Infrared IrDA ${ }^{\circledR}$ Compliant Transceiver

Technical Data

Features

- Low Cost Infrared Data Link
- Guaranteed to Meet IrDA Physical Layer Specifications
1 cm to 1 Meter Operating Distance
30° Viewing Angle
2.4 KBd to 115.2 KBd Data Rate
- Daylight Cancellation
- Easily Implemented Direct Connection to Various I/O Chips
- Small Form Factor
- Several Lead and Shipping Configurations Available
- Excellent EMI Immunity (> $10 \mathrm{~V} / \mathrm{m}$)

Applications

- Data Comm: Serial Data

Transfer Between:
Notebook Computers
Subnotebooks

Desktop PCs
PDAs
Printers
Other Peripheral Devices

- Telecom:

Modem, Fax, Pager, Phone

- Industrial:

Data Collection Devices

- Medical:

Patient and Pharmaceutical Data Collection

Description:

The HSDL-1000 serial infrared module performs low cost, low power, point-to-point, through the air data transfer in a serial, halfduplex mode.

The module has been designed to the IrDA (Infrared Data Association) Physical Layer Specifications. The module is designed to

HSDL-1000

operate from 0 to 1 meter at a data rate of 115.2 Kbd per second at a 30° viewing angle.

The HSDL-1000 contains a high speed, high efficiency TS AlGaAs 875 nm LED, a PIN Silicon photodiode and an integrated circuit. The IC contains an LED driver, amplifiers and a quantizer.

The module is designed to interface directly with selected I/O chips that incorporate logic which performs pulse width modulation/ demodulation.

Schematic

Package Dimensions

Option X01*

DIMENSIONS IN MILLIMETERS (INCHES).

Option X02*

DIMENSIONS IN MILLIMETERS (INCHES).

Note:
The -B- datum is formed by the two highest points of the combined surface formed by this surface and the corresponding surface of the same lead on the opposite side of the package.
*X position indicates packaging. $0=$ tape and reel, $1=$ JEDEC standard tray.

Package Dimensions (continued)
Option X03*

Option X04*

DIMENSIONS IN MILLIMETERS (INCHES).
Note:
The -B- datum is formed by the two highest points of the combined surface formed by this surface and the corresponding surface of the same lead on the opposite side of the package.
*X position indicates packaging. $0=$ tape and reel, $1=\mathrm{JEDEC}$ standard tray.

Truth Table

Inputs			Outputs	
TXD	EI[1]	LED	LEDA	RXD
V_{IH}	X	ON	Low	Low $^{[2]}$
V_{IL}	EI_{H}	OFF	High	Low $^{[2]}$
V_{IL}	EI_{L}	OFF	High	High

X = Don't care.

Notes:

1. EI - received in band light intensity present at detector surface.
2. Logic Low is a pulsed response. A receiver output low state $V_{O L}$ (RXD) is not indefinitely maintained, but is instead a pulsed response. The output low state is maintained for a duration dependent on the incident bit pattern and the incident intensity (EI).

Pinout

Pin	Description	Symbol
1	Daylight Cancellation Capacitor	CX1
2	PIN Bypass Capacitor	CX2
3	Supply Voltage	V_{CC}
4	Receiver Data Output	RXD
5	Ground	Gnd
6	Transmitter Data Input	TXD
7	LED Cathode	LEDC
8	LED Anode	LEDA

