FAIRCHILD

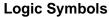
SEMICONDUCTOR

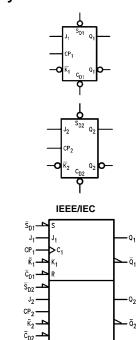
April 1988 Revised November 1999

74F109 Dual JK Positive Edge-Triggered Flip-Flop

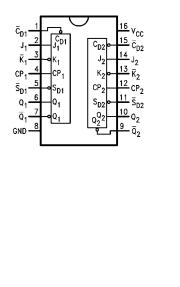
General Description

The F109 consists of two high-speed, completely independent transition clocked JK flip-flops. The clocking operation is independent of rise and fall times of the clock waveform. The JK design allows operation as a D-type flip-flop (refer to F74 data sheet) by connecting the J and \overline{K} inputs.


Asynchronous Inputs:


LOW input to \overline{S}_{D} sets Q to HIGH level LOW input to \overline{C}_D sets Q to LOW level Clear and Set are independent of clock Simultaneous LOW on \overline{C}_D and \overline{S}_D makes both Q and \overline{Q} HIGH

Ordering Code:


Order Number	Package Number	Package Description
74F109SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body
74F109SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE 11, 5.3mm Wide
74F109PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagram

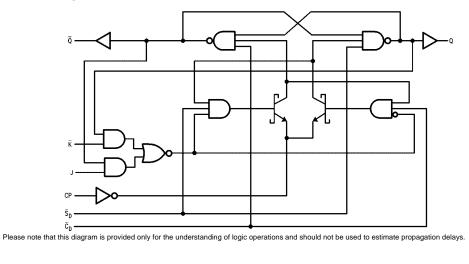
© 1999 Fairchild Semiconductor Corporation DS009471

Q.,

74F109

Truth Table

Inputs					Outputs		
SD	C _D CP J K				Q	Q	
L	н	Х	Х	Х	Н	L	
н	L	Х	Х	Х	L	н	
L	L	Х	Х	Х	н	н	
н	н	~	I.	1	L	н	
н	н	~	h	1	Тор	jgle	
н	н	~	I.	h	Q	Q	
н	н	~	h	h	н	L	
Н	н	L	Х	Х	Q	Q	


H (h) = HIGH Voltage Level L (l) = LOW Voltage Level \checkmark = LOW-to-HIGH Transition X = Immaterial Q₀ ($\overline{Q_0}$) = Before LOW-to-HIGH Transition of Clock

Lower case letters indicate the state of the referenced output one setup time prior to the LOW-to-HIGH clock transition.

Unit Loading/Fan Out

Dia Manag	Description	U.L.	Input I _{IH} /I _{IL}	
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
$J_1, J_2, \overline{K}_1, \overline{K}_2$	Data Inputs	1.0/1.0	20 µA/–0.6 mA	
CP ₁ , CP ₂	Clock Pulse Inputs (Active Rising Edge)	1.0/1.0	20 µA/–0.6 mA	
$\overline{C}_{D1}, \overline{C}_{D2}$	Direct Clear Inputs (Active LOW)	1.0/3.0	20 µA/–1.8 mA	
$\overline{S}_{D1}, \overline{S}_{D2}$	Direct Set Inputs (Active LOW)	1.0/3.0	20 µA/–1.8 mA	
$Q_1, Q_2, \overline{Q}_1, \overline{Q}_2$	Outputs	50/33.3	–1 mA/20 mA	

Block Diagram

Absolute Maximum Ratings(Note 1)

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +175°C
V _{CC} Pin Potential to	
Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{cc} = 0V$)	
Standard Output	-0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I_{OL} (mA)

