for automatic fan speed control based on remote channel 1 (D1) temperature measurement
12	TDM $2 \mathrm{~T}_{\text {MIN }}$	40h ($64^{\circ} \mathrm{C}$)	$\mathrm{T}_{\text {MIN }}$ value for automatic fan speed control based on remote channel 2 (D2) temperature measurement
13	EEPROM Register 3	00h	Configures EEPROM for read/write/erase etc.
14	T est Register 1	00h	M anufacturer's Test Register

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{c}\text { Hex } \\
\text { Address }\end{array} & \text { Name } & \begin{array}{c}\text { Power on Value } \\
\text { (Hex or Binary Bit 7-0) }\end{array}
$$ \& Description

\hline 15 \& Test Register 2 \& 00 \mathrm{~h} \& For manufacturer's use only

\hline 16 \& M anufacturer's ID \& 41 \mathrm{~h} \& Contains manufacturer's ID code

\hline 17 \& Revision \& 4 \times \mathrm{h} \& Contains code for major and minor revisions\end{array}\right]\)| Interrupt Mask register for temperature and supply |
| :--- |
| voltage faults |

ADM1026

Hex Address	Name	Power on Value (Hex or Binary Bit 7-0)	Description
35	$\mathrm{A}_{\text {IN } 5}$ Value	00h	M easured value of $A_{\text {IN5 }}$
36	$\mathrm{A}_{\text {IN } 6}$ Value	00h	M easured value of $A_{\text {IN6 }}$
37	$A_{\text {IN } 7}$ Value	00h	M easured value of $A_{\text {IN } 7}$
38	FAN0 Value	00h	M easured speed of F an 0
39	FAN 1 Value	00h	M easured speed of F an 1
3A	FAN 2 Value	00h	M easured speed of F an 2
3B	FAN 3 Value	00h	M easured speed of F an 3
3 C	FAN 4 Value	00h	M easured speed of F an 4
3D	FAN 5 Value	00h	M easured speed of F an 5
3E	FAN 6 Value	00h	M easured speed of F an 6
3 F	FAN 7 Value	00h	M easured speed of Fan 7
40	TDM1 High Limit	$64 \mathrm{~h}\left(100^{\circ} \mathrm{C}\right)$	High limit for remote temperature channel 1 (D1) measurement
41	TDM 2/AIN 9 High Limit	$64 \mathrm{~h}\left(100^{\circ} \mathrm{C}\right)$	High limit for remote temperature channel 2 (D2) or AIN 9 measurement
42	3.3V ST BY High Limit	F F h	High limit for digital $\mathrm{V}_{\text {CC }}$ measurement
43	3.3VMAIN High Limit	F F h	High limit for analog V_{Cc} measurement
44	+5V High Limit	F F h	High limit for +5 V supply measurement
45	$\mathrm{V}_{\text {CCP }}$ High Limit	F F h	High limit for processor core voltage measurement
46	+12V High Limit	F F h	High limit for +12 V supply measurement
47	-12V High Limit	F F h	High limit for -12 V supply measurement
48	TDM 1 Low Limit	80h	Low limit for remote temperature channel 1 (D1) measurement
49	TDM 2/A ${ }_{\text {IN9 }}$ Low Limit	80h	Low limit for remote temperature channel 2 (D2) or AIN 9 measurement
4A	3.3VSTBY Low Limit	00h	Low limit for digital $\mathrm{V}_{\text {CC }}$ measurement
4B	3.3VMAIN Low Limit	00h	Low limit for analog $\mathrm{V}_{\text {Cc }}$ measurement
4 C	+5V Low Limit	00h	Low limit for +5V supply
4D	$\mathrm{V}_{\text {CCP }}$ Low Limit	00h	Low limit for processor core voltage measurement
4E	+12V Low Limit	00h	Low limit for +12 V supply measurement
4F	-12V Low Limit	00h	Low limit for -12 V supply measurement
50	AINO High Limit	F F h	High limit for $\mathrm{A}_{\text {INO }}$ measurement
51	$A_{\text {IN } 1}$ High Limit	F F h	High limit for $\mathrm{A}_{\text {IN } 1}$ measurement
52	$A_{\text {IN } 2}$ High Limit	F F h	High limit for $\mathrm{A}_{\text {IN } 2}$ measurement
53	$A_{\text {IN3 }}$ High Limit	F F h	High limit for $\mathrm{A}_{\text {IN } 3}$ measurement

Hex Address	Name	Power on Value (Hex or Binary Bit 7-0)	Description
54	$\mathrm{A}_{\text {IN } 4} \mathrm{High}$ Limit	F F h	High limit for $\mathrm{A}_{\text {IN } 4}$ measurement
55	$\mathrm{A}_{\text {IN } 5} \mathrm{High}$ Limit	F F h	High limit for $\mathrm{A}_{\text {IN5 }}$ measurement
56	$\mathrm{A}_{\text {IN } 6}$ High Limit	F F h	High limit for $\mathrm{A}_{\text {IN6 }}$ measurement
57	$\mathrm{A}_{\text {IN } 7}$ High Limit	F F h	High limit for $\mathrm{A}_{\text {IN } 7}$ measurement
58	$\mathrm{A}_{\text {IN } 0}$ Low Limit	00h	Low limit for $\mathrm{A}_{\text {IN } 0}$ measurement
59	$A_{\text {IN } 1}$ Low Limit	00h	Low limit for $\mathrm{A}_{\text {IN } 1}$ measurement
5A	$\mathrm{A}_{\text {IN } 2}$ Low Limit	00h	Low limit for $\mathrm{A}_{\text {IN2 }}$ measurement
5B	$A_{\text {IN3 }}$ Low Limit	00h	Low limit for $\mathrm{A}_{\text {IN3 }}$ measurement
5 C	$\mathrm{A}_{\text {IN } 4}$ Low Limit	00h	Low limit for $\mathrm{A}_{\text {IN } 4}$ measurement
5D	$\mathrm{A}_{\text {IN5 }}$ Low Limit	00h	Low limit for $\mathrm{A}_{\text {IN } 5}$ measurement
5 E	A $_{\text {IN6 }}$ Low Limit	00h	Low limit for $A_{\text {IN } 6}$ measurement
5 F	$A_{\text {IN } 7}$ Low Limit	00h	Low limit for $\mathrm{A}_{\text {IN } 7}$ measurement
60	FANO High Limit	F F h	High limit for Fan 0 speed measurement (no low limit)
61	FAN 1 High Limit	FFh	High limit for Fan 1 speed measurement (no low limit)
62	FAN2 High Limit	F F h	High limit for Fan 2 speed measurement (no low limit)
63	FAN3 High Limit	FFh	High limit for Fan 3 speed measurement (no low limit)
64	FAN 4 High Limit	F F h	High limit for Fan 4 speed measurement (no low limit)
65	FAN 5 High Limit	F F h	High limit for Fan 5 speed measurement (no low limit)
66	FAN 6 High Limit	F F h	High limit for Fan 6 speed measurement (no low limit)
67	FAN 7 High Limit	F F h	High limit for Fan 7 speed measurement (no low limit)
68	Int. Temp. High Limit	50h ($80^{\circ} \mathrm{C}$)	High limit for local temperature measurement
69	Int. Temp. Low Limit	80h	Low limit for local temperature measurement
6A	$\mathrm{V}_{\text {BAT }}$ High Limit	F F h	High limit for $\mathrm{V}_{\text {BAT }}$ measurement
6B	$\mathrm{V}_{\text {BAT }}$ Low Limit	00h	Low limit for $\mathrm{V}_{\text {BAT }}$ measurement
6C	$\mathrm{A}_{\text {IN } 8}$ High Limit	FFh	High limit for $\mathrm{A}_{\text {IN8 }}$ measurement
6D	A $_{\text {IN8 }}$ Low Limit	00h	Low limit for $\mathrm{A}_{\text {IN8 }}$ measurement
6 E	Ext1 Temp Offset	00h	Offset register for remote temperature channel 1
6 F	Ext2 Temp Offset	00h	Offset register for remote temperature channel 2

