

Functional Description

The F151A is a logic implementation of a single pole, 8position switch with the switch position controlled by the state of three Select inputs, $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$. Both assertion and negation outputs are provided. The Enable input $(\overline{\mathrm{E}})$ is active LOW. When it is not activated, the negation output is HIGH and the assertion output is LOW regardless of all other inputs. The logic function provided at the output is:
$\mathrm{Z}=\overline{\mathrm{E}} \cdot\left(\mathrm{I}_{0} \overline{\mathrm{~S}}_{2} \overline{\mathrm{~S}}_{1} \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1} \overline{\mathrm{~S}}_{2} \overline{\mathrm{~S}}_{1} \mathrm{~S}_{0}+\mathrm{I}_{2} \overline{\mathrm{~S}}_{2} \mathrm{~S}_{1} \overline{\mathrm{~S}}_{0}+\right.$
$\mathrm{I}_{3} \overline{\mathrm{~S}}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}+\mathrm{I}_{4} \mathrm{~S}_{2} \overline{\mathrm{~S}}_{1} \overline{\mathrm{~S}}_{0}+\mathrm{I}_{5} \mathrm{~S}_{2} \overline{\mathrm{~S}}_{1} \mathrm{~S}_{0}+$
$\left.I_{6} S_{2} S_{1} S_{0}+I_{7} S_{2} S_{1} S_{0}\right)$
The F151A provides the ability, in one package, to select from eight sources of data or control information. By proper manipulation of the inputs, the F151A can provide any logic function of four variables and its negation.

Truth Table

Inputs				Outputs	
$\overline{\mathrm{E}}$	S_{2}	S_{1}	S_{0}	\bar{Z}	Z
H	X	X	X	H	L
L	L	L	L	\bar{I}_{0}	I_{0}
L	L	L	H	\bar{i}_{1}	I_{1}
L	L	H	L	$\overline{1}_{2}$	I_{2}
L	L	H	H	\bar{I}_{3}	I_{3}
L	H	L	L	\bar{i}_{4}	I_{4}
L	H	L	H	\bar{i}_{5}	I_{5}
L	H	H	L	\bar{i}_{6}	I_{6}
L	H	H	H	\bar{i}_{7}	I_{7}

Logic Diagram

Absolute Maximum Ratings(Note 1)		Recommended Operating Conditions
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Ambient Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Free Air Ambient Temperature $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Junction Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$	Supply Voltage $\quad+4.5 \mathrm{~V}$ to +5.5 V
Plastic	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
V_{CC} Pin Potential to		
Ground Pin	-0.5 V to +7.0 V	
Input Voltage (Note 2)	-0.5 V to +7.0 V	
Input Current (Note 2)	-30 mA to +5.0 mA	
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)		
Standard Output	-0.5 V to V_{CC}	Note 1: Absolute maximum ratings are values beyond which the device
3-STATE Output	-0.5 V to +5.5 V	may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Current Applied to Output in LOW State (Max)	e the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$	Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions
$\overline{\mathrm{V}_{1 \mathrm{H}}}$	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & \hline 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage $10 \% \mathrm{~V}_{\mathrm{CC}}$			0.5	V	Min	$\mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA}$
$\overline{I_{\mathrm{H}}}$	Input HIGH Current			5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			7.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
${ }_{\text {cex }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\begin{aligned} & \mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A} \\ & \text { All Other Pins Grounded } \end{aligned}$
$\overline{\mathrm{IOD}}$	Output Leakage Circuit Current			3.75	$\mu \mathrm{A}$	0.0	$V_{I O D}=150 \mathrm{mV}$ All Other Pins Grounded
ILL	Input LOW Current			-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}=0.5 \mathrm{~V}}$
los	Output Short-Circuit Current	-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {cc }}$	Power Supply Current		13.5	21.0	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
$\begin{aligned} & \overline{t_{\mathrm{PLH}}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $S_{n} \text { to } \bar{Z}$	$\begin{aligned} & 4.0 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $S_{n} \text { to } Z$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & 6.2 \end{aligned}$	$\begin{gathered} 10.5 \\ 9.0 \end{gathered}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 9.0 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\overline{\mathrm{E}}$ to \bar{Z}	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 4.4 \end{aligned}$	$\begin{aligned} & \hline 6.1 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 6.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\overline{\mathrm{E}}$ to Z	$\begin{aligned} & 5.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \hline 4.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 10.5 \\ 7.5 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay I_{n} to \bar{Z}	$\begin{aligned} & \hline 3.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 4.8 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	ns
$\begin{aligned} & \overline{\mathrm{t}_{\mathrm{PLH}}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay I_{n} to Z	$\begin{aligned} & 3.0 \\ & 3.7 \end{aligned}$	$\begin{aligned} & \hline 4.8 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	ns

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