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Conditions	Fig.
Storage Temperature	T_{S}	-20	85	C		
Operating Temperature	T_{A}	0	70	C		
Lead Solder Temperature			260	C	For $10 \mathrm{~s}(1.6 \mathrm{~mm}$ below seating plane $)$	Reflow Profile
Average LED Current	$\mathrm{I}_{\mathrm{LED}}(\mathrm{DC})$		100	mA		
Repetitive Pulsed LED Current	$\mathrm{I}_{\mathrm{LED}}(\mathrm{PK})$		500	mA	$\leq 90 \mu$ P Pulse Width, $\leq 20 \%$ Duty Cycle	
Peak LED Current	$\mathrm{I}_{\mathrm{LED}}(\mathrm{RP})$		1.0	A	$\leq 2 \mu \mathrm{~s} \mathrm{Pulse} \mathrm{Width}$, $\leq 10 \%$ Duty Cycle	
LED Anode Voltage	$\mathrm{V}_{\mathrm{LEDA}}$	-0.5	7.0	V		
LED Cathode Voltage	$\mathrm{V}_{\mathrm{LEDC}}$	-0.5	$\mathrm{~V}_{\mathrm{LEDA}}$	V		
Supply Voltage	V_{CC}	0	7.0	V		
Transmitter Data Input Voltage	$\mathrm{V}_{\mathrm{TXD}}$	-0.5	5.5	V		
Receiver Data Output Voltage	$\mathrm{V}_{\mathrm{RXD}}$	-0.5	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V		

Infrared Reflow Profile

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Conditions
Operating Temperature	T_{A}	0°	70°	C	
Supply Voltage	V_{CC}	4.5	5.5	V	
Logic High Transmitter Input Voltage	V_{IH} (TXD)	2.5	5.5	V	
Logic Low Transmitter Input Voltage	V_{IL} (TXD)	0.0	0.3	V	
Logic High Receiver Input Irradiance $(870 \mathrm{~nm})$	EI_{H}	0.0036	500	$\mathrm{~mW} / \mathrm{cm}^{2}$	For in-band signals*
Logic Low Receiver Input Irradiance	EI_{L}		0.3	$\mu \mathrm{~W} / \mathrm{cm}^{2}$	For in-band signals*
LED (Logic High) Current Pulse Amplitude	$\mathrm{I}_{\mathrm{LEDA}}$	250		mA	For one metre links with daylight filters
Receiver Set-up Time		10		ms	For full sensitivity after transmitting
Signal Rate		2.4	116	Kp / s	
Ambient Light				See IrDA Serial Infrared Physical Layer Link Speci- fication, Appendix A for ambient levels. See Rx TH+ section at the end of this data sheet also.	

*Note: An in-band optical signal is a pulse/sequence where the peak wavelength, $\lambda \mathrm{p}$, is defined as $850 \mathrm{~nm} \leq \lambda \mathrm{p} \leq 900 \mathrm{~nm}$, the pulse repetition rate, PRR , is defined as $2.4 \mathrm{Kp} / \mathrm{s} \leq \mathrm{PRR} \leq 115.2 \mathrm{Kp} / \mathrm{s}$ and the pulse width, PW , is defined as $1.6 \mathrm{~s} \leq \mathrm{PW} \leq(3 / 16) / \mathrm{PRR}$.

Electrical \& Optical Specifications

Specifications hold over the Recommended Operating Conditions unless otherwise noted. Test Conditions represent worse case values for the parameters under test. Unspecified test condition can be anywhere in their recommended operating range. All typicals are at $25^{\circ} \mathrm{C}$ and 5 V unless otherwise noted.

