DISTINCTIVE CHARACTERISTICS

■ Low-voltage operation, 3.3-V JEDEC compatible
$-\mathrm{V}_{\mathrm{cc}}=+3.0 \mathrm{~V}$ to +3.6 V
■ $<5 \mathrm{~mA}$ standby current

- Patented design allows minimal standby current without speed degradation
■ Exclusively designed for 3.3-V applications
- 44 Pins

■ 64 Macrocells

- 12 ns tpDCommercial 18 ns tpolndustrial
83.3 MHz fCNT
- 38 Bus-Friendly Inputs
- 32 Outputs

■ 64 Flip-flops; 2 clock choices

- 4 "PAL22V16" blocks with buried macrocells

■ Pin-, function-, and JEDEC-compatible with MACH210
■ Pin-compatible with MACH110, MACH111, MACH210, MACH211, and MACH215

GENERAL DESCRIPTION

The MACHLV210 is a member of the highperformance EE CMOS MACH 2 device family. This device has approximately six times the logic macrocell capability of the popular PAL22V10 at an equal speed with a lower cost per macrocell. It is architecturally identical to the MACH210, with the addition of I/O pull-up/pull-down resistors and low-voltage, low-power operation.

The MACHLV210 provides 3.3-V operation with lowpower CMOS technology. The patented design allows for minimal standby current without speed degradation by limiting the leakage current when signals are not switching. At less than 5 mA maximum standby current, the MACHLV210 is ideal for low-power applications.

The MACHLV210 consists of four PAL blocks interconnected by a programmable switch matrix. The four PAL blocks are essentially "PAL22V16" structures complete with product-term arrays and programmable macrocells, including additional buried macrocells. The switch
matrix connects the PAL blocks to each other and to all input pins, providing a high degree of connectivity between the fully-connected PAL blocks. This allows designs to be placed and routed efficiently.

The MACHLV210 has two kinds of macrocell: output and buried. The MACHLV210 output macrocell provides registered, latched, or combinatorial outputs with programmable polarity. If a registered configuration is chosen, the register can be configured as D-type or T-type to help reduce the number of product terms. The register type decision can be made by the designer or by the software. All output macrocells can be connected to an I/O cell. If a buried macrocell is desired, the internal feedback path from the macrocell can be used, which frees up the I/O pin for use as an input.

The MACHLV210 has dedicated buried macrocells which, in addition to the capabilities of the output macrocell, also provide input registers or latches for use in synchronizing signals and reducing setup time requirements.

BLOCK DIAGRAM

17908D-1

CONNECTION DIAGRAM

Top View

PLCC

17908D-2

Note:

Pin-compatible with MACH110, MACH111, MACH210, MACH211, and MACH215.

PIN DESIGNATIONS

CLK/I = Clock or Input
GND = Ground
I = Input
I/O = Input/Output
Vcc $=$ Supply Voltage

ORDERING INFORMATION

Commercial Products

Programmable logic products for commercial applications are available with several ordering options. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
MACHLV210-12	JC
MACHLV210-15	
MACHLV210-20	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult your local sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

Industrial Products

Programmable logic products for industrial applications are available with several ordering options. The order number (Valid Combination) is formed by a combination of:

SPEED

$-18=18 \mathrm{~ns}$ tpD
$-24=24$ ns tPD

Valid Combinations	
MACHLV210-18	JI
MACHLV210-24	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult your local sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION

The MACHLV210 consists of four PAL blocks connected by a switch matrix. There are $32 \mathrm{I} / \mathrm{O}$ pins and 4 dedicated input pins feeding the switch matrix. These signals are distributed to the four PAL blocks for efficient design implementation. There are two clock pins that can also be used as dedicated inputs.
The MACHLV210 inputs and I/O pins have advanced pull-up/pull-down resistors that enable the inputs to be pulled to the last driven state. While it is always a good design practice to tie unused pins high or low, the MACHLV210 pull-up/pull-down resistors provide design security and stability in the event that unused pins are left disconnected.

