FAIRCHILD

SEMICONDUCTOR

74F151A 8-Input Multiplexer

General Description

The F151A is a high-speed 8-input digital multiplexer. It provides in one package the ability to select one line of data from up to eight sources. The F151A can be used as a

universal function generator to generate any logic function of four variables. Both assertion and negation outputs are provided.

Ordering Code:

Order Number	Package Number	Ige Number Package Description				
74F151ASC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow				
74F151ASJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide				
74F151APC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide				

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

Unit Loading/Fan Out

Dia Managa	Description	U.L.	Input I _{IH} /I _{IL}	
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
I ₀ –I ₇	Data Inputs	1.0/1.0	20 µA/-0.6 mA	
S ₀ -S ₂	Select Inputs	1.0/1.0	20 µA/–0.6 mA	
E	Enable Input (Active LOW)	1.0/1.0	20 µA/–0.6 mA	
Z	Data Output	50/33.3	–1 mA/20 mA	
Z	Inverted Data Output	50/33.3	–1 mA/20 mA	

Functional Description

Truth Table

The F151A is a logic implementation of a single pole, 8position switch with the switch position controlled by the state of three Select inputs, S_0 , S_1 , S_2 . Both assertion and negation outputs are provided. The Enable input (\overline{E}) is active LOW. When it is not activated, the negation output is HIGH and the assertion output is LOW regardless of all other inputs. The logic function provided at the output is: $Z = \overline{E} \bullet (I_0 \overline{S_2} \overline{S_1} \overline{S_0} + I_1 \overline{S_2} \overline{S_1} S_0 + I_2 \overline{S_2} S_1 \overline{S_0} + I_2 \overline{S_2} \overline{S_1} \overline{S_0} + I_2 \overline{S_2} \overline{S_1} \overline{S_0} + I_2 \overline{S_2} \overline{S_1} \overline{S_0} + I_2 \overline{S_1} \overline{S_0} + I_2 \overline{S_1} \overline{S_0} + I_2 \overline{S_1} \overline{S_1} \overline{S_1} \overline{S_1} + I_2 \overline{S_1}$

$$= \mathbf{E} \bullet (\mathbf{I}_0 \ \mathbf{S}_2 \ \mathbf{S}_1 \ \mathbf{S}_0 + \mathbf{I}_1 \ \mathbf{S}_2 \ \mathbf{S}_1 \ \mathbf{S}_0 + \mathbf{I}_2 \ \mathbf{S}_2 \ \mathbf{S}_1 \ \mathbf{S}_0 \ \mathbf{S}_1 \$$

$$I_3 S_2 S_1 S_0 + I_4 S_2 S_1 S_0 + I_5 S_2 S_1 S_0$$

$$I_6 S_2 S_1 S_0 + I_7 S_2 S_1 S_0$$

The F151A provides the ability, in one package, to select from eight sources of data or control information. By proper manipulation of the inputs, the F151A can provide any logic function of four variables and its negation.

				1	
	Inj		puts		
E	S ₂	S ₁	S ₀	z	Z
Н	Х	х	х	н	L
L	L	L	L	Īo	I ₀
L	L	L	н	Ī ₁	I ₁
L	L	Н	L	\overline{I}_2	I_2
L	L	н	н	Ī3	I ₃
L	н	L	L	Ī ₄	I_4
L	н	L	Н	\overline{I}_5	I_5
L	н	н	L	Ī ₆	I_6
L	н	н	н	Ī7	I ₇

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Storage Temperature -65°C to +150°C Ambient Temperature under Bias $-55^{\circ}C$ to $+125^{\circ}C$ Junction Temperature under Bias –55°C to +175°C $-55^{\circ}C$ to $+150^{\circ}C$ Plastic V_{CC} Pin Potential to Ground Pin -0.5V to +7.0V Input Voltage (Note 2) -0.5V to +7.0V Input Current (Note 2) -30 mA to +5.0 mA Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$) Standard Output –0.5V to $V_{\mbox{\scriptsize CC}}$ 3-STATE Output -0.5V to +5.5V Current Applied to Output in LOW State (Max) twice the rated I_{OL} (mA)

Recommended Operating Conditions

Free Air Ambient Temperature Supply Voltage

74F151A

 $0^{\circ}C$ to $+70^{\circ}C$

+4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Units	v _{cc}	Conditions
V _{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH 10%	6 V _{CC} 2.5			V	Min	$I_{OH} = -1 \text{ mA}$
	Voltage 5%	V _{CC} 2.7			v	IVIIII	$I_{OH} = -1 \text{ mA}$
V _{OL}	Output LOW						
	Voltage 10%	ώ V _{CC}		0.5	V	Min	$I_{OL} = 20 \text{ mA}$
IIH	Input HIGH						
	Current			5.0	μΑ	Max	$V_{IN} = 2.7V$
I _{BVI}	Input HIGH Current						
	Breakdown Test			7.0	μΑ	Max	$V_{IN} = 7.0V$
I _{CEX}	Output HIGH						
	Leakage Current			50	μΑ	Max	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage	4.75			V	0.0	I _{ID} = 1.9 μA
	Test						All Other Pins Grounded
I _{OD}	Output Leakage			3.75	μΑ	0.0	V _{IOD} = 150 mV
	Circuit Current						All Other Pins Grounded
IIL	Input LOW Current	İ		-0.6	mA	Max	$V_{IN} = 0.5V$
l _{os}	Output Short-Circuit Current	-60		-150	mA	Max	$V_{OUT} = 0V$
I _{CC}	Power Supply Current		13.5	21.0	mA	Max	V _O = HIGH

www.fairchildsemi.com

74F151A

AC Electrical Characteristics

Symbol			T _A = +25°C			$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	
	Parameter		C _L = 50 pF		Units		
		C _L = 50 pF					
		Min	Тур	Max	Min	Max	1
t _{PLH}	Propagation Delay	4.0	6.2	9.0	3.5	9.5	ns
t _{PHL}	S_n to \overline{Z}	3.2	5.2	7.5	3.2	7.5	
t _{PLH}	Propagation Delay	4.5	7.5	10.5	4.5	12.0	ns
t _{PHL}	S _n to Z	4.0	6.2	9.0	4.0	9.0	
t _{PLH}	Propagation Delay	3.0	4.7	6.1	3.0	7.0	ns
t _{PHL}	Ē to Z	3.0	4.4	6.0	2.5	6.0	
t _{PLH}	Propagation Delay	5.0	7.0	9.5	4.0	10.5	ns
t _{PHL}	E to Z	3.5	5.3	7.0	3.0	7.5	
t _{PLH}	Propagation Delay	3.0	4.8	6.5	3.0	7.0	ns
t _{PHL}	I _n to Z	1.5	2.5	4.0	1.5	5.0	
t _{PLH}	Propagation Delay	3.0	4.8	6.5	2.5	7.5	ns
t _{PHL}	In to Z	3.7	5.5	7.0	3.7	7.5	

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.