PLL/OSC/MIX IC for Digital Tuner

Description

The CXA3275Q is a monolithic tuner IC for single conversion system digital broadcast tuners. This IC integrates three sets of local oscillator and mixer circuits (VHF Low Band/ VHF High Band/UHF Band), an IF amplifier and a tuning PLL onto a single chip, enabling further miniaturization of the tuner.

Features

- Balanced oscillators with low-phase noise and excellent oscillation stability (UHF: 4 pins, VHF: 2 pins)
- High linearity mixer and IF amplifier
- IF output switchable between balanced and unbalanced
- Low-phase noise PLL synthesizer (3-wire bus format)
- Reference frequency programmable in 4 bits
- On-chip high voltage drive transistor for charge pump
- On-chip 4-output band switch (PNP transistor on/off)
- 40-pin QFP package

Applications

Digital CATV tuners

Absolute Maximum Ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

- Supply voltage Vcc, PLLVcc -0.3 to $+6.0 \quad$ V IFVcc $\quad-0.3$ to $+6.0 \quad$ V
- Storage temperature Tstg $\quad-55$ to $+150 \quad{ }^{\circ} \mathrm{C}$
- Allowable power dissipation PD
1.58

W
(when mounted on a printed circuit board)

Operating Conditions

$\begin{array}{cccc}\text { - Supply voltage } \quad \begin{array}{c}\text { Vcc, PLLVcc } \\ \text { IFVcc }\end{array} & 4.5 \text { to } 5.5 & \text { V } \\ \text { - Operating temperature } & 4.5 \text { to } 5.5 & \text { V } \\ \text { Topr } & -40 \text { to }+80 & { }^{\circ} \mathrm{C}\end{array}$

Structure

Bipolar silicon monolithic IC

Digit CATV tuners

[^0]Take care when handling the IC.
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram and Pin Configuration

Pin Description and Equivalent Circuit

\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& \text { Pin } \\
\& \text { No. }
\end{aligned}
\] \& Symbol \& Pin voltage [V] \& Equivalent circuit \& Description \\
\hline 1
2 \& IFOUT1
IFOUT2 \& 2.5 \& \& \begin{tabular}{l}
IF outputs. \\
IFOUT1 and IFOUT2 output a balanced signal. \\
When taking a signal as an unbalanced output, connect the pin not used for output to IFVcc. At this time the output stage current is saved.
\end{tabular} \\
\hline 3 \& IFVcc \& - \& \& IF amplifier power supply. \\
\hline 4 \& IFGND \& - \& \& IF amplifier GND. \\
\hline 5
6 \& VLOSC2 \& 2.5
2.5 \& \& External resonance circuit connection for VL oscillator. \\
\hline 7
8 \& VHOSC2 \& 2.5

2.5 \& \& External resonance circuit connection for VH oscillator.

\hline 9 \& UOSCB2 \& | UHF: 2.2 |
| :--- |
| VL/VH: 2.3 | \& \&

\hline 10 \& UOSCE2 \& UHF: 1.5 VL/VH: - \& \& External resonance circuit

\hline 11 \& UOSCE1 \& UHF: 1.5 VL/VH: - \& \& connection for UHF oscillator.

\hline 12 \& UOSCB1 \& UHF: 2.2 VL/VH: 2.3 \& \&

\hline 13 \& RFGND \& - \& \& Analog GND.

\hline
\end{tabular}

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	Pin voltage [V]	Equivalent circuit	Description
14	IFIN2	2.7		IF inputs.
15	IFIN1	2.7		
16	GND	0		GND
17	MIXOUT2	-		
18	MIXOUT1	-		
19	Vcc	-		Band switch, mixer and local oscillator circuit power supply.
20	UIN2	VL/VH: 0 UHF: 1.9		
21	UIN1	VL/VH: 0 UHF: 1.9		
22	VHIN2	$\begin{aligned} & \text { VH: } 3 \\ & \text { VL: } 3.16 \\ & \text { UHF: } 3.24 \end{aligned}$		
23	VHIN1	$\begin{aligned} & \text { VH: } 3 \\ & \text { VL: } 3.16 \\ & \text { UHF: } 3.24 \end{aligned}$	(22)(24)	VH and VL inputs.
24	VLIN2	$\begin{aligned} & \text { VH: } 3.16 \\ & \text { VL: } 3 \\ & \text { UHF: } 3.24 \end{aligned}$		VH and VLinputs.
25	VLIN1	$\begin{aligned} & \text { VH: } 3.16 \\ & \text { VL: } 3 . \\ & \text { UHF: } 3.24 \end{aligned}$		