The PAL Blocks

Each PAL block in the MACHLV210 (Figure 1) contains a 64-product-term logic array, a logic allocator, 8 output macrocells, 8 buried macrocells, and 8 I/O cells. The switch matrix feeds each PAL block with 22 inputs. This makes the PAL block look effectively like an independent "PAL22V16" with 8 buried macrocells.
In addition to the logic product terms, two output enable product terms, an asynchronous reset product term, and an asynchronous preset product term are provided. One of the two output enable product terms can be chosen within each I/O cell in the PAL block. All flip-flops within the PAL block are initialized together.

The Switch Matrix

The MACHLV210 switch matrix is fed by the inputs and feedback signals from the PAL blocks. Each PAL block provides 16 internal feedback signals and $8 \mathrm{I} / \mathrm{O}$ feedback signals. The switch matrix distributes these signals back to the PAL blocks in an efficient manner that also provides for high performance. The design software automatically configures the switch matrix when fitting a design into the device.

The Product-term Array

The MACHLV210 product-term array consists of 64 product terms for logic use, and 4 special-purpose product terms. Two of the special-purpose product terms provide programmable output enable; one provides asynchronous reset, and one provides asynchronous preset.

The Logic Allocator

The logic allocator in the MACHLV210 takes the 64 logic product terms and allocates them to the 16 macrocells as needed. Each macrocell can be driven by up to 16 product terms. The design software automatically configures the logic allocator when fitting the design into the device.
Table 1 illustrates which product term clusters are available to each macrocell within a PAL block. Refer to Figure 1 for cluster and macrocell numbers.

Table 1. Logic Allocation

Macrocell		Available Clusters
Output	Buried	
M0	M1	$\begin{aligned} & \mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2} \\ & \mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3} \end{aligned}$
M_{2}	M3	$\begin{aligned} & \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4} \\ & \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5} \\ & \hline \end{aligned}$
M4	M5	$\begin{aligned} & \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6} \\ & \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7} \end{aligned}$
M ${ }_{6}$	M	$\begin{aligned} & \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8} \\ & \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9} \end{aligned}$
M_{8}	M9	$\begin{aligned} & \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10} \\ & \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11} \end{aligned}$
M_{10}	M 11	$\begin{aligned} & C_{9}, C_{10}, C_{11}, C_{12} \\ & C_{10}, C_{11}, C_{12}, C_{13} \end{aligned}$
M 12	M_{13}	$\begin{aligned} & \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14} \\ & \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15} \\ & \hline \end{aligned}$
M 14	M_{15}	$\begin{aligned} & \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15} \\ & \mathrm{C}_{14}, \mathrm{C}_{15} \end{aligned}$

The Macrocell

The MACHLV210 has two types of macrocell: output and buried. The output macrocells can be configured as either registered, latched, or combinatorial, with programmable polarity. The macrocell provides internal feedback whether configured with or without the flip-flop. The registers can be configured as D-type or T-type, allowing for product-term optimization.
The flip-flops can individually select one of two clock/ gate pins, which are also available as data inputs. The registers are clocked on the LOW-to-HIGH transition of the clock signal. The latch holds its data when the gate input is HIGH, and is transparent when the gate input is LOW. The flip-flops can also be asynchronously initialized with the common asynchronous reset and preset product terms.
The buried macrocells are the same as the output macrocells if they are used for generating logic. In that case, the only thing that distinguishes them from the output macrocells is the fact that there is no I/O cell connection, and the signal is only used internally. The buried macrocell can also be configured as an input register or latch.

The I/O Cell

The I/O cell in the MACHLV210 consists of a three-state output buffer. The three-state buffer can be configured in one of three ways: always enabled, always disabled, or controlled by a product term. If product term control is chosen, one of two product terms may be used to provide the control. The two product terms that are available are common to all I/O cells in a PAL block.

These choices make it possible to use the macrocell as an output, an input, a bidirectional pin, or a three-state output for use in driving a bus.