ADM1026

DETAILED REGISTER DESCRIPTIONS

TABLE 7. REGISTER OOH, CONFIGURATION REGISTER 1(POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
0	M onitor $=0$	R/W	When this bit is set the ADM1026 monitors all voltage, temperature and fan channels in a round robin manner.
1	Int Enable $=0$	R/W	When this bit is set the $\overline{\text { INT }}$ output pin is enabled.
2	Int Clear $=0$	R/W	Setting this bit will clear an interrupt from the voltage, temperature or fan speed channels. Because GPIO interrupts are level triggered, this bit will have no effect on interrupts originating from GPIO channels. This bit is cleared by writing a 0 to it. If in monitoring mode voltages, temperatures and fan speeds will continue to be monitored after writing to this bit to clear an interrupt, so an interrupt may be set again on the next monitoring cycle.
3	Enable Voltage / Ext2 = 0	R/W	When this bit is 1 the ADM 1026 monitors voltage (AIN 8 and AIN9) on pins 28 and 27 respectively. When this bit is 0 , the ADM 1026 monitors a second thermal diode temperature channel, D2, on these pins. If the second thermal diode channel is not being used, it is recommended that bit be set to 1 .
4	Enable THERM $=0$	R/W	When this bit is 1 the THERM pin (Pin 42) will be asserted (go low) if any of the THERM limits are exceeded. If THERM is pulled low as an input, the DAC and PWM outputs are forced to full-scale until $\overline{\text { THERM }}$ is taken high.
5	Enable DAC AFC $=0$	R/W	When this bit is 1 the DAC output is enabled for automatic fan speed control (AFC) based on temperature. When this bit is 0 the DAC Output reflects the value in Reg 04h, DAC Control Register.
6	Enable PWM AFC $=0$	R/W	When this bit is 1 the PWM output is enabled for automatic fan speed control (AFC) based on temperature. When this bit is 0 the PWM Output reflects the value in Reg 05h, PWM Control Register.
7	Software Reset $=0$	R/W	Writing a 1 to this bit restores all registers to the power on defaults. This bit is cleared by writing a 0 to it. For more info, see S/W Reset section.

TABLE 8. REGISTER 01H, CONFIGURATION REGISTER 2 (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
0	Enable GPIOO / Fan0 $=0$	R/W	When this bit is 1 , pin 3 is enabled as a General Purpose 10 pin (GPIOO), otherwise it is a F an T ach measurement input (F an 0).
1	Enable GPIO1 / Fan1 $=0$	R/W	When this bit is 1 , pin 4 is enabled as a General Purpose IO pin (GPIO1), otherwise it is a Fan Tach measurement input (Fan 1).
2	Enable GPIO2 / Fan2 $=0$	R/W	When this bit is 1 , pin 5 is enabled as a General Purpose 10 pin (GPIO2), otherwise it is a Fan Tach measurement input (Fan 2).
3	Enable GPIO3 / Fan3 $=0$	R/W	When this bit is 1 , pin 6 is enabled as a General Purpose 10 pin (GPIO3), otherwise it is a Fan Tach measurement input (F an 3).
4	Enable GPIO4 / Fan4 = 0	R/W	When this bit is 1 , pin 9 is enabled as a General Purpose 10 pin (GPIO4), otherwise it is a F an T ach measurement input (F an 4).
5	Enable GPIO5 / Fan5 = 0	R/W	When this bit is 1 , pin 10 is enabled as a General Purpose 10 pin (GPIO5), otherwise it is a Fan Tach measurement input (Fan 5).
6	Enable GPIO6 / Fan6 = 0	R/W	When this bit is 1 , pin 11 is enabled as a General Purpose 10 pin (GPIO6), otherwise it is a F an T ach measurement input (F an 6).
7	Enable GPIO7 / Fan7 = 0	R/W	When this bit is 1 , pin 12 is enabled as a General Purpose 10 pin (GPIO7), otherwise it is a Fan Tach measurement input (Fan 7).

TABLE 9. REGISTER O2H, FANS O TO 3 FAN DIVISOR REGISTER (POWER-ON DEFAULT 55H)

Bit	Name	R/W	Description
1-0	Fan 0 Divisor	R/W	Sets the oscillator prescaler division ratio for Fan 0 speed measurement. The division ratios, oscillator frequencies and typical fan speeds (based on 2 tach pulses per rev.) are as follows:
3-2	Fan 1 Divisor	R/W	Same as for F an 0
5-4	Fan 2 Divisor	R/W	Same as for Fan 0
7-6	Fan 3 Divisor	R/W	Same as for F an 0

TABLE 10. REGISTER 03H, FANS 4 TO 7 FAN DIVISOR REGISTER (POWER-ON DEFAULT 55H)

Bit	Name	R/W	Description
1-0	Fan 4 Divisor	R/W	Sets the oscillator prescaler division ratio for Fan 4 speed measurement. The division ratios, oscillator frequencies and typical fan speeds (based on 2 tach pulses per rev.) are as follows:
3-2	Fan 5 Divisor	R/W	Same as for F an 4
5-4	Fan 6 Divisor	R/W	Same as for F an 4
7-6	Fan 7 Divisor	R/W	Same as for F an 4

TABLE 11 REGISTER 04H, DAC CONTROL REGISTER (POWER-ON DEFAULT FFH)

Bit	Name	R/W	Description
$7-0$	DAC Control	R/W	This register contains the value to which the Fan Speed DAC is programmed in normal mode, or the 4 M SBs contain the M in Fan Speed in Auto Fan Speed control mode.

TABLE 12. REGISTER 05H, PWM CONTROL REGISTER (POWER-ON DEFAULT FFH)

Bit	Name	R/W	Description
7-4	PWM Control	R/W	This register contains the value to which the PWM Fan Speed is programmed in normal mode, or the 4 MSBs contain the Min Fan Speed in Auto Fan Speed control mode. $0000=0 \%$ Duty Cycle 0001 = 7\% Duty Cycle $0101=33 \%$ Duty Cycle $0110=40 \%$ Duty Cycle $0111=47 \%$ Duty Cycle 1110 = 93\% Duty Cycle 1111 = 100\% Duty Cycle
3-0	U nused	R	U ndefined.

ADM1026

TABLE 13. REGISTER 06H, EEPROM REGISTER 1 (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	Factory Use	R	For factory use only. Do NOT write to this register.

TABLE 14. REGISTER 07H, CONFIGURATION REGISTER 3 (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
0	Enable GPIO16/ THERM $=0$	R/W	When this bit is 1, pin 42 is enabled as a General Purpose IO pin (GPIO16), otherwise it is the THERM output.
1	CI Clear =0	R/W	Writing a 1 to this bit will clear the CI latch. This bit is cleared by writing a 0 to it.
2	VREF Select $=0$	R/W	When this bit is 0, VREF (pin 24) outputs 1.82V, otherwise it outputs 2.5V.
$5-3$	Unused	R	Undefined, will read back 0.
6	GPIO16 Direction	R/W	When this bit is $0, G P I O 16$ is configured as an input, otherwise, it is an output.
7	GPIO16 Polarity	R/W	When this bit is $0, G P I O 16$ is active low, otherwise it is active high.

TABLE 15. REGISTER 08H, GPIO CONFIGURATION REGISTER 1 (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
0	GPIO0 Direction	R/W	When this bit is 0, GPIOO is configured as an input, otherwise, it is an output.
1	GPIO0 Polarity	R/W	When this bit is 0, GPIO0 is active low, otherwise it is active high.
2	GPIO1 Direction	R/W	When this bit is 0, GPIO1 is configured as an input, otherwise, it is an output.
3	GPIO1 Polarity	R/W	When this bit is 0, GPIO1 is active low, otherwise it is active high.
4	GPIO2 Direction	R/W	When this bit is 0, GPIO2 is configured as an input, otherwise, it is an output.
5	GPIO2 Polarity	R/W	When this bit is 0, GPIO2 is active low, otherwise it is active high.
6	GPIO3 Direction	R/W	When this bit is $0, G P I O 3$ is configured as an input, otherwise, it is an output.
7	GPIO3 Polarity	R/W	When this bit is 0, GPIO3 is active low, otherwise it is active high.