\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& \text { Pin } \\
\& \text { No. }
\end{aligned}
\] \& Symbol \& Pin voltage [V] \& Equivalent circuit \& Description \\
\hline 26
29 \& BS1
BS4 \& \[
\begin{aligned}
\& \text { ON: } 4.9 \\
\& \text { OFF: } 0
\end{aligned}
\] \& \& \begin{tabular}{l}
Pin 26: Band switch 1 output. Pin 29: Band switch 4 output. \\
The pin corresponding to the band selected by the data goes High.
\end{tabular} \\
\hline 27
28 \& BS2

BS3 \& \[
$$
\begin{aligned}
& \text { ON: } 4.9 \\
& \text { OFF: } 0
\end{aligned}
$$

\] \& \& | Pin 27: Band switch 2 output. Pin 28: Band switch 3 output. |
| :--- |
| The pin corresponding to the band selected by the data goes High. |

\hline 30 \& NC \& - \& \& NC.

\hline 31 \& PLLVcc \& - \& \& PLL Vcc.

\hline 32
33 \& CP

VT \& -

- \& \& | Charge pump output. Connects the loop filter. |
| :--- |
| Transistor open collector output for varicap diode drive. Connects the loop filter. |

\hline 34 \& XI \& 3.1 \& \& External reference clock input Connects the crystal when used as a reference oscillator.

\hline 35 \& XO \& 3.0 \& \& Connects the crystal when used as a reference oscillator.

\hline 36 \& PLLGND \& - \& \& PLL GND.

\hline
\end{tabular}

Pin No.	Symbol	Pin voltage [V]	Equivalent circuit	Description
37	LOCK	5.0 (lock) 0.2 (unlock)		Lock detection. High when locked, Low when unlocked.
38	SDA	-		Data input.
39	SCL	-		Clock input.
40	CE	$\begin{gathered} 1.25 \\ \text { (when open) } \end{gathered}$		Enable pin.

Electrical Characteristics (See the Electrical Characteristics Measurement Circuit.)
$\left(\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{IFVcc}=5 \mathrm{~V}, \mathrm{PLLVcc}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Circuit Current

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
Circuit current	Iccv1	During VHF operation Unbalanced output Band switch output open	Iccu1	During UHF operation Unbalanced output Band switch output open	80	113
	Iccv2	During VHF operation Balanced output Band switch output open	85	120	151	mA
	Iccu2	During UHF operation Balanced output Band switch output open	91	130	170	mA
		100	137	177	mA	