Benefits of Lower Operating Voltage

The MACHLV210 has an operating voltage range of 3.0 V to 3.6 V. Low voltage allows for lower operating power consumption, longer battery life, and/or smaller batteries for portable applications.

Because power is proportional to the square of the voltage, reduction of the supply voltge from 5.0 V to 3.3 V significantly reduces power consumption. This directly translates to longer battery life for portable applications.

Lower power consumption can also be used to reduce the size and weight of the battery. Thus, $3.3-\mathrm{V}$ designs facilitate a reduction in the form factor.
The MACHLV210 is not designed to interface between $3.3-\mathrm{V}$ and $5.0-\mathrm{V}$ logic. Latch-up may occur if V_{oH} for the MACHLV210 is greater than V_{IH} for the $5.0-\mathrm{V}$ device. Although this scenario is unlikely, interfacing the MACHLV210 with $5.0-\mathrm{V}$ devices is not encouraged without necessary latch-up design precautions.

Figure 1. MACHLV210 PAL Block

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with
Respect to Ground -0.5 V to +5.0 V
DC Input Voltage -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
DC Output or
I/O Pin Voltage -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
Static Discharge Voltage 2001 V
Latchup Current ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) 200 mA
Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Devices
Temperature (T_{A}) Operating
in Free Air $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Supply Voltage (Vcc) with
Respect to Ground
+3.0 V to +3.6 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

| Parameter
 Symbol | Parameter Description | Test Conditions | Min | Typ | Max |
| :---: | :--- | :--- | :--- | :--- | :---: | Unit | V |
| :---: |

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. I/O pin leakage is the worst case of IIL and lozL (or IIH and lozH).
3. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. Vout $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
4. Measured with a 16-bit up/down counter pattern. This pattern is programmed in each PAL block and is capable of being loaded, enabled, and reset.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditions	Typ	Unit
C_{IN}	Input Capacitance	$\mathrm{V} \mathrm{CC}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	6	pF
Cout	Output Capacitance		8	pF

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description					Unit
				Min	Max	
tPD	Input, I/O, or Feedback to Combinatorial Output				12	ns
	Setup Time from Input, I/O, or Feedback to Clock		D-type	9		ns
ts			T-type	10		ns
th	Register Data Hold Time			0		ns
tco	Clock to Output				8	ns
twL	Clock Width		LOW	5		ns
twh			HIGH	6		ns
$f_{\text {max }}$	Maximum Frequency (Note 1)	External Feedback	D-type	58.8		MHz
			T-type	55.6		MHz
		Internal Feedback (fcnt)	D-type	83.3		MHz
			T-type	76.9		MHz
		No Feedback (fcnt)		90.9		MHz
tsL	Setup Time from Input, I/O, or Feedback to Gate			9		ns
thL	Latch Data Hold Time			0		ns
tgo	Gate to Output				9	ns
tgwL	Gate Width LOW			5		ns
tpDL	Input, I/O, or Feedback to Output Through Transparent Input or Output Latch				15	ns
tsir	Input Register Setup Time			2		ns
thir	Input Register Hold Time			1.5		ns
tico	Input Register Clock to Combinatorial Output				15	ns
tics	Input Register Clock to Output Register Setup		D-type	12		ns
			T-type	13		ns
twicl	Input Register Clock Width		LOW	5		ns
twich			HIGH	6		ns
$\mathrm{f}_{\text {MAXIR }}$	Maximum Input Register Frequency ${ }^{\text {1/(twICL }+ \text { twich })}$			90.9		MHz
tsIL	Input Latch Setup Time			2		ns
thil	Input Latch Hold Time			1.5		ns
tigo	Input Latch Gate to Combinatorial Output				17	ns
tigol	Input Latch Gate to Output Through Transparent Output Latch				19	ns
tstl	Setup Time from Input, I/O, or Feedback Through Transparent Input Latch to Output Latch Gate			10		ns
tigs	Input Latch Gate to Output Latch Setup			13		ns

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2) (continued)