TABLE 16. REGISTER 09H, GPIO CONFIGURATION REGISTER 2 (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
0	GPIO4 Direction	R/W	When this bit is 0, GPIO4 is configured as an input, otherwise, it is an output.
1	GPIO4 Polarity	R/W	When this bit is 0, GPIO4 is active low, otherwise it is active high.
2	GPIO5 Direction	R/W	When this bit is 0, GPIO5 is configured as an input, otherwise, it is an output.
3	GPIO5 Polarity	R/W	When this bit is 0, GPIO5 is active low, otherwise it is active high.
4	GPIO6 Direction	R/W	When this bit is 0, GPIO6 is configured as an input, otherwise, it is an output.
5	GPIO6 Polarity	R/W	When this bit is 0, GPIO6 is active low, otherwise it is active high.
6	GPIO7 Direction	R/W	When this bit is $0, G P I O 7 ~ i s ~ c o n f i g u r e d ~ a s ~ a n ~ i n p u t, ~ o t h e r w i s e, ~ i t ~ i s ~ a n ~$ output.
7	GPIO7 Polarity	R/W	When this bit is 0, GPIO7 is active low, otherwise it is active high.

TABLE 17. REGISTER OAH, GPIO CONFIGURATION REGISTER 3 (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
0	GPIO8 D irection	R/W	When this bit is 0, GPIO8 is configured as an input, otherwise, it is an output.
1	GPIO8 Polarity	R/W	When this bit is 0, GPIO8 is active low, otherwise it is active high.
2	GPIO9 D irection	R/W	When this bit is 0, GPIO9 is configured as an input, otherwise, it is an output.
3	GPIO9 Polarity	R/W	When this bit is 0, GPIO9 is active low, otherwise it is active high.
4	GPIO10 Direction	R/W	When this bit is 0, GPIO10 is configured as an input, otherwise, it is an output.
5	GPIO10 Polarity	R/W	When this bit is 0, GPIO10 is active low, otherwise it is active high.
6	GPIO11 Direction	R/W	When this bit is 0, GPIO11 is configured as an input, otherwise, it is an output.
7	GPIO11 Polarity	R/W	When this bit is 0, GPIO11 is active low, otherwise it is active high.

TABLE 18. REGISTER OBH, GPIO CONFIGURATION REGISTER 4 (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
0	GPIO12 D irection	R/W	When this bit is 0, GPIO12 is configured as an input, otherwise, it is an output.
1	GPIO12 Polarity	R/W	When this bit is 0, GPIO12 is active low, otherwise it is active high.
2	GPIO13 D irection	R/W	When this bit is 0, GPIO13 is configured as an input, otherwise, it is an output.
3	GPIO13 Polarity	R/W	When this bit is 0, GPIO13 is active low, otherwise it is active high.
4	GPIO14 D irection	R/W	When this bit is 0, GPIO14 is configured as an input, otherwise, it is an output.
5	GPIO14 Polarity	R/W	When this bit is 0, GPIO14 is active low, otherwise it is active high.
6	GPIO15 D irection	R/W	When this bit is $0, G P I O 15$ output.
7	GPIO15 configured as an input, otherwise, it is an		

TABLE 19. REGISTER OCH, EEPROM REGISTER 2 (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	Factory U se	R	For factory use only. D o NOT write to this register.

TABLE 20. REGISTER ODH, INTERNAL TEMPERATURE THERM LIMIT (POWER-ON DEFAULT 37H (55 $\left.{ }^{\circ} \mathrm{C}\right)$)

Bit	Name	R/W	Description
$7-0$	Int Temp THERM Limit	R/W	This register contains the THERM limit for the Internal Temperature Channel. Exceeding this limit will cause the THERM output pin to be asserted.

TABLE 21. REGISTER OEH, TDM1 THERM LIMIT (POWER-ON DEFAULT 5OH ($80^{\circ} \mathrm{C}$))

Bit	Name	R/W	Description
$7-0$	TDM 1 THBE $\bar{R} \bar{M}$ Limit	R/W	This register contains the $\overline{\text { THERM }}$ Channel. Exceeding this limit will cause the the TDM 1 Temperature asserted.

ADM1026

TABLE 22. REGISTER OFH, TDM2 THERM LIMIT (POWER-ON DEFAULT 50H ($80^{\circ} \mathrm{C}$))

Bit	Name	R/W	Description
$7-0$	TDM 2 THE $\bar{E} \bar{R} \bar{M}$ Limit	R/W	This register contains the $\overline{\text { THERM }}$ Channel. Exceeding this limit will cause the the TDM 2 Temperature asserted.

TABLE 23. REGISTER 10H, INTERNAL TEMPERATURE TMIN (POWER-ON DEFAULT 28H (40²))

Bit	Name	R/W	Description
$7-0$	Internal Temp TMIN	R/W	This register contains the TM IN value for automatic fan speed control based on the Internal Temperature C hannel.

TABLE 24. REGISTER 11H, TDM1 TEMPERATURE TMIN (POWER-ON DEFAULT $40 \mathrm{H}\left(64^{\circ} \mathrm{C}\right)$)

Bit	Name	R/W	Description
$7-0$	TDM1 Temp TM IN	R/W	This register contains the TM IN value for automatic fan speed control based on the TDM 1 Temperature Channel.

TABLE 25. REGISTER 12H, TDM2 TEMPERATURE TMIN (POWER-ON DEFAULT 40H ($64^{\circ} \mathrm{C}$))

Bit	Name	R/W	Description
$7-0$	TDM2 Temp TM IN	R/W	This register contains the TM IN value for automatic fan speed control based on the TDM 2 Temperature Channel.

TABLE 19. REGISTER 13H, EEPROM REGISTER 3 (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
0	Read	R/W	Setting this bit puts the EEPROM into Read mode.
1	Write	R/W	Setting this bit puts the EEPROM in Write (program) mode.
2	Erase	R/W	Setting this bit puts the EEPROM into Erase mode.
3	Write Protect	Read/W rite Once	Setting this bit protects the EEPROM against accidental writing or erasure. This bit is write-once and can only be cleared by power-on reset.
4	Test M ode bit 0	R/W	Test mode bit. For factory use only.
5	Test M ode bit 1	R/W	Test mode bit. For factory use only.
6	Test M ode bit 2	R/W	Test mode bit. For factory use only.
7	Clock Extend	R/W	Setting this bit enables SM Bus clock extension. The ADM 1026 can pull SCL low to extend the clock pulse if it cannot acccept any more data. It is recommended to set this bit to 1 to extend the clock pulse during repeated EEPROM write or block write operations.

TABLE 27. REGISTER 14H, MANUFACTURER'S TEST REGISTER 1 (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	M anufacturer's Test 1	R/W	This register is used by the manufacturer for test purposes. It should not be read from or written to in normal operation.

TABLE 28. REGISTER 15H, MANUFACTURER'S TEST REGISTER 2 (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	M anufacturer's Test 2	R/W	This register is used by the manufacturer for test purposes. It should not be read from or written to in normal operation.

TABLE 29. REGISTER 16H, MANUFACTURER'S ID (POWER-ON DEFAULT 41H)

Bit	Name	R/W	Description
$7-0$	M anufacturer's ID C ode	R	This register contains the manufacturer's ID code.

TABLE 30. REGISTER 17H, REVISION REGISTER (POWER-ON DEFAULT 4xH)

Bit	Name	R/W	Description
$3-0$	M inor Revision Code	R	This nibble contains the manufacturer's code for minor revisions to the device. Rev $1=0 \mathrm{~h}, \mathrm{Rev} 2=1 \mathrm{~h}$, etc.
$7-4$	M ajor Revision Code	R	This nibble denotes the generation of the device. For the ADM 1026 this nibble will read 4 h.

TABLE 31. REGISTER 18H, MASK REGISTER 1 (POWER-ON DEFAULT 00H)

Bit	Name	R/W	Description
0	Ext1 Temp M ask $=0$	R/W	When this bit is set, interrupts generated on the Ext1 Temp channel are masked out.
1	Ext 2 Temp $/_{\text {IN } 9} M$ ask $=0$	R/W	When this bit is set, interrupts generated on the Ext2 / $\mathrm{A}_{\text {IN } 9}$ channel are masked out.
2	3.3 VST BY M ask $=0$	R/W	When this bit is set, interrupts generated on the 3.3VST BY Voltage channel are masked out.
3	$3.3 \mathrm{VM} \mathrm{AIN} \mathrm{M} \mathrm{ask}=0$	R/W	When this bit is set, interrupts generated on the 3.3VMAIN Voltage channel are masked out.
4	+5 V M ask $=0$	R/W	When this bit is set, interrupts generated on the +5 V Voltage channel are masked out.
5	$\mathrm{V}_{\text {CCP }} \mathrm{M}$ ask $=0$	R/W	When this bit is set, interrupts generated on the $\mathrm{V}_{\mathrm{CCP}}$ Voltage channel are masked out.
6	+12 V M ask $=0$	R/W	When this bit is set, interrupts generated on the +12 V Voltage channel are masked out.
7	-12V M ask $=0$	R/W	When this bit is set, interrupts generated on the -12 V Voltage channel are masked out.

