

MPSA29

NPN Darlington Transistor

This device is designed for applications requiring extremely high current gain at collector currents to 500 mA. Sourced from Process 03. See MPSA28 for characteristics.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CES}	Collector-Emitter Voltage	100	V
V _{CBO}	Collector-Base Voltage	100	V
V_{EBO}	Emitter-Base Voltage	12	V
Ic	Collector Current - Continuous	800	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

TA = 25°C unless otherwise noted

Symbol	Characteristic	Max	Units	
		MPSA29		
P _D	Total Device Dissipation Derate above 25°C	625 5.0	mW mW/°C	
R _{θJC}	Thermal Resistance, Junction to Case	83.3	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	°C/W	

NPN Darlington Transistor (continued)

Electrical Characteristics TA = 25°C unless otherwise noted								
Symbol	Parameter	Test Conditions	Min	Max	Units			
OFF CHA	RACTERISTICS							
$V_{(BR)CES}$	Collector-Emitter Breakdown Voltage*	$I_C = 100 \mu A, I_B = 0$	100		V			
$V_{(BR)CBO}$	Collector-Base Breakdown Voltage	$I_C = 100 \mu A, I_E = 0$	100		V			
$V_{(BR)EBO}$	Emitter-Base Breakdown Voltage	$I_E = 10 \mu A, I_C = 0$	12		V			
I _{CBO}	Collector Cutoff Current	$V_{CB} = 80 \text{ V}, I_{E} = 0$		100	nA			
I _{CES}	Collector Cutoff Current	$V_{CE} = 80 \text{ V}, I_{E} = 0$		500	nA			
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 10 \text{ V}, I_{C} = 0$		100	nA			
ON CHAR	RACTERISTICS* DC Current Gain	$V_{CE} = 5.0 \text{ V}, I_{C} = 10 \text{ mA}$ $V_{CE} = 5.0 \text{ V}, I_{C} = 100 \text{ mA}$	10,000					
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _C = 10 mA, I _B = 0.01 mA I _C = 100 mA, I _B = 0.1 mA		1.2 1.5	V V			
V _{BE(on)}	Base-Emitter On Voltage	I _C = 100 mA, V _{CE} = 5.0 V		2.0	V			
SMALL SI	GNAL CHARACTERISTICS Current Gain - Bandwidth Product	$I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V},$ $f = 100 \text{ MHz}$	125		MHz			
C _{obo}	Output Capacitance	$V_{CB} = 10 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$		8.0	pF			

^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%