Recommended Operating Conditions

Free Air Ambient Temperature	
Supply Voltage	

74F109

0°C to +70°C

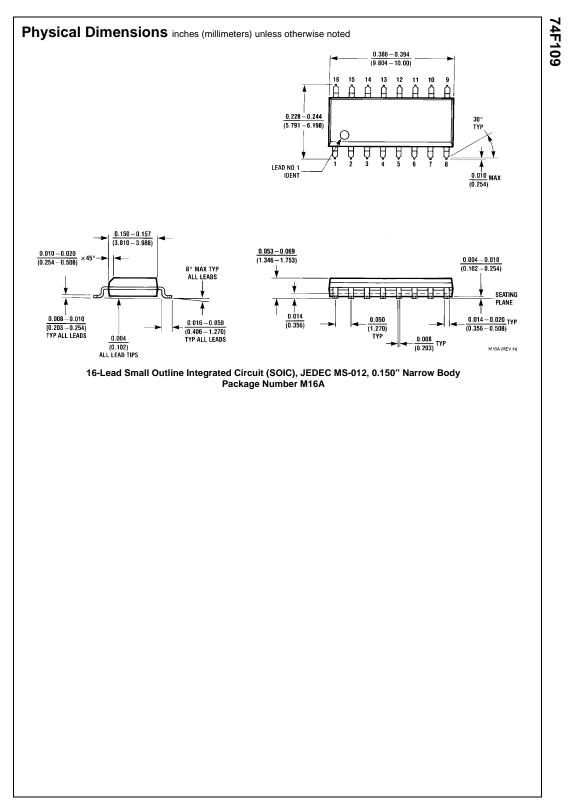
+4.5V to +5.5V

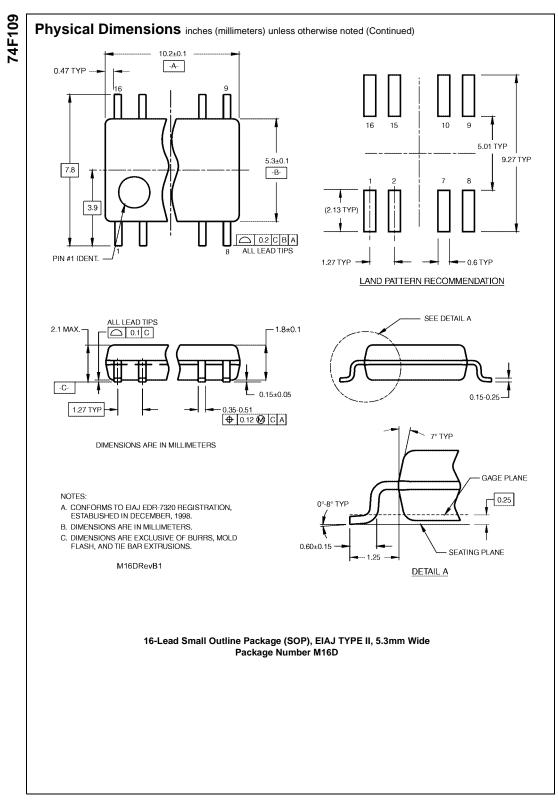
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

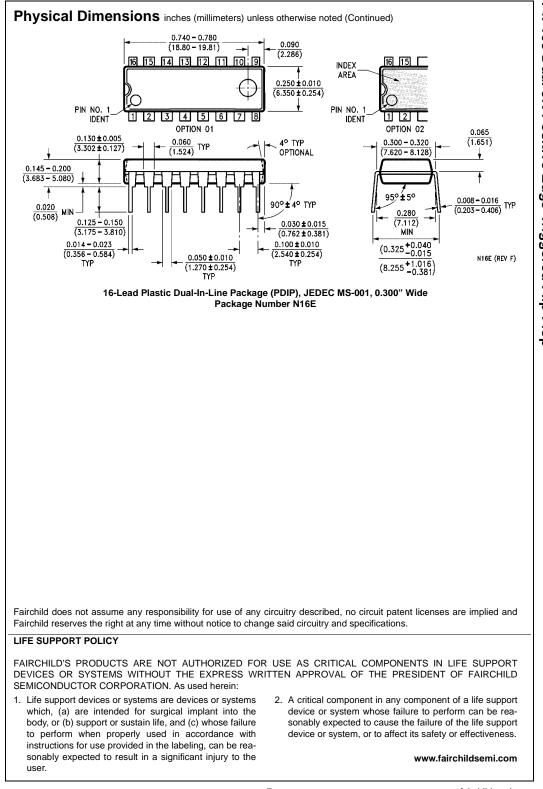
 $+5.5V \qquad \text{Note 2: Either voltage limit or current limit is sufficient to protect inputs.}$