Parameter Symbol	Parameter Description	-12		Unit
		Min	Max	
$\mathrm{twigL}^{\text {w }}$	Input Latch Gate Width LOW	5		ns
tpdL	Input, I/O, or Feedback to Output Through Transparent Input and Output Latches		17	ns
$\mathrm{t}_{\text {AR }}$	Asynchronous Reset to Registered or Latched Output		16	ns
$\mathrm{t}_{\text {ARW }}$	Asynchronous Reset Width (Note 1)	12		ns
$\mathrm{t}_{\text {ARR }}$	Asynchronous Reset Recovery Time (Note 1)	12		ns
t_{AP}	Asynchronous Preset to Registered or Latched Output		16	ns
tapw	Asynchronous Preset Width (Note 1)	12		ns
$\mathrm{t}_{\text {APR }}$	Asynchronous Preset Recovery Time (Note 1)	12		ns
tea	Input, I/O, or Feedback to Output Enable		12	ns
$\mathrm{t}_{\text {ER }}$	Input, I/O, or Feedback to Output Disable		12	ns

Notes:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.
2. See Switching Test Circuit, for test conditions.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with
Respect to Ground -0.5 V to +5.0 V
DC Input Voltage -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
DC Output or
I/O Pin Voltage -0.5 V to $\mathrm{V} \mathrm{cc}+0.5 \mathrm{~V}$
Static Discharge Voltage 2001 V
Latchup Current ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) 200 mA
Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Devices

Temperature (T_{A}) Operating
in Free Air $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Supply Voltage (Vcc) with
Respect to Ground
+3.0 V to +3.6 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

| Parameter
 Symbol | Parameter Description | Test Conditions | Min | Typ | Max |
| :---: | :--- | :--- | :---: | :---: | :---: | Unit | V |
| :---: |

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. I/O pin leakage is the worst case of IIL and lozL (or IIH and lozH).
3. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. Vout $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
4. Measured with a 16 -bit up/down counter pattern. This pattern is programmed in each PAL block and capable of being loaded, enabled, and reset.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditions	Typ	Unit
C_{IN}	Input Capacitance	$\mathrm{V} \mathrm{CC}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	6	pF
Cout	Output Capacitance		8	pF

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description				-1				Unit
					Min	Max	Min	Max	
tpd	Input, I/O, or Feedback to Combinatorial Output (Note 3)					15		20	ns
	Setup Time from Input, I/O, or Feedback to Clock			D-type	10		14		ns
ts				T-type	11		15		ns
th	Register Data Hold Time				0		0		ns
tco	Clock to Output (Note 3)					10		12	ns
twL	Clock Width			LOW	5		7		ns
twh				HIGH	6		8		ns
$f_{\text {max }}$	Maximum Frequency (Note 1)	External	1/(ts + tco)	D-type	50		38.5		MHz
		External Feedback		T-type	47.6		37		MHz
		Internal Feedback (fCNT)		D-type	66.6		50		MHz
				T-type	62.5		47.6		MHz
		No Feedback	1/(twL + twh)		90.9		66.7		MHz
tsL	Setup Time from Input, I/O, or Feedback to Gate				10		14		ns
thL	Latch Data Hold Time				0		0		ns
tgo	Gate to Output (Note 3)					11		15	ns
tGWL	Gate Width LOW				5		7		ns
tpdL	Input, I/O, or Feedback to Output Through					17		23	ns
tsin	Input Register Setup Time				2.5		3		ns
thir	Input Register Hold Time				1.5		3		ns
tico	Input Register Clock to Combinatorial Output					18		24	ns
tics	Input Register Clock to Output Register Setup			D-type	13		27		ns
				T-type	14		20		ns
twICL	Input Register Clock Width			LOW	5		7		ns
twich				HIGH	6		8		ns
$\mathrm{f}_{\text {MAXIR }}$	Maximum Input Register Frequency		cy 1 1/(twicL		90.9		66.7		MHz
tsIL	Input Latch Setup Time				2.5		3		ns
thil	Input Latch Hold Time				1.5		2		ns
tigo	Input Latch Gate to Combinatorial Output					19		25	ns
tigol	Input Latch Gate to Output Through Transparent Output Latch					22		29	ns
tsLL	Setup Time from Input, I/O, or Feedback Through Transparent Input Latch to Output Latch Gate				12		16		ns
tigs	Input Latch Gate to Output Latch Setup				14		18		ns

