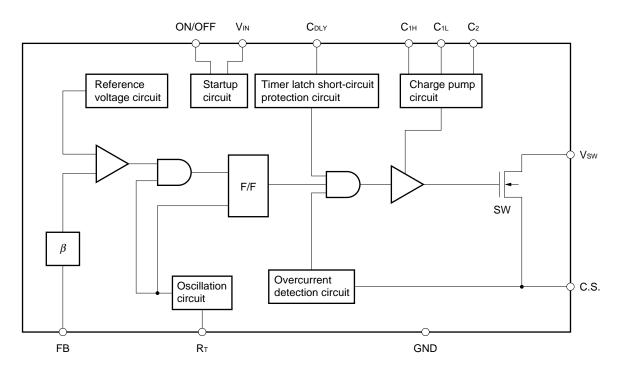


FLASH MEMORY VOLTAGE STEPUP DC/DC CONVERTER IC

The μ PD16901 is a DC/DC converter IC which produces a 12 V output from a 5 V input source. The integration of a control circuit and power MOSFET in the output stage on a single-chip allows a power supply for flash memory write and erasure to be configured with a reduced number of external components.

FEATURES


FC

- With an on-chip output stage power MOSFET, fewer external components are needed.
- The ALLMOS structure achieves low power consumption.
- Internally set output voltage eliminates the need for adjustment.
- Output can be turned ON/OFF via an external signal.
- · A timer latch type overcurrent protection circuit on chip

ORDERING INFORMATION

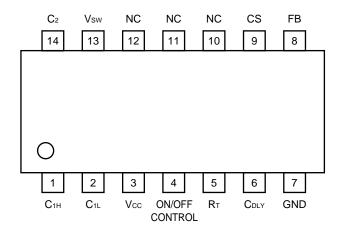
Part Number	Package
μ PD16901GS	14-pin plastic SOP (300 mil)

BLOCK DIAGRAM

The information in this document is subject to change without notice.

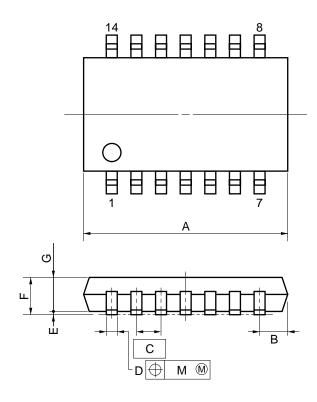
ABSOLUTE MAXIMUM RATINGS (T_A = 25 °C unless specified otherwise)

Item	Symbol	Condition	Rating	Unit
Supply voltage	Vin		7.0	V
Output voltage	Vsw		20	V
Total power dissipation	Р⊤	Note	0.9	W
Operating ambient temperature	TA		-20 to 85	°C
Storage temperature range	Tstg		-55 to +150	°C

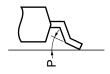

RECOMMENDED OPERATING RANGE

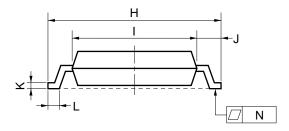
Item	Symbol	MIN.	TYP.	MAX.	Unit
Supply voltage	Vdd	4.5	5.0	5.5	V
Charge pump capacitor	C1, C2	0.033	0.1	0.47	μF
Operating ambient temperature	TA	0		70	°C

ELECTRICAL SPECIFICATIONS (T_A = 25 °C, V_{IN} = 5 V unless specified otherwise)


Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
(Oscillation block)	·	·	·		· · · ·	
Oscillation frequency	fosc	R _T = 68 kΩ	153	167	181	kHz
On duty	DUTY			67		%
(Low voltage misoperation prever	tive circuit)	·				
Operation start voltage	VIN(start-up)		3.3	3.7	4.3	V
Operation stop voltage	VIN(stop)		2.7	3.2	3.8	V
Hysteresis width	VHYS		0.3	0.5	0.7	V
(Overcurrent detection block)						
Overcurrent detection voltage	Vdet		270	300	330	mV
(On/off control block)						
ON/OFF pin input voltage	Vih	$4.5 \text{ V} \leq \text{Vin} \leq 5.5 \text{ V}$	Vin*0.7			V
	VIL	$4.5 \text{ V} \leq \text{Vin} \leq 5.5 \text{ V}$			Vin*0.3	V
ON/OFF pin input current	lı.	ON/OFF pin voltage = 0	-20	-5	-1	μΑ
(Charge pump circuit)						
Output voltage	Vснg		8.0		11	V
(Short-circuit protection circuit)	·	·	·			
Timer latch pin output current	ISCP	R _T = 68 kΩ	2.0	3.3	4.5	μΑ
Timer latch detection voltage	Vdett		0.85	1.0	1.15	V
(Output block)					· · · · · ·	
Output stage on resistance	RDS(ON)	Ірк = 0.5 А		0.3	0.5	Ω
Output stage leakage current	IDSOFF	V _{DS} = 20 V			1.0	μΑ