DC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Units	v _{cc}	Conditions
V _{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	$I_{IN} = -18 \text{ mA}$
V _{OH}	Output HIGH Voltage 10% V _{CC}	2.5			v		$I_{OH} = -1 \text{ mA}$
	5% V _{CC}	2.7			v	Min	$I_{OH} = -1 \text{ mA}$
V _{OL}	Output LOW Voltage 10% V _{CC}			0.5	V	Min	I _{OL} = 20 mA
I _{IH}	Input HIGH Current			5.0	μA	Max	$V_{IN} = 2.7V$
I _{BVI}	Input HIGH Current Breakdown Test			7.0	μA	Max	$V_{IN} = 7.0V$
I _{CEX}	Output HIGH Leakage Current			50	μA	Max	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage Test	4.75			V	0.0	$I_{ID} = 1.9 \ \mu A$
		4.75			v	0.0	All Other Pins Grounded
I _{OD}	Output Leakage			3.75		0.0	$V_{IOD} = 150 \text{ mV}$
	Circuit Current			3.75	μΑ	0.0	All Other Pins Grounded
IIL	Input LOW Current			-0.6	mA	Max	$V_{IN} = 0.5V (J_n, \overline{K}_n)$
				-1.8	mA	Max	$V_{IN} = 0.5V \ (\overline{C}_{Dn}, \ \overline{S}_{Dn})$
I _{OS}	Output Short-Circuit Current	-60		-150	mA	Max	$V_{OUT} = 0V$
I _{CC}	Power Supply Current		11.7	17.0	mA	Max	CP = 0V


74F109


AC Electrical Characteristics


			$\textbf{T}_{\textbf{A}}=+25^{\circ}\textbf{C}$		$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$		Unite
	Parameter		V _{CC} = +5.0V				
Symbol		$C_L = 50 \text{ pF}$			$C_L = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	100	125		90		MHz
t _{PLH}	Propagation Delay	3.8	5.3	7.0	3.8	8.0	
t _{PHL}	CP_n to Q_n or \overline{Q}_n	4.4	6.2	8.0	4.4	9.2	ns
t _{PLH}	Propagation Delay	3.2	5.2	7.0	3.2	8.0	ns
t _{PHL}	\overline{C}_{Dn} or \overline{S}_{Dn} to	3.5	7.0	9.0	3.5	10.5	
	Q_n or \overline{Q}_n	3.5	7.0	9.0	3.5	10.5	ns

AC Operating Requirements

	Parameter	$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$		$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$		Units
Symbol						
		Min	Max	Min	Max	
t _S (H)	Setup Time, HIGH or LOW	3.0		3.0		
t _S (L)	J_n or \overline{K}_n to CP_n	3.0		3.0		ns
t _H (H)	Hold Time, HIGH or LOW	1.0		1.0		
t _H (L)	J_n or \overline{K}_n to CP_n	1.0		1.0		
t _W (H)	CP _n Pulse Width	4.0		4.0		
t _W (L)	HIGH or LOW	5.0		5.0		ns
t _W (L)	\overline{C}_{Dn} or \overline{S}_{Dn} Pulse Width LOW	4.0		4.0		ns
t _{REC}	Recovery Time \overline{C}_{Dn} or \overline{S}_{Dn} to CP	2.0		2.0		ns

74F109 Dual JK Positive Edge-Triggered Flip-Flop