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2) (continued)

Parameter Symbol	Parameter Description	-15		-20		Unit
		Min	Max	Min	Max	
twigl	Input Latch Gate Width LOW	5		7		ns
tpdLL	Input, I/O, or Feedback to Output Through Transparent Input and Output Latches		21		28	ns
$\mathrm{taR}_{\text {A }}$	Asynchronous Reset to Registered or Latched Output		20		26	ns
$t_{\text {ARW }}$	Asynchronous Reset Width (Note 1)	15		20		ns
$\mathrm{taRR}^{\text {a }}$	Asynchronous Reset Recovery Time (Note 1)	15		20		ns
$\mathrm{tap}_{\text {A }}$	Asynchronous Preset to Registered or Latched Output		20		26	ns
tapw	Asynchronous Preset Width (Note 1)	15		20		ns
$\mathrm{t}_{\text {APR }}$	Asynchronous Preset Recovery Time (Note 1)	15		20		ns
tea	Input, I/O, or Feedback to Output Enable (Note 3)		15		20	ns
ter	Input, I/O, or Feedback to Output Disable (Note 3)		15		20	ns

Notes:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.
2. See Switching Test Circuit for test conditions.
3. Parameters measured with 16 outputs switching.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with
Respect to Ground -0.5 V to +5.0 V
DC Input Voltage -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
DC Output or
I/O Pin Voltage -0.5 V to $\mathrm{V} \mathrm{cc}+0.5 \mathrm{~V}$
Static Discharge Voltage 2001 V
Latchup Current ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) 200 mA
Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

INDUSTRIAL OPERATING RANGES

Temperature (T_{A}) Operating in Free Air \qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Supply Voltage (V_{cc}) with Respect to Ground +3.0 V to +3.6 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over INDUSTRIAL operating ranges unless otherwise specified

| Parameter
 Symbol | Parameter Description | Test Conditions | Min | Typ | Max |
| :---: | :--- | :--- | :--- | :--- | :---: | Unit | V |
| :---: |

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. I/O pin leakage is the worst case of IIL and lozL (or IIH and lozH).
3. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. Vout $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
4. Measured with a 16 -bit up/down counter pattern. This pattern is programmed in each PAL block and capable of being loaded, enabled, and reset.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditions	Typ	Unit
C_{IN}	Input Capacitance	$\mathrm{V} \mathrm{CC}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	6	pF
Cout	Output Capacitance		8	pF

SWITCHING CHARACTERISTICS over INDUSTRIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description					-18		-24		Unit
						Min	Max	Min	Max	
tpD	Input, I/O, or Feedback to Combinatorial Output (Note 3)						18		24	ns
ts	Setup Time from Input, I/O, or Feedback to Clock				D-type	12		17		ns
					T-type	13.5		18		ns
t_{H}	Register Data Hold Time					0		0		ns
tco	Clock to Output (Note 3)						12		14.5	ns
twL	Clock Width				LOW	6		8.5		ns
twh					HIGH	7.5		10		ns
$\mathrm{f}_{\text {MAX }}$	Maximum Frequency (Note 1)	Ext	1/(ts + tco)		D-type	40		30.5		MHz
					T-type	38		29.5		MHz
		Internal Feedback (fCNT)			D-type	53		40		MHz
					T-type	50		38		MHz
		No Feedback	1/(twl + twh)			72.5		53		MHz
tsL	Setup Time from Input, I/O, or Feedback to Gate					12		17		ns
thL	Latch Data Hold Time					0		0		ns
tgo	Gate to Output (Note 3)						13.5		18	ns
tgwL	Gate Width LOW					6		8.5		ns
tpdL	Input, I/O, or Feedback to Output Through Latch						20.5		28	ns
tsir	Input Register Setup Time					3		4		ns
thir	Input Register Hold Time					2.5		4		ns
tico	Input Register Clock to Combinatorial Output						22		29	ns
tics	Input Register Clock to Output Register Setup				D-type	16		32.5		ns
					T-type	17		24		ns
twicl	Input Register Clock Width				LOW	6		8.5		ns
twich					HIGH	7.5		10		ns
$\mathrm{f}_{\text {MAXIR }}$	Maximum Input Register Frequency			1/(twicL		72.5		53		MHz
tsIL	Input Latch Setup Time					3		4		ns
thil	Input Latch Hold Time					2.5		3		ns
tigo	Input Latch Gate to Combinatorial Output						23		30	ns
tigol	Input Latch Gate to Output Through Transparent Output Latch						26.5		34.5	ns
tsLL	Setup Time from Input, I/O, or Feedback Through Transparent Input Latch to Output Latch Gate					14.5		19.5		ns
tigs	Input Latch Gate to Output Latch Setup					17		22		ns