TABLE 32. REGISTER 19H, MASK REGISTER 2 (POWER-ON DEFAULT 00H)

Bit	Name	R/W	Description
0	$\mathrm{A}_{\text {IN } 0} \mathrm{M}$ ask $=0$	R/W	When this bit is set, interrupts generated on the $\mathrm{A}_{\text {IN } 0}$ Voltage channel are masked out.
1	$\mathrm{A}_{\text {IN } 1} \mathrm{M}$ ask $=0$	R/W	When this bit is set, interrupts generated on the $\mathrm{A}_{\mathrm{IN}_{1}}$ Voltage channel are masked out.
2	$\mathrm{A}_{\text {IN } 2} \mathrm{M}$ ask $=0$	R/W	When this bit is set, interrupts generated on the $A_{I N 2}$ Voltage channel are masked out.
3	$\mathrm{A}_{\text {IN } 3} \mathrm{M}$ ask $=0$	R/W	When this bit is set, interrupts generated on the $\mathrm{A}_{\text {IN3 }}$ Voltage channel are masked out.
4	$\mathrm{A}_{\text {IN } 4} \mathrm{M}$ ask $=0$	R/W	When this bit is set, interrupts generated on the $A_{\text {IN } 4}$ Voltage channel are masked out.
5	$\mathrm{A}_{\text {IN } 5} \mathrm{M}$ ask $=0$	R/W	When this bit is set, interrupts generated on the $\mathrm{A}_{\text {IN } 5}$ Voltage channel are masked out.
6	$\mathrm{A}_{\text {IN } 6} \mathrm{M}$ ask $=0$	R/W	When this bit is set, interrupts generated on the $\mathrm{A}_{\text {IN } 6}$ Voltage channel are masked out.
7	$\mathrm{A}_{\text {IN } 7} \mathrm{M}$ ask $=0$	R/W	When this bit is set, interrupts generated on the $\mathrm{A}_{\text {IN } 7}$ Voltage channel are masked out.

REV. PrP

ADM1026

TABLE 33. REGISTER 1AH, MASK REGISTER 3 (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
0	FAN0 M ask $=0$	R/W	When this bit is set, interrupts generated on the FAN 0 Tach channel are masked out.
1	FAN1 M ask $=0$	R/W	When this bit is set, interrupts generated on the FAN 1 Tach channel are masked out.
2	FAN2 M ask $=0$	R/W	When this bit is set, interrupts generated on the FAN 2 Tach channel are masked out.
3	FAN3 M ask = 0	R/W	When this bit is set, interrupts generated on the FAN 3 Tach channel are masked out.
4	FAN4 M ask $=0$	R/W	When this bit is set, interrupts generated on the FAN 4 Tach channel are masked out.
5	FAN5 M ask $=0$	R/W	When this bit is set, interrupts generated on the FAN5 Tach channel are masked out.
6	FAN6 M ask $=0$	R/W	When this bit is set, interrupts generated on the FAN 6 Tach channel are masked out.
7	FAN7 M ask $=0$	R/W	When this bit is set, interrupts generated on the FAN 7 Tach channel are masked out.

TABLE 34. REGISTER 1BH, MASK REGISTER 4 (POWER-ON DEFAULT 00H)

Bit	Name	R/W	Description
0	Int Temp M ask $=0$	R/W	When this bit is set, interrupts generated on the Int Temp channel are masked out.
1	$\mathrm{V}_{\text {BAT }} \mathrm{M}$ ask $=0$	R/W	When this bit is set, interrupts generated on the $\mathrm{V}_{\text {BAT }}$ Voltage channel are masked out.
2	$\mathrm{A}_{\text {IN } 8} \mathrm{M}$ ask $=0$	R/W	When this bit is set, interrupts generated on the $\mathrm{A}_{\text {IN8 }}$ Voltage channel are masked out.
3	THERM M ask $=0$	R/W	When this bit is set, interrupts generated from THERM events are masked out.
4	AFC M ask $=0$	R/W	When this bit is set, interrupts generated from Automatic Fan Control events are masked out.
5	U nused	R	U nused. Will read back 0.
6	CI M ask $=0$	R/W	When this bit is set, interrupts generated by the Chassis Intrusion input are masked out.
7	GPIO16 M ask $=0$	R/W	When this bit is set, interrupts generated on the GPIO16 channel are masked out.

TABLE 35. REGISTER 1CH, MASK REGISTER 5 (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
0	GPIO0 M ask $=0$	R/W	When this bit is set, interrupts generated on the GPIO0 channel are masked out.
1	GPIO1 M ask $=0$	R/W	When this bit is set, interrupts generated on the GPIO1 channel are masked out.
2	GPIO2 M ask $=0$	R/W	When this bit is set, interrupts generated on the GPIO2 channel are masked out.
3	GPIO3 M ask $=0$	R/W	When this bit is set, interrupts generated on the GPIO3 channel are masked out.
4	GPIO4 M ask $=0$	R/W	When this bit is set, interrupts generated on the GPIO4 channel are masked out.
5	GPIO5 M ask $=0$	R/W	When this bit is set, interrupts generated on the GPIO5 channel are masked out.
6	GPIO6 M ask $=0$	R/W	When this bit is set, interrupts generated on the GPIO6 channel are masked out.
7	GPIO7 M ask $=0$	R/W	When this bit is set, interrupts generated on the GPIO7 channel are masked out.

TABLE 36. REGISTER 1DH, MASK REGISTER 6 (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
0	GPIO8 M ask $=0$	R/W	When this bit is set, interrupts generated on the GPIO8 channel are masked out.
1	GPIO9 M ask $=0$	R/W	When this bit is set, interrupts generated on the GPIO9 channel are masked out.
2	GPIO10 M ask $=0$	R/W	When this bit is set, interrupts generated on the GPIO10 channel are masked out.
3	GPIO11M ask $=0$	R/W	When this bit is set, interrupts generated on the GPIO11 channel are masked out.
4	GPIO12 M ask $=0$	R/W	When this bit is set, interrupts generated on the GPIO12 channel are masked out.
5	GPIO13 M ask $=0$	R/W	When this bit is set, interrupts generated on the GPIO13 channel are masked out.
6	GPIO14 M ask $=0$	R/W	When this bit is set, interrupts generated on the GPIO14 channel are masked out.
7	GPIO15 M ask $=0$	R/W	When this bit is set, interrupts generated on the GPIO15 channel are masked out.

ADM1026

TABLE 37. REGISTER 1EH, INT TEMP OFFSET (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
7-0	Int Temp Offset	R/W	This register contains the Offset Value for the Internal Temperature Channel. A 2's complement number can be written to this register which is then 'added' to the measured result before it is stored or compared to limits. In this way a sort of one-point calibration can be done whereby the whole transfer function of the channel can be moved up or down. From a software point of view this may be a very simple method to vary the characteristics of the measurement channel if the thermal characteristics change, for whatever reason, for instance from one chassis to another, if the measurement point is moved, if a plug-in card is inserted or removed, etc.

TABLE 38. REGISTER 1FH, INT TEMP MEASURED VALUE (POWER-ON DEFAULT 00H)

Bit	Name	R/W	Description
$7-0$	Int Temp Value	R	This register contains the measured value of the Internal Temperature C hannel.