OSC/MIX/IF Amplifier Block

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
Conversion gain $1^{* 1}$ (Unbalanced)	CG1-1	VL operation $\mathrm{frF}^{\text {a }}=50 \mathrm{MHz}$, fiF $=39 \mathrm{MHz}$	18.5	21.5	25	dB
	CG1-2	VL operation $\mathrm{frF}^{\text {a }}=150 \mathrm{MHz}$, fiF $=39 \mathrm{MHz}$	19	22	25.5	dB
	CG1-3	VH operation $\mathrm{fRF}=150 \mathrm{MHz}, \mathrm{fIF}=39 \mathrm{MHz}$	19	22	25.5	dB
	CG1-4	VH operation $\mathrm{fRF}=450 \mathrm{MHz}$, $\mathrm{fIF}=39 \mathrm{MHz}$	19	22	25.5	dB
	CG1-5	UHF operation fRF $=450 \mathrm{MHz}, \mathrm{fIF}=39 \mathrm{MHz}$	23.5	26.5	30	dB
	CG1-6	UHF operation $\mathrm{fRF}=850 \mathrm{MHz}, \mathrm{fIF}=39 \mathrm{MHz}$	24.5	27.5	31	dB
Conversion gain 2 *1, *2 (Balanced)	CG2-1	VL operation frF $=50 \mathrm{MHz}$, fiF $=39 \mathrm{MHz}$	25.5	28.5	32	dB
	CG2-2	VL operation $\quad \mathrm{fRF}=150 \mathrm{MHz}, \mathrm{fIF}=39 \mathrm{MHz}$	26	29	32.5	dB
	CG2-3	VH operation $\mathrm{frF}^{\text {a }}=150 \mathrm{MHz}, \mathrm{fIF}=39 \mathrm{MHz}$	26	29	32.5	dB
	CG2-4	VH operation $\mathrm{fRF}=450 \mathrm{MHz}$, $\mathrm{fIF}=39 \mathrm{MHz}$	26	29	32.5	dB
	CG2-5	UHF operation $\mathrm{fRF}=450 \mathrm{MHz}, \mathrm{fIF}=39 \mathrm{MHz}$	30.5	33.5	37	dB
	CG2-6	UHF operation $\mathrm{fRF}^{\text {a }}=850 \mathrm{MHz}$, $\mathrm{fIF}=39 \mathrm{MHz}$	31.5	34.5	38	dB
Noise figure *1, *3 (Unbalanced)	NF1	VL operation frF $=50 \mathrm{MHz}$, fiF $=39 \mathrm{MHz}$		15.5	18.5	dB
	NF2	VL operation $\quad \mathrm{fRF}=150 \mathrm{MHz}$, fiF $=39 \mathrm{MHz}$		15	18	dB
	NF3	VH operation $\mathrm{frF}^{\text {a }} 150 \mathrm{MHz}, \mathrm{fIF}=39 \mathrm{MHz}$		15	18	dB
	NF4	VH operation $\mathrm{fRF}^{\text {a }}=450 \mathrm{MHz}, \mathrm{fIF}=39 \mathrm{MHz}$		15	18	dB
	NF5	UHF operation $\mathrm{fRF}=450 \mathrm{MHz}$, $\mathrm{fIF}=39 \mathrm{MHz}$		10.5	13.5	dB
	NF6	UHF operation $\mathrm{fRF}=850 \mathrm{MHz}, \mathrm{fIF}=39 \mathrm{MHz}$		10.5	13.5	dB

OSC/MIX/IF Amplifier Block (cont.)