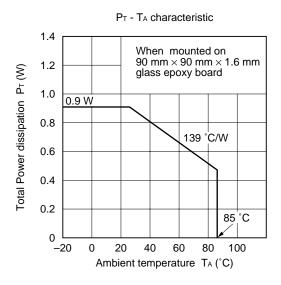
PIN CONFIGURATION (Top View)

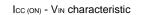


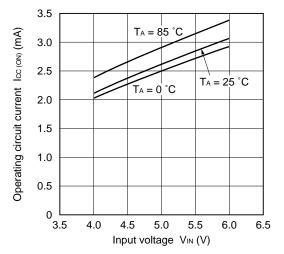

PACKAGE DRAWINGS

14 PIN PLASTIC SOP (300 mil)

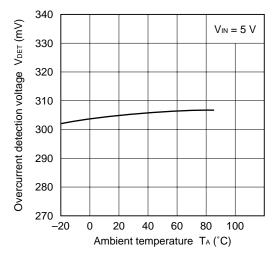
detail of lead end

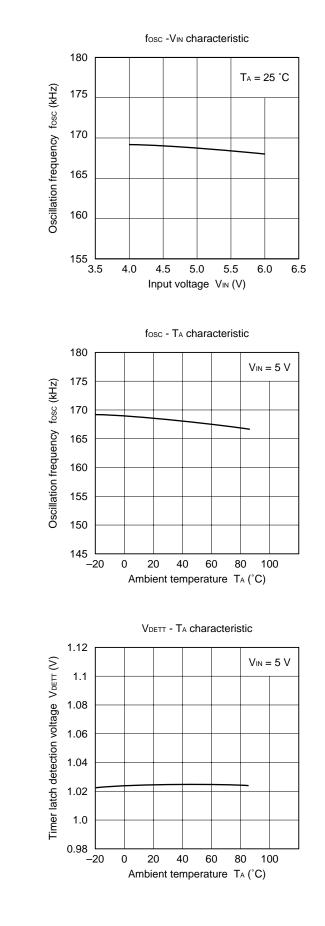


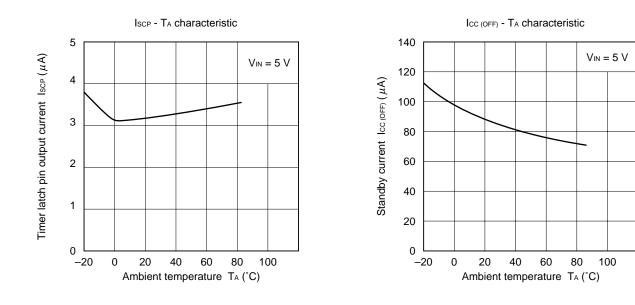

NOTE

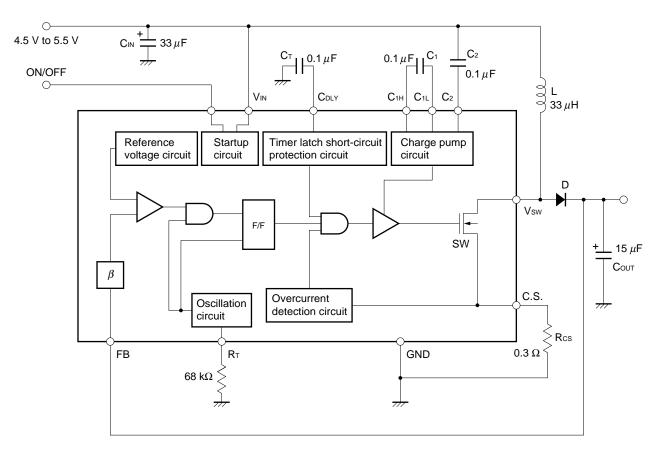

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
А	10.46 MAX.	0.412 MAX.
В	1.42 MAX.	0.056 MAX.
С	1.27 (T.P.)	0.050 (T.P.)
D	$0.40^{+0.10}_{-0.05}$	$0.016^{+0.004}_{-0.003}$
Е	0.1±0.1	0.004±0.004
F	1.8 MAX.	0.071 MAX.
G	1.55	0.061
Н	7.7±0.3	0.303±0.012
I	5.6	0.220
J	1.1	0.043
к	$0.20^{+0.10}_{-0.05}$	$0.008^{+0.004}_{-0.002}$
L	0.6±0.2	$0.024^{+0.008}_{-0.009}$
М	0.12	0.005
Ν	0.10	0.004
Р	3°+7° -3°	3°+7° -3°
		P14GM-50-300B-4