SWITCHING CHARACTERISTICS over INDUSTRIAL operating ranges (Note 2) (continued)

Parameter Symbol	Parameter Description	-18		-24		Unit
		Min	Max	Min	Max	
twigL	Input Latch Gate Width LOW	6		8.5		ns
tpdil	Input, I/O, or Feedback to Output Through Transparent Input and Output Latches		25.5		34	ns
$\mathrm{t}_{\text {AR }}$	Asynchronous Reset to Registered or Latched Output		24		31.5	ns
tarw	Asynchronous Reset Width (Note 1)	18		24		ns
$\mathrm{taRR}^{\text {a }}$	Asynchronous Reset Recovery Time (Note 1)	18		24		ns
$t_{\text {AP }}$	Asynchronous Preset to Registered or Latched Output		24		31.5	ns
tapw	Asynchronous Preset Width (Note 1)	18		24		ns
tAPR	Asynchronous Preset Recovery Time (Note 1)	18		24		ns
tea	Input, I/O, or Feedback to Output Enable (Note 3)		18		24	ns
ter	Input, I/O, or Feedback to Output Disable (Note 3)		18		24	ns

Notes:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.
2. See Switching Test Circuit at the back of this Data Sheet for test conditions.
3. Parameters measured with 16 outputs switching.

WAVEFORM	INPUTS Must be Steady	OUTPUTS Steady		
May				
Change				
from H to L			\quad	Will be
:---				
Changing				
from H to L				

SWITCHING TEST CIRCUIT*

Specification	\mathbf{S}_{1}	C	Commercial		Measured Output Value
			\mathbf{R}_{1}	R_{2}	
tpd, tco	Closed	30 pF	1.6 K	1.6 K	1.5 V
tea	$\begin{aligned} & \mathrm{Z} \rightarrow \mathrm{H}: \text { Open } \\ & \mathrm{Z} \rightarrow \mathrm{~L}: \text { Closed } \end{aligned}$				1.5 V
ter	$\begin{aligned} & \mathrm{H} \rightarrow \mathrm{Z} \text { : Open } \\ & \mathrm{L} \rightarrow \mathrm{Z} \text { : Closed } \end{aligned}$	5 pF			$\begin{aligned} & \mathrm{H} \rightarrow \mathrm{Z}: \mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V} \\ & \mathrm{~L} \rightarrow \mathrm{Z}: \mathrm{VOL}_{\mathrm{oL}}+0.5 \mathrm{~V} \end{aligned}$

*Switching several outputs simultaneously should be avoided for accurate measurement.

TYPICAL CURRENT VS. VOLTAGE (I-V) CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Output, LOW

Output, HIGH

17908D-7
Input

TYPICAL Icc CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

The selected "typical" pattern is a 16-bit up/down counter. This pattern is programmed in each PAL block and is capable of being loaded, enabled, and reset.
Maximum frequency shown uses internal feedback and a D-type register.