TABLE 39. REGISTER 20H, STATUS REGISTER 1 (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
0	Ext1 Temp Status $=0$	R	1, if Ext1 Value is above the High Limit or below the Low Limit on the previous conversion cycle, 0 otherwise. This bit is set (once only) if a THERM mode is engaged as a result of Extl temp readings exceeding the Ext1 THERM limit. This bit is also set (once only) if THERM mode is disengaged as a result of Ext1 temp readings going $5^{\circ} \mathrm{C}$ below Ext1 $\bar{T} \bar{H} \bar{R} \bar{M}$ limit.
1	Ext 2 Temp $/ \mathrm{A}_{\text {IN } 9}$ Status $=0$	R	1, if Ext 2 Value (or $\mathrm{A}_{\text {IN } 9}$ if in voltage measurement mode) is above the High Limit or below the Low Limit on the previous conversion cycle, 0 otherwise. This bit is set (once only) if a THERM mode is engaged as a result of Ext2 temp readings exceeding the Ext2 THERM limit. This bit is also set (once only) if THERM mode is disengaged as a result of Ext2 temp readings going $5^{\circ} \mathrm{C}$ below Ext2 THERM limit.
2	3.3VSTBY Status $=0$	R	1, if 3.3VST BY Value is above the High Limit or below the Low Limit on the previous conversion cycle, 0 otherwise.
3	3.3VM AIN Status $=0$	R	1, if 3.3 VM AIN Value is above the High Limit or below the Low Limit on the previous conversion cycle, 0 otherwise.
4	+5 V Status $=0$	R	1, if +5 V Value is above the H igh Limit or below the Low Limit on the previous conversion cycle, 0 otherwise.
5	$\mathrm{V}_{\text {CCP }}$ Status $=0$	R	1, if $\mathrm{V}_{\text {CCP }}$ Value is above the High Limit or below the Low Limit on the previous conversion cycle, 0 otherwise.
6	+12 V Status $=0$	R	1, if +12 V Value is above the High Limit or below the Low Limit on the previous conversion cycle, 0 otherwise.
7	-12 V Status $=0$	R	1, if -12 V Value is above the High Limit or below the Low Limit on the previous conversion cycle, 0 otherwise.

TABLE 40. REGISTER 21H, STATUS REGISTER 2 (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
0	$\mathrm{A}_{\text {IN } 0}$ Status $=0$	R	1, if $A_{\text {In }}$ Value is above the High Limit or below the Low Limit on the previous conversion cycle, 0 otherwise.
1	$\mathrm{A}_{\text {IN } 1}$ Status $=0$	R	1, if $A_{\text {IN } 1}$ Value is above the High Limit or below the Low Limit on the previous conversion cycle, 0 otherwise.
2	$\mathrm{A}_{\text {IN } 2}$ Status $=0$	R	1, if $A_{\text {IN } 2}$ Value is above the High Limit or below the Low Limit on the previous conversion cycle, 0 otherwise.
3	$\mathrm{A}_{\text {IN } 3}$ Status $=0$	R	1, if $A_{\text {IN } 3}$ Value is above the High Limit or below the Low Limit on the previous conversion cycle, 0 otherwise.
4	$\mathrm{A}_{\text {IN } 4}$ Status $=0$	R	1, if $A_{\text {IN4 }}$ Value is above the High Limit or below the Low Limit on the previous conversion cycle, 0 otherwise.
5	$\mathrm{A}_{\text {IN } 5}$ Status $=0$	R	1, if $A_{\text {IN } 5}$ Value is above the High Limit or below the Low Limit on the previous conversion cycle, 0 otherwise.
6	$\mathrm{A}_{\text {IN } 6}$ Status $=0$	R	1, if $A_{\text {IN } 6}$ Value is above the High Limit or below the Low Limit on the previous conversion cycle, 0 otherwise.
7	$\mathrm{A}_{\text {IN } 7}$ Status $=0$	R	1, if $A_{\text {IN } 7}$ Value is above the High Limit or below the Low Limit on the previous conversion cycle, 0 otherwise.

TABLE 41. REGISTER 22H, STATUS REGISTER 3 (POWER-ON DEFAULT 00H)

Bit	Name	R/W	Description
0	FANO Status $=0$	R	1, if FAN 0 Value is above the H igh Limit on the previous conversion cycle, 0 otherwise.
1	FAN 1 Status $=0$	R	1, if FAN 1 Value is above the High Limit on the previous conversion cycle, 0 otherwise.
2	FAN 2 Status $=0$	R	1, if FAN2 Value is above the High Limit on the previous conversion cycle, 0 otherwise.
3	FAN 3 Status $=0$	R	1, if FAN 3 Value is above the High Limit on the previous conversion cycle, 0 otherwise.
4	FAN 4 Status $=0$	R	1, if FAN4 Value is above the High Limit on the previous conversion cycle, 0 otherwise.
5	FAN 5 Status $=0$	R	1, if FAN5 Value is above the High Limit on the previous conversion cycle, 0 otherwise.
6	FAN 6 Status $=0$	R	1, if FAN 6 Value is above the High Limit on the previous conversion cycle, 0 otherwise.
7	FAN 7 Status $=0$	R	1, if FAN 7 Value is above the High Limit on the previous conversion cycle, 0 otherwise.

TABLE 42. REGISTER 23H STATUS REGISTER 4 POWER-ON DEFAULT OOH

Bit	Name	R/W	Description
0	Int Temp Status $=0$	R	1, if Int Value is above the High Limit or below the Low Limit on the previous conversion cycle, 0 otherwise. This bit is set (once only) if a THERM mode is engaged as a result of Int temp readings exceeding the Int THERM limit. This bit is also set (once only) if THERM mode is disengaged as a result of Int temp readings going $5^{\circ} \mathrm{C}$ below Int $\overline{\text { THERM }}$ limit.
1	$\mathrm{V}_{\text {BAT }}$ Status $=0$	R	1, if $\mathrm{V}_{\text {BAT }}$ Value is above the High Limit or below the Low Limit on the previous conversion cycle, 0 otherwise.
2	$\mathrm{A}_{\text {IN } 8}$ Status $=0$	R	1, if $A_{\text {IN } 8}$ Value is above the High Limit or below the Low Limit on the previous conversion cycle, 0 otherwise.
3	THERM Status $=0$	R	This bit is set (once only) if a THERM mode is engaged as a result of temperature readings exceeding the THERM limits on any channel. This bit is also set (once only) if THERM mode is disengaged as a result of temperature readings going $5^{\circ} \mathrm{C}$ below THERM limits on any channel.
4	AFC Status $=0$	R	This bit is set (once only) if the fan turns on when in automatic fan speed control (AFC) mode as a result of a temperature reading exceeding TMIN on any channel. This bit is also set (once only) if the fan turns off when in automatic fan speed control mode.
5	U nused	R	Unused. Will read back 0 .
6	Cl Status $=0$	R	This bit latches a Chassis Intrusion event.
7	GPIO16 Status $=0$	R R / W	When GPIO16 is configured as an input, this bit is set when GPIO16 is asserted. ("asserted" may be active-high or active-low depending on setting in GPIO Configuration Register). When GPIO16 is configured as an output, setting this bit asserts GPIO16. ("asserted" may be active-high or active-low depending on setting in GPIO Configuration Register).