Parameter		Symbol	Min.	Typ.	Max.	Unit	Conditions	Fig.
Receiver Data Output Voltage	Logic Low ${ }^{[2]}$	$\mathrm{V}_{\text {OL }}(\mathrm{RXD})^{[2,3]}$			0.4	V	$\mathrm{I}_{\mathrm{O}}=0.3 \mathrm{~mA}$ For In-Band $\mathrm{EI} \geq 3.6 \mu \mathrm{~W} / \mathrm{cm}^{2}$; $\theta \leq 15^{\circ}$	
	Logic High	$\mathrm{V}_{\text {OH }}$ (RXD)	$\mathrm{V}_{\mathrm{CC}}-0.5$			V	$\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A},$ For In-Band $\mathrm{EI} \leq 0.3 \mu \mathrm{~W} / \mathrm{cm}^{2}$	
Effective Detector Area				0.2		cm^{2}		
Transmitter Radient Intensity	Logic Low	$\mathrm{IE}_{\text {L }}$			0.3	$\mu \mathrm{W} / \mathrm{SR}$	$\mathrm{V}_{\mathrm{I}} \leq 0.3 \mathrm{~V}$	
	Logic High Intensity	IE_{H}	44		250	mW/SR	$\begin{aligned} & \hline \mathrm{I}_{\text {LEDA }}=250 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{I}}=2.5 \mathrm{v}, \theta \leq 30^{\circ} \\ & \hline \end{aligned}$	4,6
					40	mW/SR	$\begin{aligned} & \mathrm{I}_{\mathrm{LEDA}}=250 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{I}}=2.5 \mathrm{v} ; \theta>60^{\circ} \\ & \hline \end{aligned}$	
	Peak Wavelength	λp		875		nm		6
	Spectral Line Half Width	$\Delta \lambda^{1 / 2}$		35		nm		6
Transmitter	Viewing Angle	θ	30		60	-		7
Receiver		ϕ	30			-		
Transmitter	Logic Low	I_{LL} (TXD)	-1.0		1.0	$\mu \mathrm{A}$	Gnd $\leq \mathrm{V}_{\mathrm{I}} \leq 0.3 \mathrm{~V}$	
Current	Logic High	$\mathrm{I}_{\text {IH }}$ (TXD)	4.5			mA	$\mathrm{V}_{\mathrm{I}}=2.5 \mathrm{~V}$	1
LED Anode On State Voltage	$\mathrm{V}_{\text {ON }}$ (LEDA)				2.50	V	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{LEDA}}=250 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	1, 3
LED Anode Off State Leakage	$\mathrm{I}_{\text {LK }}$ (LEDA)				100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{LEDA}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=0.3 \mathrm{~V} \end{aligned}$	
Supply Current TXD High	ICC1				1.1	mA	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=5.5, \\ & \mathrm{~V}_{\mathrm{I}}(\mathrm{TXD})=\mathrm{V}_{\mathrm{H}}, \\ & \mathrm{I}_{\mathrm{LED}}=250 \mathrm{~mA}, \\ & \mathrm{EI}=0 \end{aligned}$	11
Supply Current RXD Low ${ }^{[2]}$	ICC2				13	mA	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{CC}}=5.5, \\ \mathrm{~V}_{\mathrm{I}}(\mathrm{TXD})=\mathrm{V}_{\mathrm{IL}}, \\ \mathrm{EI}=500 \mathrm{~mW} / \mathrm{cm}^{2} \end{array}$	1
Receiver Peak Sensitivity Wavelength	λp			880		nm		9

Notes:

1. EI - received in band light intensity present at detector surface.
2. Pulsed Response - Logic Low is a pulsed response. A receiver output low state $V_{O L}(R X D)$ is not indefinitely maintained but is instead a pulsed response. The output low state is maintained for a duration dependent on the incident bit pattern and incident intensity (EI).
3. The $\mathrm{EI} \geq 3.6 \mu \mathrm{~W} / \mathrm{cm}^{2}$ condition guarantees the IrDA minimum receiver sensitivity of $4.0 \mu \mathrm{~W} / \mathrm{cm}^{2}$ while allowing for 10% light loss through a cosmetic window placed in front of the HSDL-1000. (See the Rx TH + section at the end of this data sheet for information on receiver sensitivity over temperature, and in the presence of ambient light.)

Switching Specifications

Specifications hold over the Recommended Operating Conditions unless otherwise noted. Test Conditions represent worst case values for the parameters under test. Unspecified test conditions can be anywhere in their recommended operating range. All typicals are at $25^{\circ} \mathrm{C}$ and 5 V unless otherwise noted.