ENDURANCE CHARACTERISTICS

The MACHLV210 is manufactured using our advanced Electrically Erasable process. This technology uses an EE cell to replace the fuse link used in bipolar
parts. As a result, the device can be erased and reprogrammed, a feature which allows 100% testing at the factory.

Parameter Symbol	Parameter Description	Test Conditions	Min	Unit
tDR	Min Pattern Data Retention Time	Max Storage Temperature	Max Operating Temperature	20
	Max Reprogramming Cycles	Normal Programming Conditions	100	Years

INPUT/OUTPUT EQUIVALENT SCHEMATICS

17908D-9

TYPICAL THERMAL CHARACTERISTICS

Measured at $25^{\circ} \mathrm{C}$ ambient. These parameters are not tested.

Parameter Symbol	Parameter Description		Typ	Units
			PLCC	
$\theta \mathrm{jc}$	Thermal impedance, junction to case		15	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta \mathrm{ja}$	Thermal impedance, junction to ambient		40	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Ojma	Thermal impedance, junction to ambient with air flow	200 Ifpm air	36	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		400 Ifpm air	33	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		600 Ifpm air	31	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		800 Ifpm air	29	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Plastic Өjc Considerations

The data listed for plastic $\theta j c$ are for reference only and are not recommended for use in calculating junction temperatures. The heat-flow paths in plastic-encapsulated devices are complex, making the $\theta j c$ measurement relative to a specific location on the package surface. Tests indicate this measurement reference point is directly below the die-attach area on the bottom center of the package. Furthermore, θj c tests on packages are performed in a constant-temperature bath, keeping the package surface at a constant temperature. Therefore, the measurements can only be used in a similar environment.

SWITCHING WAVEFORMS

Registered Input (MACH 2 and 4)

Input Register to Output Register Setup (MACH 2 and 4)

Notes:

1. $V_{T}=1.5 \mathrm{~V}$.
2. Input pulse amplitude 0 V to 3.0 V .
3. Input rise and fall times 2 ns-4 ns typical.

SWITCHING WAVEFORMS

Latched Input (MACH 2 and 4)

Latched Input and Output
(MACH 2, 3, and 4)

Notes:

1. $V_{T}=1.5 \mathrm{~V}$.
2. Input pulse amplitude 0 V to 3.0 V
3. Input rise and fall times 2 ns-4 ns typical.

SWITCHING WAVEFORMS

17908D-19
Input Register Clock Width (MACH 2 and 4)

Asynchronous Reset

17908D-21

Asynchronous Preset

Input, I/O, or
Feedback

Output Disable/Enable

Notes:

1. $V_{T}=1.5 \mathrm{~V}$.
2. Input pulse amplitude 0 V to 3.0 V .
3. Input rise and fall times 2 ns-4 ns typical.

$f_{\text {max }}$ PARAMETERS

The parameter $f_{\text {Max }}$ is the maximum clock rate at which the device is guaranteed to operate. Because the flexibility inherent in programmable logic devices offers a choice of clocked flip-flop designs, $\mathrm{f}_{\text {max }}$ is specified for three types of synchronous designs.

The first type of design is a state machine with feedback signals sent off-chip. This external feedback could go back to the device inputs, or to a second device in a multi-chip state machine. The slowest path defining the period is the sum of the clock-to-output time and the input setup time for the external signals ($\mathrm{t}+\mathrm{tco}$). The reciprocal, $f_{\text {max }}$, is the maximum frequency with external feedback or in conjunction with an equivalent speed device. This fmax is designated "fmax external."

The second type of design is a single-chip state machine with internal feedback only. In this case, flip-flop inputs are defined by the device inputs and flip-flop outputs. Under these conditions, the period is limited by the internal delay from the flip-flop outputs through the internal feedback and logic to the flip-flop inputs. This fmax is designated "fmax internal". A simple internal counter is a good example of this type of design; therefore, this parameter is sometimes called "font."

