MPSA29 # **NPN Darlington Transistor** This device is designed for applications requiring extremely high current gain at collector currents to 500 mA. Sourced from Process 03. See MPSA28 for characteristics. ## **Absolute Maximum Ratings*** TA = 25°C unless otherwise noted | Symbol | Parameter | Value | Units | |-----------------------------------|--|-------------|-------| | V_{CES} | Collector-Emitter Voltage | 100 | V | | V _{CBO} | Collector-Base Voltage | 100 | V | | V_{EBO} | Emitter-Base Voltage | 12 | V | | Ic | Collector Current - Continuous | 800 | mA | | T _J , T _{stg} | Operating and Storage Junction Temperature Range | -55 to +150 | °C | ^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired. NOTES: 1) These ratings are based on a maximum junction temperature of 150 degrees C. 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations. ### Thermal Characteristics TA = 25°C unless otherwise noted | Symbol | Characteristic | Max | Units | | |------------------|--|------------|-------------|--| | | | MPSA29 | | | | P _D | Total Device Dissipation Derate above 25°C | 625
5.0 | mW
mW/°C | | | R _{θJC} | Thermal Resistance, Junction to Case | 83.3 | °C/W | | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | 200 | °C/W | | # NPN Darlington Transistor (continued) | Electrical Characteristics TA = 25°C unless otherwise noted | | | | | | | | | |---|--|--|--------|------------|--------|--|--|--| | Symbol | Parameter | Test Conditions | Min | Max | Units | | | | | OFF CHA | RACTERISTICS | | | | | | | | | $V_{(BR)CES}$ | Collector-Emitter Breakdown Voltage* | $I_C = 100 \mu A, I_B = 0$ | 100 | | V | | | | | $V_{(BR)CBO}$ | Collector-Base Breakdown Voltage | $I_C = 100 \mu A, I_E = 0$ | 100 | | V | | | | | $V_{(BR)EBO}$ | Emitter-Base Breakdown Voltage | $I_E = 10 \mu A, I_C = 0$ | 12 | | V | | | | | I _{CBO} | Collector Cutoff Current | $V_{CB} = 80 \text{ V}, I_{E} = 0$ | | 100 | nA | | | | | I _{CES} | Collector Cutoff Current | $V_{CE} = 80 \text{ V}, I_{E} = 0$ | | 500 | nA | | | | | I _{EBO} | Emitter Cutoff Current | $V_{EB} = 10 \text{ V}, I_{C} = 0$ | | 100 | nA | | | | | ON CHAR | RACTERISTICS* DC Current Gain | $V_{CE} = 5.0 \text{ V}, I_{C} = 10 \text{ mA}$ $V_{CE} = 5.0 \text{ V}, I_{C} = 100 \text{ mA}$ | 10,000 | | | | | | | V _{CE(sat)} | Collector-Emitter Saturation Voltage | I _C = 10 mA, I _B = 0.01 mA
I _C = 100 mA, I _B = 0.1 mA | | 1.2
1.5 | V
V | | | | | V _{BE(on)} | Base-Emitter On Voltage | I _C = 100 mA, V _{CE} = 5.0 V | | 2.0 | V | | | | | SMALL SI | GNAL CHARACTERISTICS Current Gain - Bandwidth Product | $I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V},$ $f = 100 \text{ MHz}$ | 125 | | MHz | | | | | C _{obo} | Output Capacitance | $V_{CB} = 10 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$ | | 8.0 | pF | | | | ^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%