TABLE 43. REGISTER 24H, STATUS REGISTER 5 (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
0	GPIOO Status $=0$	R R / W *	When GPIOO is configured as an input, this bit is set when GPIOO is asserted. ("asserted" may be active-high or active-low depending on setting of bit 1 in GPIO Configuration Register 1). When GPIOO is configured as an output, setting this bit asserts GPIOO. ("asserted" may be active-high or active-low depending on setting of bit 1 in GPIO Configuration Register 1).
1	GPIO1 Status $=0$	R R/W *	When GPIO1 is configured as an input, this bit is set when GPIO1 is asserted. ("asserted" may be active-high or active-low depending on setting of bit 3 in GPIO Configuration Register 1). When GPIO1 is configured as an output, setting this bit asserts GPIO1. ("asserted" may be active-high or active-low depending on setting of bit 3 in GPIO Configuration Register 1).
2	GPIO2 Status $=0$	R R/W *	When GPIO2 is configured as an input, this bit is set when GPIO2 is asserted. ("asserted" may be active-high or active-low depending on setting of bit 5 in GPIO Configuration Register 1). When GPIO2 is configured as an output, setting this bit asserts GPIO2. ("asserted" may be active-high or active-low depending on setting of bit 5 in GPIO Configuration Register 1).
3	GPIO3 Status $=0$	R R/W *	When GPIO3 is configured as an input, this bit is set when GPIO3 is asserted. ("asserted" may be active-high or active-low depending on setting of bit 7 in GPIO Configuration Register 1). When GPIO3 is configured as an output, setting this bit asserts GPIO3. ("asserted" may be active-high or active-low depending on setting of bit 7 in GPIO Configuration Register 1).
4	GPIO4 Status $=0$	R R/W *	When GPIO4 is configured as an input, this bit is set when GPIO4 is asserted. ("asserted" may be active-high or active-low depending on setting of bit 1 in GPIO Configuration Register 2). When GPIO4 is configured as an output, setting this bit asserts GPIO4. ("asserted" may be active-high or active-low depending on setting of bit 1 in GPIO Configuration Register 2).
5	GPIO5 Status $=0$	R R/W *	When GPIO5 is configured as an input, this bit is set when GPIO5 is asserted. ("asserted" may be active-high or active-low depending on setting of bit 3 in GPIO Configuration Register 2). When GPIO5 is configured as an output, setting this bit asserts GPIO5. ("asserted" may be active-high or active-low depending on setting of bit 3 in GPIO Configuration Register 2).
6	GPIO6 Status $=0$	R R / W	When GPIO6 is configured as an input, this bit is set when GPIO6 is asserted. ("asserted" may be active-high or active-low depending on setting of bit 5 in GPIO Configuration Register 2). When GPIO6 is configured as an output, setting this bit asserts GPIO6. ("asserted" may be active-high or active-low depending on setting of bit 5 in GPIO Configuration Register 2).
7	GPIO7 Status $=0$	R R/W *	When GPIO7 is configured as an input, this bit is set when GPIO7 is asserted. ("asserted" may be active-high or active-low depending on setting of bit 7 in GPIO Configuration Register 2). When GPIO7 is configured as an output, setting this bit asserts GPIO7. ("asserted" may be active-high or active-low depending on setting of bit 7 in GPIO Configuration Register 2).

*N ote: GPIO status bits can be written only when a GPIO pin is configured as output. Read-only otherwise.

ADM1026

TABLE 44. REGISTER 25H, STATUS REGISTER 6 (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
0	GPIO8 Status $=0$	R R/W*	When GPIO8 is configured as an input, this bit is set when GPIO8 is asserted. ("asserted" may be active-high or active-low depending on setting of bit 1 in GPIO Configuration Register 3). When GPIO8 is configured as an output, setting this bit asserts GPIO8. ("asserted" may be active-high or active-low depending on setting of bit 1 in GPIO Configuration Register 3).
1	GPIO9 Status $=0$	R R/W*	When GPIO9 is configured as an input, this bit is set when GPIO9 is asserted. ("asserted" may be active-high or active-low depending on setting of bit 3 in GPIO Configuration Register 3). When GPIO9 is configured as an output, setting this bit asserts GPIO9. ("asserted" may be active-high or active-low depending on setting of bit 3 in GPIO Configuration Register 3).
2	GPIO10 Status $=0$	R $\mathrm{R} / \mathrm{W}^{*}$	When GPIO10 is configured as an input, this bit is set when GPIO10 is asserted. ("asserted" may be active-high or active-low depending on setting of bit 5 in GPIO Configuration Register 3). When GPIO10 is configured as an output, setting this bit asserts GPIO10. ("asserted" may be active-high or active-low depending on setting of bit 5 in GPIO Configuration Register 3).
3	GPIO11 Status $=0$	R R/W *	When GPIO11 is configured as an input, this bit is set when GPIO11 is asserted. ("asserted" may be active-high or active-low depending on setting of bit 7 in GPIO Configuration Register 3). When GPIO11 is configured as an output, setting this bit asserts GPIO11. ("asserted" may be active-high or active-low depending on setting of bit 7 in GPIO Configuration Register 3).
4	GPIO12 Status $=0$	R R/W*	When GPIO12 is configured as an input, this bit is set when GPIO12 is asserted. ("asserted" may be active-high or active-low depending on setting of bit 1 in GPIO Configuration Register 4). When GPIO12 is configured as an output, setting this bit asserts GPIO12. ("asserted" may be active-high or active-low depending on setting of bit 1 in GPIO Configuration Register 4).
5	GPIO13 Status $=0$	R R/W *	When GPIO13 is configured as an input, this bit is set when GPIO13 is asserted. ("asserted" may be active-high or active-low depending on setting of bit 3 in GPIO Configuration Register 4). When GPIO13 is configured as an output, setting this bit asserts GPIO13. ("asserted" may be active-high or active-low depending on setting of bit 3 in GPIO Configuration Register 4).
6	GPIO14 Status $=0$	R R/W *	When GPIO14 is configured as an input, this bit is set when GPIO14 is asserted. ("asserted" may be active-high or active-low depending on setting of bit 5 in GPIO Configuration Register 4). When GPIO14 is configured as an output, setting this bit asserts GPIO14. ("asserted" may be active-high or active-low depending on setting of bit 5 in GPIO Configuration Register 4).
7	GPIO15 Status $=0$	R $R / W *$	When GPIO15 is configured as an input, this bit is set when GPIO15 is asserted. ("asserted" may be active-high or active-low depending on setting of bit 7 in GPIO Configuration Register 4). When GPIO14 is configured as an output, setting this bit asserts GPIO14. ("asserted" may be active-high or active-low depending on setting of bit 7 in GPIO Configuration Register 4).

*N ote: GPIO status bits can be written only when a GPIO pin is configured as output. Read-only otherwise.

TABLE 45. REGISTER 26H, VBAT MEASURED VALUE (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	$V_{\text {BAT }}$ Value	R	This register contains the measured value of the $V_{\text {BAT }}$ analog input channel.

TABLE 46. REGISTER 27H, AIN8 MEASURED VALUE (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	$A_{\text {IN } 8}$ Value	R	This register contains the measured value of the $A_{\text {IN } 8}$ analog input channel.

TABLE 47. REGISTER 28H, EXT1 MEASURED VALUE (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	Ext1 Value	R	This register contains the measured value of the Ext1 Temp channel.

TABLE 48. REGISTER 29H, EXT2 / AIN9 MEASURED VALUE (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	Ext2 Temp/AIN 9 Value	R	This register contains the measured value of the Ext2 Temp / AIN 9 channel depending on which one is configured.

TABLE 49. REGISTER 2AH, 3.3VSTBY MEASURED VALUE (POWER-ON DEFAULT 00H)

Bit	Name	R/W	Description
$7-0$	$3.3 V$ ST BY Value	R	This register contains the measured value of the 3.3VSTBY voltage

TABLE 50. REGISTER 2BH, 3.3VMAIN MEASURED VALUE (POWER-ON DEFAULT 00H)

Bit	Name	R/W	Description
$7-0$	3.3 VM AIN Value	R	This register contains the measured value of the 3.3VM AIN voltage

TABLE 51. REGISTER 2CH, +5V MEASURED VALUE (POWER-ON DEFAULT 00H)

Bit	Name	R/W	Description
$7-0$	+5 V Value	R	This register contains the measured value of the +5 V analog input channel

TABLE 52. REGISTER 2DH, VCCP MEASURED VALUE (POWER-ON DEFAULT 0OH)

Bit	Name	R/W	Description
$7-0$	$V_{C C P}$ Value	R	This register contains the measured value of the $V_{C C P}$ analog input channel

TABLE 53. REGISTER 2EH, +12V MEASURED VALUE (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	+12 V Value	R	This register contains the measured value of the +12 V analog input channel

TABLE 54. REGISTER 2FH, -12V MEASURED VALUE (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	-12 V V alue	R	This register contains the measured value of the -12 V analog input channel

TABLE 55. REGISTER 30H, AINO MEASURED VALUE (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	$A_{I_{N} 0}$ Value	R	This register contains the measured value of the $A_{\text {IN } 0}$ analog input channel.

ADM1026

TABLE 56. REGISTER 31H, AIN1 MEASURED VALUE (POWER-ON DEFAULT 00H)

Bit	Name	R/W	Description
$7-0$	$A_{I N 1}$ Value	R	This register contains the measured value of the $A_{I N 1}$ analog input channel.

TABLE 57. REGISTER 32H, AIN2 MEASURED VALUE (POWER-ON DEFAULT 00H)

Bit	Name	R/W	Description
$7-0$	$A_{I N 2}$ Value	R	This register contains the measured value of the $A_{I N 2}$ analog input channel.