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
$\begin{aligned} & \quad{ }^{* 1, * 4} \\ & \text { 1\% cross modulation } 1 \\ & \text { (Unbalanced) } \end{aligned}$	CM1-1	VL operation $f D=50 \mathrm{MHz}$, fiF $=39 \mathrm{MHz}$, fud $= \pm 6 \mathrm{MHz}(80 \% \mathrm{AM})$	83.5	87.5		dB μ
	CM1-2	VL operation $f D=150 \mathrm{MHz}$, fif $=39 \mathrm{MHz}$, fud $= \pm 6 \mathrm{MHz}(80 \% \mathrm{AM})$	83.5	87.5		dB μ
	CM1-3	VH operation $f D=150 \mathrm{MHz}, \mathrm{fIF}=39 \mathrm{MHz}$, fud $= \pm 6 \mathrm{MHz}(80 \%$ AM)	83	87		dB μ
	CM1-4	VH operation $\quad \mathrm{fd}=450 \mathrm{MHz}$, fif $=39 \mathrm{MHz}$, fud $= \pm 6 \mathrm{MHz}(80 \% \mathrm{AM})$	83	87		dB μ
	CM1-5	UHF operation $\mathrm{fD}=450 \mathrm{MHz}$, fiF $=39 \mathrm{MHz}$, fud $= \pm 6 \mathrm{MHz}(80 \%$ AM)	78	82		dB μ
	CM1-6	UHF operation $\mathrm{fD}=850 \mathrm{MHz}$, fiF $=39 \mathrm{MHz}$, fud $= \pm 6 \mathrm{MHz}(80 \%$ AM)	77	81		dB μ
*1, *5 1\% cross modulation 2 (Unbalanced)	CM2-1	$\begin{aligned} & \text { VL operation fD }=50 \mathrm{MHz}, \text { fif }=39 \mathrm{MHz}, \\ & \text { fud }= \pm 12 \mathrm{MHz}(40 \% \mathrm{AM}) \end{aligned}$	91.5	95.5		dB μ
	CM2-2	$\begin{aligned} & \text { VL operation } \quad f \mathrm{f}=150 \mathrm{MHz}, \mathrm{fiF}=39 \mathrm{MHz}, \\ & \text { fud }= \pm 12 \mathrm{MHz}(40 \% \mathrm{AM}) \end{aligned}$	91.5	95.5		dB μ
	CM2-3	$\begin{aligned} & \text { VH operation } \quad \mathrm{fD}=150 \mathrm{MHz} \text {, fif }=39 \mathrm{MHz} \text {, } \\ & \text { fud }= \pm 12 \mathrm{MHz}(40 \% \mathrm{AM}) \end{aligned}$	90	94		dB μ
	CM2-4	$\begin{aligned} & \text { VH operation } \quad \mathrm{fD}=450 \mathrm{MHz}, \mathrm{fIF}=39 \mathrm{MHz} \text {, } \\ & \text { fud }= \pm 12 \mathrm{MHz}(40 \% \mathrm{AM}) \end{aligned}$	89	93		dB μ
	CM2-5	UHF operation $\mathrm{fD}=450 \mathrm{MHz}$, fiF $=39 \mathrm{MHz}$, fud $= \pm 12 \mathrm{MHz}(40 \% \mathrm{AM})$	85	89		dB μ
	CM2-6	UHF operation $\mathrm{fD}=850 \mathrm{MHz}$, fif $=39 \mathrm{MHz}$, fud $= \pm 12 \mathrm{MHz}(40 \%$ AM)	84	88		dB μ
Maximum output power	Pomax	50Ω load, saturation output, fif $=45 \mathrm{MHz}$	+10	+13		dBm
Phase noise $1^{* 6}$	PN 1	1 kHz offset Phase comparison frequency $=218.75 \mathrm{kHz}$ Charge pump current: $900 \mu \mathrm{~A}$		73		dBc/Hz
Phase noise 2 ${ }^{* 6}$	PN 2	10 kHz offset Phase comparison frequency $=218.75 \mathrm{kHz}$ Charge pump current: $900 \mu \mathrm{~A}$		90		dBc/Hz
Oscillator phase noise ${ }^{* 6, * 7}$	C/N	50 kHz offset Phase comparison frequency $=218.75 \mathrm{kHz}$ Charge pump current variable	60	70		dBc

*1 Value measured with the untuned input.
*2 Value compensated for the loss due to the external parts connected to Pins 1 and 2, and converted to the IC output pin amplitude.
*3 Noise figure is the direct-reading value of NF meter in DSB.
*4

Input value (SG2, 50Ω termination) when $S / I=46 \mathrm{~dB}$ with the spectrum analyzer
*5

Input value (SG2, 50Ω termination) when $S / I=46 \mathrm{~dB}$ with the spectrum analyzer
*6 Value when $14 \mathrm{MHz}(300 \mathrm{mVp}-\mathrm{p})$ is SG (Hewlett-Packard Japan, Ltd.: 8644A) input as the external REF CLOCK.
*7 The spectrum analyzer is set for SPAN:100kHz, RBW:3kHz and VBW:100Hz.