The third type of design is a simple data path application. In this case, input data is presented to the flip-flop and clocked through; no feedback is employed. Under these conditions, the period is limited by the sum of the data setup time and the data hold time ($\mathrm{ts}+\mathrm{t} \boldsymbol{\mathrm { H }}$). However, a lower limit for the period of each fmax type is the minimum clock period (twh + twL). Usually, this minimum clock period determines the period for the third f max , designated "fmax no feedback."

For devices with input registers, one additional $f_{\text {max }}$ parameter is specified: $f_{\text {maxir. }}$. Because this involves no feedback, it is calculated the same way as $f_{\text {max }}$ no feedback. The minimum period will be limited either by the sum of the setup and hold times (tsir $+\mathrm{t}_{\text {HIR }}$) or the sum of the clock widths (twicl + twich). The clock widths are normally the limiting parameters, so that $f_{\text {maxir }}$ is specified as $1 /($ twicl + twich). Note that if both input and output registers are use in the same path, the overall frequency will be limited by tics.

All frequencies except f max internal are calculated from other measured AC parameters. $f_{\text {max }}$ internal is measured directly.

POWER-UP RESET

The MACH devices have been designed with the capability to reset during system power-up. Following powerup, all flip-flops will be reset to LOW. The output state will depend on the logic polarity. This feature provides extra flexibility to the designer and is especially valuable in simplifying state machine initialization. A timing diagram and parameter table are shown below. Due to the synchronous operation of the power-up reset and the
wide range of ways $\mathrm{V}_{\text {cc }}$ can rise to its steady state, two conditions are required to insure a valid power-up reset. These conditions are:

1. The Vcc rise must be monotonic.
2. Following reset, the clock input must not be driven from LOW to HIGH until all applicable input and feedback setup times are met.

Parameter Symbol	Parameter Descriptions	Max	Unit
tPR	Power-Up Reset Time	10	$\mu \mathrm{~s}$
ts	Input or Feedback Setup Time	See Switching Characteristics	
twL	Clock Width LOW		

17908D-25

Power-Up Reset Waveform

USING PRELOAD AND OBSERVABILITY

In order to be testable, a circuit must be both controllable and observable. To achieve this, the MACH devices incorporate register preload and observability.

In preload mode, each flip-flop in the MACH device can be loaded from the $1 / \mathrm{O}$ pins, in order to perform functional testing of complex state machines. Register preload makes it possible to run a series of tests from a known starting state, or to load illegal states and test for proper recovery. This ability to control the MACH device's internal state can shorten test sequences, since it is easier to reach the state of interest.

The observability function makes it possible to see the internal state of the buried registers during test by overriding each register's output enable and activating the output buffer. The values stored in output and buried registers can then be observed on the I/O pins. Without this feature, a thorough functional test would be impossible for any designs with buried registers.

While the implementation of the testability features is fairly straightforward, care must be taken in certain instances to insure valid testing.

One case involves asynchronous reset and preset. If the MACH registers drive asynchronous reset or preset lines and are preloaded in such a way that reset or preset are asserted, the reset or preset may remove the preloaded data. This is illustrated in Figure 2. Care should be taken when planning functional tests, so that states that will cause unexpected resets and presets are not preloaded.

Another case to be aware of arises in testing combinatorial logic. When an output is configured as combinatorial, the observability feature forces the output into registered mode. When this happens, all product terms are forced to zero, which eliminates all combinatorial data. For a straight combinatorial output, the correct value will be restored after the preload or observe function, and there will be no problem. If the function implements a combinatorial latch, however, it relies on feedback to hold the correct value, as shown in Figure 3. As this value may change during the preload or observe operation, you cannot count on the data being correct after the operation. To insure valid testing in these cases, outputs that are combinatorial latches should not be tested immediately following a preload or observe sequence, but should first be restored to a known state.
All MACH 2 devices support both preload and observability.

Contact individual programming vendors in order to verify programmer support.

Figure 2. Preload/Reset Conflict
17908D-26

Figure 3. Combinatorial Latch

PHYSICAL DIMENSIONS*

PL 044
44-Pin Plastic Leaded Chip Carrier (measured in inches)

*For reference only. BSC is an ANSI standard for Basic Space Centering.