TABLE 58. REGISTER 33H, AIN3 MEASURED VALUE (POWER-ON DEFAULT 00H)

Bit	Name	R/W	Description
$7-0$	$A_{\text {IN } 3}$ Value	R	This register contains the measured value of the $A_{\text {IN } 3}$ analog input channel.

TABLE 59. REGISTER 34H, AIN4 MEASURED VALUE (POWER-ON DEFAULT 00H)

Bit	Name	R/W	Description
$7-0$	$A_{\text {IN } 4}$ Value	R	This register contains the measured value of the $A_{\text {IN } 4}$ analog input channel.

TABLE 60. REGISTER 35H, AIN5 MEASURED VALUE (POWER-ON DEFAULT 00H)

Bit	Name	R/W	Description
$7-0$	$A_{\text {IN } 5}$ Value	R	This register contains the measured value of the $A_{\text {IN } 5}$ analog input channel.

TABLE 61. REGISTER 36H, AIN6 MEASURED VALUE (POWER-ON DEFAULT 00H)

Bit	Name	R/W	Description
$7-0$	$A_{\text {IN } 6}$ Value	R	This register contains the measured value of the $A_{\text {IN } 6}$ analog input channel.

TABLE 62. REGISTER 37H, AIN7 MEASURED VALUE (POWER-ON DEFAULT 00H)

Bit	Name	R/W	Description
$7-0$	$A_{\text {IN } 7}$ Value	R	This register contains the measured value of the $A_{\text {IN } 7}$ analog input channel.

TABLE 63. REGISTER 38H, FANO MEASURED VALUE (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	FAN 0 Value	R	This register contains the measured value of the FAN 0 tach input channel.

TABLE 64. REGISTER 39H, FAN1 MEASURED VALUE (POWER-ON DEFAULT 00H)

Bit	Name	R/W	Description
$7-0$	FAN 1 Value	R	This register contains the measured value of the FAN 1 tach input channel.

TABLE 65. REGISTER 3AH, FAN2 MEASURED VALUE (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	FAN2 Value	R	This register contains the measured value of the FAN2 tach input channel.

TABLE 66. REGISTER 3BH, FAN3 MEASURED VALUE (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	FAN 3 Value	R	This register contains the measured value of the FAN 3 tach input channel.

TABLE 67. REGISTER 3CH, FAN4 MEASURED VALUE (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	FAN 4 Value	R	This register contains the measured value of the FAN 4 tach input channel.

TABLE 68. REGISTER 3DH, FAN5 MEASURED VALUE (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	FAN 5 Value	R	This register contains the measured value of the FAN 5 tach input channel.

TABLE 69. REGISTER 3EH, FAN6 MEASURED VALUE (POWER-ON DEFAULT OOH)

Bit	Name	R/N	Description
$7-0$	FAN 6 Value	R	This register contains the measured value of the FAN 6 tach input channel.

TABLE 70. REGISTER 3FH, FAN7 MEASURED VALUE (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	FAN 7 Value	R	This register contains the measured value of the FAN 7 tach input channel.

TABLE 71. REGISTER 40H, EXT1 HIGH LIMIT (POWER-ON DEFAULT 64H/100${ }^{\circ} \mathrm{C}$)

Bit	Name	R/W	Description
$7-0$	Ext1 High Limit	R/W	This register contains the high limit of the Ext1 Temp channel.

TABLE 72. REGISTER 41H, EXT2 / AIN9 HIGH LIMIT (POWER-ON DEFAULT 64H/100 ${ }^{\circ} \mathrm{C}$)

Bit	Name	R/W	Description
$7-0$	Ext2 T emp /A IN9 High Limit	R/W	This register contains the high limit of the Ext2 Temp / A AN9 channel depending on which one is configured.

TABLE 73. REGISTER 42H, 3.3VSTBY HIGH LIMIT (POWER-ON DEFAULT FFH)

Bit	Name	R/W	Description
$7-0$	3.3VST BY High Limit	R/W	This register contains the high limit of the 3.3VST BY analog input channel

TABLE 74. REGISTER 43H, 3.3VMAIN HIGH LIMIT (POWER-ON DEFAULT FFH)

Bit	Name	R/W	Description
$7-0$	3.3 VM AIN High Limit	R/W	This register contains the high limit of the 3.3VMAIN analog input channel

TABLE 75. REGISTER 44H, +5V HIGH LIMIT (POWER-ON DEFAULT FFH)

Bit	Name	R/W	Description
$7-0$	+5 V High Limit	R/W	This register contains the high limit of the +5 V analog input channel

TABLE 76. REGISTER 45H, VCCP HIGH LIMIT (POWER-ON DEFAULT FFH)

Bit	Name	R/W	Description
$7-0$	$V_{C C P} H$ igh Limit	R/W	This register contains the high limit of the $\mathrm{V}_{C C P}$ analog input channel

TABLE 77. REGISTER 46H, +12V HIGH LIMIT (POWER-ON DEFAULT FFH)

Bit	Name	R/W	Description
$7-0$	+12 V H igh Limit	R/W	This register contains the high limit of the +12 V analog input channel

ADM1026

TABLE 78. REGISTER 47H, -12V HIGH LIMIT (POWER-ON DEFAULT FFH)

Bit	Name	R/W	Description
$7-0$	-12 V High Limit	R/W	This register contains the high limit of the -12 V analog input channel

TABLE 79. REGISTER 48H, EXT1 LOW LIMIT (POWER-ON DEFAULT 80H)

Bit	Name	R/W	Description
$7-0$	Ext1 Low Limit	R/W	This register contains the low limit of the Ext1 Temp channel.

TABLE 80. REGISTER 49H, EXT2 / AIN9 LOW LIMIT (POWER-ON DEFAULT 80H)

Bit	Name	R/W	Description
$7-0$	Ext2 T emp IAIN 9 Low Limit	R/W	This register contains the low limit of the Ext2 Temp / AIN 9 channel depending on which one is configured.

TABLE 81 REGISTER 4AH, 3.3VSTBY LOW LIMIT (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	$3.3 V$ ST BY Low Limit	R/W	This register contains the low limit of the 3.3VST BY analog input channel

TABLE 82. REGISTER 4BH, 3.3VMAIN LOW LIMIT (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	3.3 VM AIN Low Limit	R/W	This register contains the low limit of the 3.3VM AIN analog input channel

TABLE 83. REGISTER 4CH, +5V LOW LIMIT (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	+5 V L ow Limit	R/W	This register contains the low limit of the +5 V analog input channel

TABLE 84. REGISTER 4DH, VCCP LOW LIMIT (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	$V_{\text {CCP }}$ Low Limit	R/W	This register contains the low limit of the $V_{C C P}$ analog input channel

TABLE 85. REGISTER 4EH, +12V LOW LIMIT (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	+12 V L ow Limit	R/W	This register contains the low limit of the +12 V analog input channel

TABLE 86. REGISTER 4FH, -12V LOW LIMIT (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	-12 V L ow Limit	R/W	This register contains the low limit of the -12 V analog input channel

TABLE 87. REGISTER 50H, AINO HIGH LIMIT (POWER-ON DEFAULT FFH)

Bit	Name	R/W	Description
$7-0$	$A_{I_{N 0}} H$ igh Limit	R/W	This register contains the high limit of the $A_{I N 0}$ analog input channel.