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions	Fig.
Transmitter Turn On Time			0.1		$\mu \mathrm{s}$	$\mathrm{I}_{\text {LED }}=250 \mathrm{~mA}, 1.6 \mu \mathrm{sW}$	13, 14
Transmitter Turn Off Time			0.4	1.0	$\mu \mathrm{s}$		
Transmitter Rise Time				0.6	$\mu \mathrm{s}$		
Transmitter Fall Time				0.6	$\mu \mathrm{s}$		
Receiver Turn On Time			0.4		$\mu \mathrm{s}$	$\mathrm{EI}=3.6 \mu \mathrm{~W} / \mathrm{cm}^{2}, 1.6 \mu \mathrm{~s} \mathrm{PW}$	15, 16
Receiver Turn Off Time				5.4	$\mu \mathrm{s}$	$\mathrm{EI}=500 \mathrm{~mW} / \mathrm{cm}^{2}, 1.6 \mu \mathrm{sPW}$	
Receiver Rise Time			1.0		$\mu \mathrm{s}$		
Receiver Fall Time			0.02		$\mu \mathrm{s}$	$\mathrm{EI}=3.6 \mu \mathrm{~W} / \mathrm{cm}^{2}, 1.6 \mu \mathrm{~s}$ PW	
Receiver Recovery Time				10	ms		

Application Circuit

Component	
R_{I}	$300 \mathrm{Ohms} \pm 5 \%$
$\mathrm{R}_{\mathrm{LED}}$	8.0 Ohms maximum
CX 1	$0.22 \mu \mathrm{~F} \pm 10 \%$
CX 2	$0.4 \mu \mathrm{~F}$ minimum
CX 3	$0.10 \mu \mathrm{~F} \pm 22 \%$. Low inductance is critical
CX 4	$4.7 \mu \mathrm{~F}$ minimum. Larger value is recommended for noisy supplies or environments.

Figure 1. LED Pulse Current Amplitude vs. LEDA Voltage.

Figure 4. Transmitted Intensity vs. LED Pulse Amplitude.

Figure 7. Transmitted Intensity vs. Horizontal Viewing Angle.

Figure 2. LEDA Voltage vs. Temperature.

Figure 5. Transmitted Intensity vs. Temperature.

Figure 8. Transmitted Intensity vs. Vertical Viewing Angle.

Figure 3. LED Forward Voltage vs. Temperature.

Figure 6. Transmitted Intensity vs. Wavelength.

Figure 9. Receiver Responsivity vs. Wavelength.

Figure 10. Receiver Responsivity vs. Viewing Angle.

Figure 13. Transmitted Pulse Width vs. Temperature.

Figure 11. Supply Current vs. Temperature.

Figure 14. Transmitted Pulse Width vs. Temperature.

Figure 12. Data Input Current vs. Data Input Voltage.

Figure 15. Receiver Output Pulse Width vs. Duty Cycle of Received Signal.

Figure 16. Receiver Output Pulse Width vs. Received Light Pulse Width.

Rx TH+ (Receiver OnThreshold)

The maximum receiver onthreshold is equivalent to the minimum receiver sensitivity. Both are terms for the amount of light signal which must be present at the HSDL-1000 detector in order to trigger a low pulse on the receiver output (RXD). The IrDA Physical Layer Specification requires a minimum receiver sensitivity of $4.0 \mu \mathrm{~W} / \mathrm{cm}^{2}$, at a Bit Error Rate of 10^{-9}, and in the presence of the 10 klux of sunlight, 0-1000 lux of fluorescent
light, or 0-1000 lux of incandescent light. The fluorescent and incandescent specifications require minimum receiver sensitivity with 1000 lux incident onto the horizontal surface of the IR link. The resulting amount of fluorescent or incandescent light actually reaching the detector surface may vary between 0 and 500 lux depending upon the design of the housing around the HSDL-1000 module.