STANDARD CHARACTERISTIC CURVES

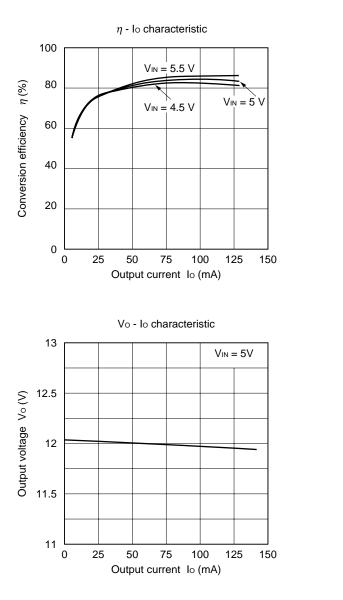


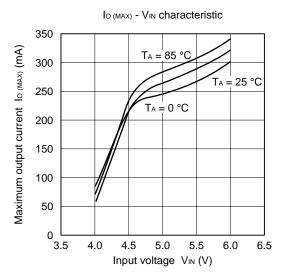




STANDARD CONNECTION DIAGRAM

Remark The circuit constants and circuit configuration in this connection diagram are shown for illustrative purposes and not intended for volume production design.


ELECTRICAL SPECIFICATIONS


(as per standard connection diagram. TA = 25 °C, VIN = 5 V, IOUT = 140 mA unless specified otherwise)

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Output voltage	Vout	$\begin{array}{l} 4.5 \ V \leq V_{\text{IN}} \leq 5.5 \ V \\ 0 \ \text{mA} \leq l_0 \leq 140 \ \text{mA} \\ 0 \ ^{\circ}\text{C} \ \leq \text{T}_\text{A} \leq 60 \ ^{\circ}\text{C} \end{array}$	11.52	12.00	12.48	V
Input stability	REGIN	$4.5 \text{ V} \leq \text{Vin} < 5.5 \text{ V}$		0.5		%/V
Load stability	REG∟	0 mA ≤ lo < 140 mA		0.004		%/mA
Conversion efficiency	η			83		%
Operating circuit current	Icc	lo = 0			3.0	mA
Standby circuit current	ICC(OFF)	ON/OFF pin voltage = 0			100	μA
Startup voltage	VIN(start-up)			3.7	4.3	V

Remark These specifications are reference values confirmed with the standard connection diagram (without taking account of variations) and are not intended to guarantee the characteristics of the product as a DC/DC converter.

STANDARD CHARACTERISTIC CURVES (as per standard connection diagram)

Vo -TA characteristic

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the conditions recommended below.

For soldering methods and conditions other than those recommended, please contact your NEC sales representative. For details of recommended soldering conditions, refer to the information document "**Semiconductor Device Mounting Technology Manual.**"

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235 °C; Duration: 30 sec. max. (210 °C or above): Number of times: Max. 3; Time limit: None ^{Note} Flux: Rosin type flux with reduced chlorine content (chlorine 0.2 Wt% or less) is recommended.	IR35-00-3
VPS	Package peak temperature: 215 °C; Duration: 40 sec. max. (200 °C or above): Number of times: 1; Time limit: None ^{Note} Flux: Rosin type flux with reduced chlorine content (chlorine 0.2 Wt% or less) is recommended.	VP15-00-1
Wave soldering	Package peak temperature: 260 °C or less, Duration: 10 sec. max., Preparatory heating temperature: 120 °C or less; Number of times: 1 Flux: Rosin type flux with reduced chlorine content (chlorine 0.2 Wt% or less) is recommended.	WS60-00-1

Note For the storage period after unpacking from the dry-pack, storage conditions are max. 25 °C, 65% RH.

Caution Use of more than one soldering method should be avoided.

REFERENCE DOCUMENTS

NEC Semiconductor Device Reliability/Quality Control System	10983E
Semiconductor Device Quality Guarantee Guide	MEI-1202
Semiconductor Device Mounting Technology Manual	C10535E

[MEMO]

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.