PLL Block

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
Lock-up time 1	LUT1	fosc $89 \mathrm{MHz} \leftrightarrow$ fosc 479 MHz		10		ms
Lock-up time 2	LUT2	fosc $479 \mathrm{MHz} \leftrightarrow$ fosc 889 MHz		10		ms
Reference leak	REFL	Phase comparison frequency $=218.75 \mathrm{kHz}$		65		dBc
CL and DA input						
"H" level input voltage	VIH		3		Vcc	V
"L" level input voltage	VIL		GND		1.5	V
"H" level input current	IH	$\mathrm{V}_{\mathrm{IH}}=\mathrm{Vcc}$		0	-0.1	$\mu \mathrm{A}$
"L" level input current	IIL	$\mathrm{VIL}=\mathrm{GND}$		-0.2	-4	$\mu \mathrm{A}$
CE input						
"H" level input voltage	VIH		3		Vcc	V
"L" level input voltage	VIL		GND		1	V
"H" level input current	lH	$\mathrm{V}_{1} \mathrm{H}=\mathrm{Vcc}$		100	200	$\mu \mathrm{A}$
"L" level input current	IIL	$\mathrm{VIL}=\mathrm{GND}$		-35	-100	$\mu \mathrm{A}$
CPO (charge pump)						
Output current 1	Icpor	When $300 \mu \mathrm{~A}$ is selected	± 210	± 300	± 420	$\mu \mathrm{A}$
Output current 2	Icpo4	When $900 \mu \mathrm{~A}$ is selected	± 600	± 900	± 1215	$\mu \mathrm{A}$
VT (VC voltage output)						
Maximum output voltage	VTH				33	V
Minimum output voltage	VtL	Sink current $=1 \mathrm{~mA}$		0.3	0.8	V
REFOSC						
Oscillation frequency range	Fxtosc		3	4	5	MHz
Drive frequency	REFIN1		3	14	20	MHz
Drive level	REFIN2	External reference clock: sine wave	250	350	500	mVp-p
Band SW						
Output current	IBs	When ON			-5	mA
Saturation voltage	VSAT	When ON Source current $=5 \mathrm{~mA}$		150	300	mV
Leak current	Leakbs	When OFF IFVcc $=5.5 \mathrm{~V}$		0.5	3	$\mu \mathrm{A}$
LOCK						
" H " output voltage	VLOCKH	When locked	Vcc - 1	Vcc -0.3	Vcc	V
"L" output voltage	VLOCKH	When unlocked	0	0.1	0.5	V

PLL Block (cont.)

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
Bus timing (3-wire bus)						
Data setup time	tsD		300			ns
Data hold time	tHD		600			ns
Enable waiting time	twe		300			ns
Enable setup time	tsE		300			ns
Enable hold time	tне		600			ns

Electrical Characteristics Measurement Circuit

*1: 14MHz, sine wave, 300 mVp -p input (Hewlett-Packard Japan, Ltd.: 8644A)

Description of Operation

The CXA3275Q is a tuner IC which frequency converts 55 to 860 MHz cable digital broadcasts to IF. In addition to the mixer, local oscillation and IF amplifier circuits required for frequency conversion to IF, this IC also integrates a PLL circuit for local oscillation frequency control onto a single chip.
The functions of the various circuits are described below.

1. Mixer circuit

This circuit outputs the frequency difference between the signal input to VLIN, VHIN or UIN and the local oscillation signal.
There are three sets of mixer circuits for VHF Low Band, VHF High Band and UHF Band.
VHF Low and VHF High are common emitter type mixer input circuits, and UHF is a common base type mixer input circuit.

2. Local oscillation circuit

A VCO is formed by externally connecting an LC resonance circuit composed of a varicap diode and inductance.

There are three sets of oscillation circuits for VHF Low Band, VHF High Band and UHF Band.
VHF Low and VHF High are 2-pin fully differential oscillation circuits and UHF is a 4-pin fully differential oscillation circuit.

3. IF amplifier circuit

This circuit amplifies the mixer IF output, and consists of an amplifier stage and low impedance output stage.
IF output is low impedance (emitter follower output), and can be selected from balanced and unbalanced output.
When unbalanced output is selected, the output stage current can be saved by connecting the pin not used for output to IFVcc.

4. PLL circuit

This PLL circuit controls the local oscillation frequency.
It consists of a programmable divider, phase comparator, charge pump and reference oscillator.
The control format supports the 3-wire bus format.

5. Band switch circuit

The MT58A has four sets of built-in PNP transistors which can be controlled by the bus data.
These outputs switch the on-chip mixer and oscillator circuits, and the relationship with the control data is as shown in the table below.

Relationship between the Band Switch Data and Mixer/Oscillator Operation

Band switch data				Mixer circuit			Oscillation circuit		
BS1	BS2	BS3	BS4	VHF Low	VHF High	UHF	VHF Low	VHF High	UHF
$*$	1	0	$*$	O	X	X	O	X	X
$*$	0	1	$*$	X	O	X	X	O	X
$*$	0	0	$*$	X	X	O	X	X	O

*: Don't care
O: Operating
X: Not operating

Description of PLL Block

The CXA3275Q supports the 3-wire bus control format.
Serial data is transferred using the DA pin (DATA), CL pin (CLOCK) and CE pin (ENABLE) inputs. Data is loaded to the shift register at the falling edge of the clock signal, and is latched at the falling edge of the enable signal.
The clocks during the enable period are counted, and 28 bits of data as counted from the rising edge of the enable signal are loaded as valid data.
The MT58A has the power-on reset function and the register data become all " 0 " after the power is turned on. The threshold value of the power-on reset is approximately 3.0 V .

