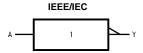


October 1996 Revised June 2000

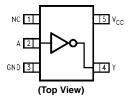
NC7SZ04 TinyLogic™ UHS Inverter

General Description

The NC7SZ04 is a single inverter from Fairchild's Ultra High Speed Series of TinyLogicT. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad V_{CC} operating range. The device is specified to operate over the 1.8V to 5.5V V_{CC} range. The inputs and output are high impedance when V_{CC} is 0V. Inputs tolerate voltages up to 6V independent of V_{CC} operating voltage.


Features

- Space saving SOT23 or SC70 5-lead package
- Ultra High Speed; t_{PD} 2.4 ns typ into 50 pF at 5V V_{CC}
- High Output Drive; ±24 mA at 3V V_{CC}
- \blacksquare Broad V_{CC} Operating Range; 1.8V to 5.5V
- \blacksquare Matches the performance of LCX when operated at 3.3V V_{CC}
- Power down high impedance inputs/output
- Overvoltage tolerant inputs facilitate 5V to 3V translation
- Patented noise/EMI reduction circuitry implemented


Ordering Code:

Order	Package	Product Code	Package Description	Supplied As	
Number	Number	Top Mark	Fackage Description		
NC7SZ04M5	MA05B	7Z04	5-Lead SOT23, JEDEC MO-178, 1.6mm	250 Units on Tape and Reel	
NC7SZ04M5X	MA05B	7Z04	5-Lead SOT23, JEDEC MO-178, 1.6mm	3k Units on Tape and Reel	
NC7SZ04P5	MAA05A	Z04	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	250 Units on Tape and Reel	
NC7SZ04P5X	MAA05A	Z04	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel	

Logic Symbol

Connection Diagram

Pin Descriptions

Pin Names	Description
Α	Input
Y	Output
NC	No Connect

Function Table

Y =	= A
Input	Output
Α	Y
L	Н
Н	L

H = HIGH Logic Level L = LOW Logic Level

 $\label{eq:total-conductor} \mbox{TinyLogic}^{\mbox{\tiny TM}} \mbox{ is a trademark of Fairchild Semiconductor Corporation.}$

Absolute Maximum Ratings(Note 1)

DC Input Diode Current (I_{IK})

 $@V_{IN} < -0.5V \\ @V_{IN} > 6V \\ -50 \text{ mA} \\ +20 \text{ mA}$

DC Output Diode Current (I_{OK})

Junction Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Power Dissipation (P_D) @ +85°C

SOT23-5 200 mW SOT70-5 150 mW

Recommended Operating

Conditions (Note 2)

Input Rise and Fall Time (t_r, t_f)

$$\begin{split} &V_{CC} = 1.8 \text{V, } 2.5 \text{V } \pm 0.2 \text{V} & 0 \text{ ns/V to } 20 \text{ ns/V} \\ &V_{CC} = 3.3 \text{V } \pm 0.3 \text{V} & 0 \text{ ns/V to } 10 \text{ ns/V} \end{split}$$

0 ns/V to 5 ns/V

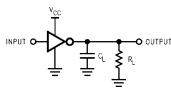
 $V_{CC} = 5.0V \; \pm 0.5V$ Thermal Resistance (θ_{JA})

SOT23–5 300°C/W SC70–5 425°C/W

Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics


Symbol	Parameter	V _{CC}		$T_A = +25^{\circ}C$		T _A = -40°	C to +85°C	Units	Conditions	
Syllibol	Parameter	(V)	Min	Тур	Max	Min	Max	Units	Co	nations
V _{IH}	HIGH Level Input Voltage	1.8	0.75 V _{CC}			0.75 V _{CC}		V		
		2.3 to 5.5	0.7 V _{CC}			0.7 V _{CC}		v		
V _{IL}	LOW Level Input Voltage	1.8			0.25 V _{CC}		0.25 V _{CC}	V		
		2.3 to 5.5			$0.3\mathrm{V}_{\mathrm{CC}}$		$0.3~\mathrm{V}_{\mathrm{CC}}$	·		
V _{OH}	HIGH Level Output Voltage	1.8	1.7	1.8		1.7				
		2.3	2.2	2.3		2.2		V	$V_{IN} = V_{IL} \qquad I_{OH} = -100$	Ja = _100 uA
		3.0	2.9	3.0		2.9		v		ΙΟΗ = -100 μΑ
		4.5	4.4	4.5		4.4				
		2.3	1.9	2.15		1.9				$I_{OH} = -8 \text{ mA}$
		3.0	2.4	2.80		2.4		V		$I_{OH} = -16 \text{ mA}$
		3.0	2.3	2.68		2.3				$I_{OH} = -24 \text{ mA}$
		4.5	3.8	4.20		3.8				$I_{OH} = -32 \text{ mA}$
V _{OL}	LOW Level Output Voltage	1.8		0.0	0.1		0.1		V _{IN} =V _{IH} I _{OL} = 100 μ	
		2.3		0.0	0.1		0.1	V		I _{OL} = 100 μA
		3.0		0.0	0.1		0.1	·	VIN-VIH	ΙΟΕ – 100 μΑ
		4.5		0.0	0.1		0.1			
		2.3		0.10	0.3		0.3			$I_{OL} = 8 \text{ mA}$
		3.0		0.15	0.4		0.4	V		$I_{OL} = 16 \text{ mA}$
		3.0		0.22	0.55		0.55	l		$I_{OL} = 24 \text{ mA}$
		4.5		0.22	0.55		0.55			$I_{OL} = 32 \text{ mA}$
I _{IN}	Input Leakage Current	0 to 5.5			±1		±10	μΑ	$0 \le V_{IN} \le 5$.	5V
I _{OFF}	Power Off Leakage Current	0.0			1		10	μΑ	V _{IN} or V _{OUT} = 5.5V	
I _{CC}	Quiescent Supply Current	1.8 to 5.5		_	2.0		20	μΑ	$V_{IN} = 5.5V$, GND