TABLE 88. REGISTER 51H, AIN1 HIGH LIMIT (POWER-ON DEFAULT FFH)

Bit	Name	R/W	Description
$7-0$	$A_{I N 1} H$ igh Limit	R/W	This register contains the high limit of the $A_{I N 1}$ analog input channel

TABLE 89. REGISTER 52H, AIN2 HIGH LIMIT (POWER-ON DEFAULT FFH)

Bit	Name	R/W	Description
$7-0$	$A_{I N 2}$ High Limit	R/W	This register contains the high limit of the $A_{I N 2}$ analog input channel

TABLE 90. REGISTER 53H, AIN3 HIGH LIMIT (POWER-ON DEFAULT FFH)

Bit	Name	R/W	Description
$7-0$	$A_{\text {IN } 3}$ High Limit	R/W	This register contains the high limit of the $A_{\text {IN } 3}$ analog input channel

TABLE 91. REGISTER 54H, AIN4 HIGH LIMIT (POWER-ON DEFAULT FFH)

Bit	Name	R/W	Description
$7-0$	$A_{I N 4}$ High Limit	R/W	This register contains the high limit of the $A_{I N 4}$ analog input channel

TABLE 92. REGISTER 55H, AIN5 HIGH LIMIT (POWER-ON DEFAULT FFH)

Bit	Name	R/W	Description
$7-0$	$A_{I N 5}$ High Limit	R/W	This register contains the high limit of the $A_{I N 5}$ analog input channel

TABLE 93. REGISTER 56H, AIN6 HIGH LIMIT (POWER-ON DEFAULT FFH)

Bit	Name	R/W	Description
$7-0$	$A_{\text {IN } 6}$ High Limit	R/W	This register contains the high limit of the $A_{\text {IN } 6}$ analog input channel

TABLE 94. REGISTER 57H, AIN7 HIGH LIMIT (POWER-ON DEFAULT FFH)

Bit	Name	R/W	Description
$7-0$	$A_{I N 7}$ High Limit	R/W	This register contains the high limit of the $A_{I N 7}$ analog input channel

TABLE 95. REGISTER 58H, AINO LOW LIMIT (POWER-ON DEFAULT 00H)

Bit	Name	R/W	Description
$7-0$	$A_{\text {IN } 0}$ Low Limit	R/W	This register contains the low limit of the $A_{\text {IN } 0}$ analog input channel.

TABLE 96. REGISTER 59H, AIN1 LOW LIMIT (POWER-ON DEFAULT 00H)

Bit	Name	R/W	Description
$7-0$	$A_{I N 1}$ Low Limit	R/W	This register contains the low limit of the $A_{I N 1}$ analog input channel

TABLE 97. REGISTER 5AH, AIN2 LOW LIMIT (POWER-ON DEFAULT 0OH)

Bit	Name	R/W	Description
$7-0$	$A_{I N 2}$ Low Limit	R/W	This register contains the low limit of the $A_{I N 2}$ analog input channel

TABLE 98. REGISTER 5BH, AIN3 LOW LIMIT (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	$A_{\text {IN3 }}$ Low Limit	R/W	This register contains the low limit of the $A_{\text {IN } 3}$ analog input channel

TABLE 99. REGISTER 5CH, AIN4 LOW LIMIT (POWER-ON DEFAULT 00H)

Bit	Name	R/W	Description
$7-0$	$A_{\text {IN } 4}$ Low Limit	R/W	This register contains the low limit of the $A_{\text {IN } 4}$ analog input channel

ADM1026

TABLE 100. REGISTER 5DH, AIN5 LOW LIMIT (POWER-ON DEFAULT 00H)

Bit	Name	R/W	Description
$7-0$	$A_{I N 5}$ Low Limit	R/W	This register contains the low limit of the $A_{I N 5}$ analog input channel

TABLE 101. REGISTER 5EH, AIN6 LOW LIMIT (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	$A_{I_{N 6}}$ Low Limit	R/W	This register contains the low limit of the $A_{I N 6}$ analog input channel

TABLE 102. REGISTER 5FH, AIN7 LOW LIMIT (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	$A_{\text {IN } 7}$ Low Limit	R/W	This register contains the low limit of the $A_{\text {IN } 7}$ analog input channel

TABLE 103. REGISTER 60H, FANO HIGH LIMIT (POWER-ON DEFAULT FFH)

Bit	Name	R/W	Description
$7-0$	FAN 0 High Limit	R/W	This register contains the high limit of the FAN 0 tach channel.

TABLE 104. REGISTER 61H, FAN1 HIGH LIMIT (POWER-ON DEFAULT FFH)

Bit	Name	R/W	Description
$7-0$	FAN 1 High Limit	R/W	This register contains the high limit of the FAN 1 tach channel

TABLE 105. REGISTER 62H, FAN2 HIGH LIMIT (POWER-ON DEFAULT FFH)

Bit	Name	R/W	Description
$7-0$	FAN2 High Limit	R/W	This register contains the high limit of the FAN2 tach channel

TABLE 106. REGISTER 63H, FAN3 HIGH LIMIT (POWER-ON DEFAULT FFH)

Bit	Name	R/W	Description
$7-0$	FAN 3 High Limit	R/W	This register contains the high limit of the FAN 3 tach channel

TABLE 107. REGISTER 64H, FAN4 HIGH LIMIT (POWER-ON DEFAULT FFH)

Bit	Name	R/W	Description
$7-0$	FAN4 High Limit	R/W	This register contains the high limit of the FAN 4 tach channel

TABLE 108. REGISTER 65H, FAN5 HIGH LIMIT (POWER-ON DEFAULT FFH)

Bit	Name	R/W	Description
$7-0$	FAN 5 High Limit	R/W	This register contains the high limit of the FAN 5 tach channel

TABLE 109. REGISTER 66H, FAN6 HIGH LIMIT (POWER-ON DEFAULT FFH)

Bit	Name	R/W	Description
$7-0$	FAN 6 High Limit	R/W	This register contains the high limit of the FAN 6 tach channel

TABLE 110. REGISTER 67H, FAN7 HIGH LIMIT (POWER-ON DEFAULT FFH)

Bit	Name	R/W	Description
$7-0$	FAN 7 High Limit	R/W	This register contains the high limit of the FAN 7 tach channel

ADM1026

TABLE 111 REGISTER 68H, INT TEMP HIGH LIMIT (POWER-ON DEFAULT 50H ($80^{\circ} \mathrm{C}$))

Bit	Name	R/N	Description
$7-0$	Int Temp High Limit	R/W	This register contains the high limit of the internal temperature channel.

TABLE 112. REGISTER 69H, INT TEMP LOW LIMIT (POWER-ON DEFAULT 80H)

Bit	Name	R/W	Description
$7-0$	Int T emp Low Limit	R/W	This register contains the low limit of the internal temperature channel

TABLE 113. REGISTER 6AH, VBAT HIGH LIMIT (POWER-ON DEFAULT FFH)

Bit	Name	R/W	Description
$7-0$	$V_{\text {BAT }}$ High Limit	R/W	This register contains the high limit of the $V_{B A T}$ analog input channel

TABLE 114. REGISTER 6BH, VBAT LOW LIMIT (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	$V_{\text {BAT }}$ Low Limit	R/W	This register contains the low limit of the $V_{\text {BAT }}$ analog input channel

TABLE 115. REGISTER 6CH, AIN8 HIGH LIMIT (POWER-ON DEFAULT FFH)

Bit	Name	R/W	Description
$7-0$	$A_{\text {IN } 8}$ High Limit	R/W	This register contains the high limit of the $A_{\text {IN } 8}$ analog input channel

TABLE 116. REGISTER 6DH, AIN8 LOW LIMIT (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	$A_{\text {IN8 }}$ Low Limit	R/W	This register contains the low limit of the $A_{\text {IN8 }}$ analog input channel

TABLE 117. REGISTER 6EH, EXT1 TEMP OFFSET (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	Ext1 Temp Offset	R/W	This register contains the Offset Value for the External 1 Temperature Channel. A 2's complement number can be written to this register which is then 'added' to the measured result before it is stored or compared to limits. In this way a sort of one-point calibration can be done whereby the whole transfer function of the channel can be moved up or down. From a software point of view this may be a very simple method to vary the characteristics of the measurement channel if the thermal characteristics change, for whatever reason, for instance from one chassis to another, if the measurement point is moved, if a plug-in card is inserted or removed, etc.

TABLE 118. REGISTER 6FH, EXT2 TEMP OFFSET (POWER-ON DEFAULT OOH)

Bit	Name	R/W	Description
$7-0$	Ext2 Temp Offset	R/W	This register contains the Offset Value for the External 2 Temperature Channel. A 2's complement number can be written to this register which is then 'added' to the measured result before it is stored or compared to limits. In this way a sort of one-point calibration can be done whereby the whole transfer function of the channel can be moved up or down. From a software point of view this may be a very simple method to vary the characteristics of the measurement channel if the thermal characteristics change, for whatever reason, for instance from one chassis to another, if the measurement point is moved, if a plug-in card is inserted or removed, etc.

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

48-Pin LQFP Package (ST-48)

[^0]: One Technology Way, P.O. Box 9106, N orwood, M A 02062-9106, U.S.A.
 Fax: 781/326-8703

