HD74HC259

8-bit Addressable Latch

HITACHI

Description

The HD74HC259 has a single data input (D), 8 latch outputs (Q_0 - Q_7), 3 address inputs (A, B, and C), a common enable input (E), and a common clear input. To operate this device as an addressable latch, data is held on the D input, and the address of the latch into which the data is to be entered is held on the A, B and C inputs. When enable is taken low the data flows through to the addressed output. The data is stored when enable transitions from low to high. All unaddressed latches will remain unaffected. With enable in the high state the device is deselected, and all latches remain in their previous state, unaffected by changes on the data or address inputs. To eliminate the possibility of entering erroneous data into the latches, the enable should be held high (inactive) while the address lines are changing.

If enable is held high and clear is taken low all eight latches are cleared to a low state. If enable is low all latches except the addressed latch will be cleared. The addressed latch will instead follow the D input, effectively implementing a 3-to-8 line decoder.

Features

• High Speed Operation: t_{pd} (Data to Output) = 16 ns typ ($C_L = 50 \text{ pF}$)

• High Output Current: Fanout of 10 LSTTL Loads

• Wide Operating Voltage: $V_{CC} = 2$ to 6 V

• Low Input Current: 1 µA max

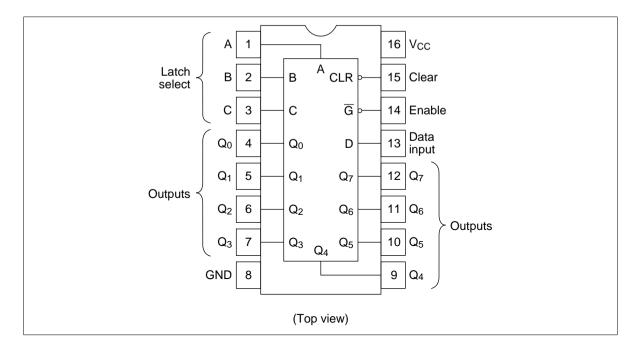
• Low Quiescent Supply Current: I_{CC} (static) = 4 μ A max (Ta = 25°C)

Function Table

Inputs

Clear	G	Output of Addressed Latch	Each Other Output	Function
Н	L	D	Qio	Addressable latch
Н	Н	Qio	Qio	Memory
L	L	D	L	8-line demultiplexer
L	Н	L	L	Clear

HD74HC259


Select Inputs

С	В	A	Latch Addressed
L	L	L	0
L	L	Н	1
L	Н	L	2
L	Н	Н	3
Н	L	L	4
Н	L	Н	5
Н	Н	L	6
Н	Н	Н	7

Notes: 1. D: the level at the data input

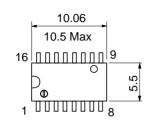
2. Qio: the level of Qi (i = 0, 1, ...7, as apropriate) before the indicated steady-state input conditions were established.

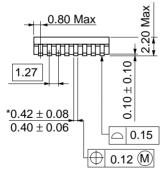
Pin Arrangement

DC Characteristics

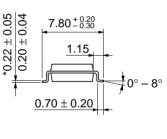
			Ta =	: 25°(:	Ta = - +85°C	-40 to			
Item	Symbol	V _{cc} (V)	Min	Тур	Max	Min	Max	Unit	Test Conditions	
Input voltage	V _{IH}	2.0	1.5	_	_	1.5	_	V		
		4.5	3.15	_	_	3.15	_	_		
		6.0	4.2	_	_	4.2	_	_		
	V _{IL}	2.0	_	_	0.5	_	0.5	V		
		4.5	_	_	1.35	_	1.35	_		
		6.0	_	_	1.8	_	1.8	=		
Output voltage	V _{OH}	2.0	1.9	2.0		1.9	_	V	$Vin = V_{IH} \text{ or } V_{IL} I_{OH}$	₁ = -20 μA
		4.5	4.4	4.5	_	4.4	_	_		
		6.0	5.9	6.0	_	5.9	_	=		
		4.5	4.18	_	_	4.13	_	_	I _{OH}	_ = -4 mA
		6.0	5.68	_	_	5.63	_	_	I _{OH}	= -5.2 mA
	V _{OL}	2.0	_	0.0	0.1	_	0.1	V	$Vin = V_{IH} \text{ or } V_{IL} I_{OL}$	= 20 μΑ
		4.5	_	0.0	0.1	_	0.1	_		
		6.0	_	0.0	0.1	_	0.1	_		
		4.5	_	_	0.26	_	0.33	=	I _{OL}	= 4 mA
		6.0	_	_	0.26	_	0.33	_	I _{OL}	= 5.2 mA
Input current	lin	6.0	_	_	±0.1	_	±1.0	μΑ	Vin = V _{CC} or GND	
Quiescent supply current	I _{cc}	6.0	_	_	4.0	_	40	μΑ	$Vin = V_{CC}$ or GND,	lout = 0 μA