AC Electrical Characteristics

Symbol	Parameter	v _{cc}	T _A = +25°C			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	Fig. No.
	rarameter	(V)	Min	Тур	Max	Min	Max	Oiiita	Conditions	1 ig. 140.
t _{PLH}	Propagation Delay	1.8	2.0	4.4	9.5	2.0	10			
t _{PHL}		2.5 ± 0.2	0.8	2.9	6.5	0.8	7.0	ns	C _L = 15 pF	Figures
		3.3 ± 0.3	0.5	2.1	4.5	0.5	4.7	115	$R_L = 1 M\Omega$	1, 3
		5.0 ± 0.5	0.5	1.8	3.9	0.5	4.1			
t _{PLH}	Propagation Delay	3.3 ± 0.3	1.5	2.9	5.0	1.5	5.2	ns	$C_L = 50 \text{ pF}$	Figures
t_{PHL}		5.0 ± 0.5	0.8	2.4	4.3	0.8	4.5	113	$R_L = 500\Omega$	1, 3
C _{IN}	Input Capacitance	0		4				pF		
C _{PD}	Power Dissipation Capacitance	3.3		20				pF	(Note 3)	Figure 2
		5.0		26				рі		i igui e z

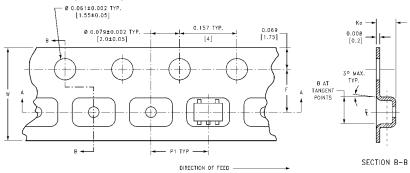
Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression:
I_{CCD} = (CPD) (V_{CC}) (f_{IN}) + (I_{CC} static)

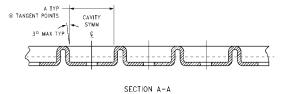
AC Loading and Waveforms

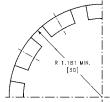

 C_L includes load and stray capacitance Input PRR = 1.0 MHz, t_W = 500 ns

FIGURE 1. AC Test Circuit

 $\begin{aligned} & \text{Input} = \text{AC Waveform; } t_r = t_f = 1.8 \text{ ns;} \\ & \text{PRR} = 10 \text{ MHz; } \text{Duty Cycle} = 50\% \end{aligned}$

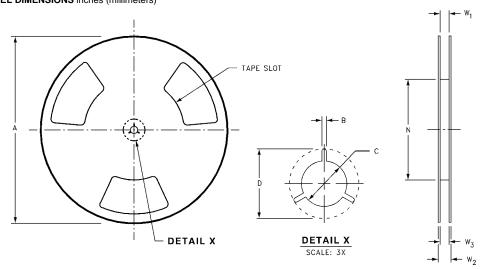

FIGURE 2. I_{CCD} Test Circuit




Tape and Reel Specification

TAFE FORMAT					
Package	Tape	Number	Cavity	Cover Tape	
Designator	Section	Cavities	Status	Status	
	Leader (Start End)	125 (typ)	Empty	Sealed	
M5, P5	Carrier	250	Filled	Sealed	
	Trailer (Hub End)	75 (typ)	Empty	Sealed	
	Leader (Start End)	125 (typ)	Empty	Sealed	
M5X, P5X	Carrier	3000	Filled	Sealed	
	Trailer (Hub End)	75 (typ)	Empty	Sealed	

TAPE DIMENSIONS inches (millimeters)



BEND RADIUS NOT TO SCALE

Package	Tape Size	DIM A	DIM B	DIM F	DIM K _o	DIM P1	DIM W
SC70-5	8 mm	0.093	0.096	0.138 ± 0.004	0.053 ± 0.004	0.157	0.315 ± 0.004
	0 111111	(2.35)	(2.45)	(3.5 ± 0.10)	(1.35 ± 0.10)	(4)	(8 ± 0.1)
SOT23-5	0 mm	0.130	0.130	0.138 ± 0.002	0.055 ± 0.004	0.157	0.315 ± 0.012
50123-5	8 mm	(3.3)	(3.3)	(3.5 ± 0.05)	(1.4 ± 0.11)	(4)	(8 ± 0.3)

Tape and Reel Specification (Continued) REEL DIMENSIONS inches (millimeters)

Tape Size	Α	В	С	D	N	W1	W2	W3
0	7.0	0.059	0.512	0.795	2.165	0.331 + 0.059/-0.000	0.567	W1 + 0.078/-0.039
8 mm	(177.8)	(1.50)	(13.00)	(20.20)	(55.00)	(8.40 + 1.50/-0.00)	(14.40)	(W1 + 2.00/-1.00)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) -A-2.00±0.20 + 0.65 + 5 4 1.9 B- 1.25±0.10 2.10±0.10 0.4 min -0.20 ^{+0.10} -0.05 0.25 LAND PATTERN RECOMMENDATION max 0.1 🚱 SEE DETAIL A 0.9±.10 0.95±0.15 0.10 6.00° △ max 0.1 R0.14 GAGE PLANE R0.10 0°-30° 0.20 6.00 0.425 NOMINAL **DETAIL A**

NOTES:

- A. CONFORMS TO EIAJ REGISTERED OUTLINE DRAWING SC88A.
- B. DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH.

MAA05ARevC

C. DIMENSIONS ARE IN MILLIMETERS.

5-Lead SC70, EIAJ SC-88a, 1.25mm Wide Package Number MAA05A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com