The HSDL-1000 $\mathrm{V}_{\mathrm{OL}}($ RXD $)$ specification guarantees a maximum receiver on-threshold of $\mathrm{EI}=3.6 \mu \mathrm{~W} / \mathrm{cm}^{2}$, at a BER $\leq 10^{-9}$, and $\mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$. The $\mathrm{EI}=3.6 \mu \mathrm{~W} / \mathrm{cm}^{2}$ threshold guarantees the IrDA minimum receiver sensitivity of $4.0 \mu \mathrm{~W} / \mathrm{cm}^{2}$, while allowing for 10% light loss through a cosmetic window placed in front of the HSDL-1000. The EI $=3.6 \mu \mathrm{~W} / \mathrm{cm}^{2}$ threshold also guarantees receiver sensitivity with 10 klux of sunlight, 0-500 lux fluorescent light, or 0-500 lux of incandescent light incident on the HSDL-1000 detector surface.

HSDL-1000 Reliability

Test Results

Test Name	$\begin{gathered} \text { MIL-STD-883 } \\ \text { Reference } \end{gathered}$	Test Conditions	$\begin{gathered} \text { Units } \\ \text { Tested } \end{gathered}$	Total Failed
Solder Heat (IR Profile)		See absolute profile	60	0
Solder Heat Resistance		3 times thru IR Profile + 20 Temp. Cycles	60	0
Solder Rework Cycle		Solder iron tip temp. $370^{\circ} \mathrm{C} / 700^{\circ} \mathrm{F}$ Time per lead 1 second \# of rework cycles $=4$	17	0
Temperature Cycle	1010	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C}, \text { Dwell }=15 \text { Minutes } \\ & \text { Transfer }=5 \text { Minutes } \end{aligned}$		
		20 Cycles	120	0
		100 Cycles	120	0
Power Temp. Cycle		$-40^{\circ} \mathrm{C} /+100^{\circ} \mathrm{C}$, Dwell $=15$ minutes, Transfer $=5$ Minutes, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{Vdc}$, If $=100 \mathrm{mAdc}$, LED On/Off $=1$ Second Total Cycles $=35$	60	0
Mechanical Shock	$\begin{gathered} 2002 \\ \text { Condition B } \end{gathered}$	2 Blows each X1, X2, Y1, Y2, Z1, Z2 1500 G's, 0.5 msec Pulse	10	0
Vibration Variable Frequency	$\begin{gathered} 2007 \\ \text { Condition A } \end{gathered}$	(4) 4 Minute Cycles, X, Y, Z at 50 G's Min., 20 to $2,000 \mathrm{~Hz}$	10	0
Resistance to Solvents	2015	3 one minute immersion Brush after solvent	20	0
High Temp. Operating Life		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}, \text { If }=100 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{Vdc}, \\ & \text { Time }=500 \text { hours } \end{aligned}$	60	0
Low Temp. Opearting Life		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}, \text { If }=100 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{Vdc} \\ & \text { Time }=500 \text { hours } \end{aligned}$	60	0
Wet Operating Life		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=35^{\circ} \mathrm{C}, \text { R.H., }=85 \% \text { If }=100 \mathrm{mAdc} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{CC}}, \text { Time }=500 \text { hours } \end{aligned}$	60	0
ESD - Human Body Model	3015	$\begin{aligned} & \mathrm{RI}=1500 \mathrm{Ohms}, \mathrm{C}=100 \mu \mathrm{~F} \\ & \text { Level }=4000 \mathrm{~V} \end{aligned}$	10	0
ESD - Machine Model	EIAJ	$\begin{aligned} & \text { Rload }=0 \text { Ohms, } \mathrm{C}=200 \mu \mathrm{~F} \\ & \text { Level }=300 \mathrm{~V} \end{aligned}$	10	0

Note: At the time of this publication, Light Emitting Diodes (LEDs) that are contained in this product are regulated for eye safety in Europe by the Commission for European Electrotechnical Standardization (CENELEC) EN60825-1. Please refer to Application Briefs I-008, I-009, I-015 for more information.