HD74HC259

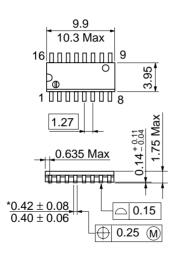

AC Characteristics ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

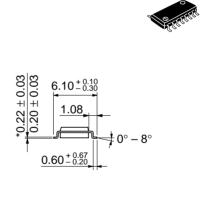

	Ta = -40 to
Ta = 25°C	+85°C

					•				
Item	Symbol	V _{cc} (V)	Min	Тур	Max	Min	Max	Unit	Test Conditions
Propagation delay	t _{PHL}	2.0	_	_	185	_	230	ns	Data to output
time	$t_{_{PLH}}$	4.5	_	16	37	_	46	=	
		6.0	_	_	31	_	39	-	
		2.0	_	_	215	_	270	_	Latch select to output
		4.5	_	20	43	_	54	=	
		6.0	_	_	37	_	46	-	
		2.0	_	_	200	_	250	=	Enable to output
		4.5	_	17	40	_	50	=	
		6.0	_	_	34	_	43	=	
	t _{PHL}	2.0	_	_	155	_	195	ns	Clear to output
		4.5	_	15	31	_	39	=	
		6.0	_	_	26	_	33	=	
Pulse width	t _w	2.0	80	_		100	_	ns	Clear, Enable
		4.5	16	6	_	20	_	=	
		6.0	14	_	_	17	_	=	
Setup time	t _{su}	2.0	100	_	_	125	_	ns	Latch select or data to enable
		4.5	20	5	_	25	_	=	
		6.0	17	_	_	21	_	=	
Hold time	t _h	2.0	5	_		5	_	ns	Latch select or data to enable
		4.5	5	-1	_	5	_	=	
		6.0	5	_	_	5	_	=	
Output rise/fall	t _{TLH}	2.0	_	_	75	_	95	ns	
time	t_{THL}	4.5	_	5	15	_	19	=	
		6.0	_	_	13	_	16	-	
Input capacitance	Cin	_	_	5	10	_	10	pF	


Unit: mm 19.20 20.00 Max 16 7.40 Max 6.30 1.3 1.11 Max 7.62 5.06 Max 2.54 Min 0.51 Min $0.25^{+0.13}_{-0.05}$ 0.48 ± 0.10 2.54 ± 0.25 $0^{\circ} - 15^{\circ}$ Hitachi Code DP-16 **JEDEC** Conforms EIAJ Conforms Weight (reference value) 1.07 g

Unit: mm





Hitachi Code	FP-16DA
JEDEC	_
EIAJ	Conforms
Weight (reference value)	0.24 g

*Dimension including the plating thickness
Base material dimension

Unit: mm

*Dimension including the plating thickness
Base material dimension

Hitachi Code	FP-16DN
JEDEC	Conforms
EIAJ	Conforms
Weight (reference value)	0.15 g

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HTACHI

Hitachi, Ltd.

Semiconductor & Integrated Circuits.

Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

NorthAmerica URL Europe

http://www.hitachi-eu.com/hel/ecg http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (Singapore) Asia (Taiwan) Asia (HongKong) http://www.hitachi.com.hk/eng/bo/grp3/index.htm

http:semiconductor.hitachi.com/

http://www.hitachi.co.jp/Sicd/indx.htm Japan

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0

Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road

Maidenhead Berkshire SL6 8YA, United Kingdom

Tel: <44> (1628) 585000 Fax: <44> (1628) 778322 Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533

Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666

Fax: <886> (2) 2718-8180

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218

Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.