The VCO lock frequency is obtained according to the following formula.
fosc $=$ fref $\times(16 M+S)$ fosc: Local oscillator frequency fref: Phase comparison frequency M: Main divider frequency division ratio S : Swallow counter frequency division ratio The variable frequency division ranges of M and S are as follows, and are set as binary.
$S<M \leq 8191$
$0 \leq S \leq 15$

The control format is as shown below.
Serial data (total 28 bits): Band data (4 bits) + various settings (3 bits)

+ reference frequency data (4 bits) + frequency data (17 bits)

M0 to: Main divider frequency division ratio setting
S0 to: Swallow counter frequency division ratio setting
CD: \quad Charge pump OFF and varicap output OFF (when "1")
CP: Charge pump current switching (See the Charge Pump Current Table.)
BS1 to BS4: Band switch control (Output PNP transistor ON when "1". See the Band Switch Output Table.)
R0 to R3: Reference divider frequency division ratio setting. (See the Reference Divider Frequency Division Ratio Table.)

Charge Pump Current Table

Charge pump current	CP
$300 \mu \mathrm{~A}$	0
$900 \mu \mathrm{~A}$	1

Reference Divider Frequency Division Ratio Table

R3	R2	R1	R0	Frequency division ratio
0	0	0	0	2
0	0	0	1	4
0	0	1	0	8
0	0	1	1	16
0	1	0	0	32
0	1	0	1	64
0	1	1	0	128
0	1	1	1	256
1	0	0	0	512
1	0	0	1	6
1	0	1	0	12
1	0	1	1	24
1	1	0	0	48
1	1	0	1	96
1	1	1	1	1

Band Switch Output Table

Band switch data				Band switch pins				Operating mode $(M I X / O S C)$
BS1	BS2	BS3	BS4	BS1	BS2	BS3	BS4	
1	0	0	0	ON	OFF	OFF	OFF	UH
0	1	0	0	OFF	ON	OFF	OFF	VL
0	0	1	0	OFF	OFF	ON	OFF	VH
0	0	0	1	OFF	OFF	OFF	ON	UHF

<Supplement>

- Operation for Power On

When the data transfer is not performed after the power on, both the mixer and oscillator blocks operate in UHF as the register data are all "0" by the power-on reset.
At this time, the Pin 33 (VT) voltage becomes the value equal to the varicap diode supply voltage (30 V) when the external clock is input to Pin 34 (XI) or when the crystal is connected to this pin for self-oscillation. When the external clock is not input simultaneously with the power-on or the crystal is not connected, the Pin 33 voltage becomes unstable.

3-wire Bus Timing Chart

tsD: Data setup time thD: Data hold time tSE: Enable setup time
the: Enable hold time twe: Enable waiting time

Characteristics Graphs

Circuit current vs. Supply voltage

 (Balanced output)

Band SW output voltage vs. Output current

Conversion gain vs. Reception frequency (Untuned input)

1\% adjacent cross modulation vs. Reception frequency (Untuned input)

Noise figure vs. Reception frequency (Untuned input, in DSB)

1\% adjacent cross modulation vs. Reception frequency (Untuned input)

OSC phase noise vs. Reception frequency (Untuned input)

Input/output characteristics (Untuned input)

Oscillation frequency supply voltage fluctuation (PLL off)

VHF Low Input Impedance

VHF High Input Impedance

UHF Input Impedance

IF Output Impedance

PACKAGE STRUCTURE

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER / PALLADIUM PLATING
LEAD MATERIAL	$42 /$ COPPER ALLOY
PACKAGE MASS	0.2 g

NOTE : PALLADIUM PLATING
This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame).

[^0]: This IC has pins whose electrostatic discharge strength is weak as a high-frequency process is used for this IC.

