\square	LC11014-241
SAMMYO	Computer Image Signal Processing Full-Color Gray-Scale Processor

Overview

The LC11014-241 is a pseudo gray-scale processor for TFT-LCD panel displays. It allows TFT-LCD panels with $3,4,5$ or 6 -bit input digital drivers to display the equivalent of 16.7 million colors. It can also be used with XGA panels in 2-pixel parallel input/output mode.

Features

- Handles 8 bits of input data (256-level gray scale data) for each of the RGB colors
- Realizes reduced resolution loss (as compared to dithering techniques) by using intra-frame and inter-frame error diffusion processing
- Incorporates a new full-coloration algorithm, formerly best done using computers
- Operating mode selection of outputs for $3,4,5$, or 6 -bit drivers
- Selectable 2-pixel parallel input/output, serial-input par-allel-output, and serial input/output operating modes
- 40 MHz (parallel input/output), 65 MHz (serial input, parallel output), or 50 MHz (serial input/output) maximum clock frequency
- Can operate independently of the number of displayed pixels since internal operation is controlled by the horizontal and vertical synchronization signals.
- Power-save function to stop the internal operation processing circuits, and output only the clock, sync signals and control signals
- Supports 5 V input signals at 3.3 V supply voltage

Package Dimensions

unit: mm
3214-SQFP144

Pin Assignment

Top view
Block Diagram

Pin Summary

I	Input
O	Output
P	Power
NC	No connection

1	11	TTL-level pull-down input buffer
	12	TTL-level input buffer
0	01	2 mA output buffer
	O 2	4 mA output buffer
	O 3	4 mA 3-state output buffer

No.	Name	I/O
1	$V_{S S}$	P
2	IOMD0	12
3	IOMD1	12
4	TESTO	11
5	TEST1	11
6	TEST2	11
7	TEST3	11
8	CLKSEL	11
9	$V_{D D}$	P
10	BD10	01
11	BD11	01
12	$V_{S S}$	P
13	BD12	01
14	BD13	01
15	BD14	01
16	BD15	01
17	BD00	01
18	$V_{D D}$	P
19	$\mathrm{V}_{S S}$	P
20	BD01	01
21	BD02	01
22	BD03	01
23	BD04	01
24	$V_{S S}$	P
25	BD05	01
26	GD10	01
27	GD11	01
28	GD12	01
29	$V_{D D}$	P
30	$\mathrm{V}_{S S}$	P
31	GD13	01
32	GD14	01
33	GD15	01
34	GD00	01
35	GD01	01
36	$V_{S S}$	P

No.	Name	1/0
37	$V_{D D}$	P
38	GD02	01
39	GD03	01
40	GD04	01
41	GD05	01
42	$V_{S S}$	P
43	$V_{\text {DD }}$	P
44	RD10	01
45	RD11	01
46	RD12	01
47	RD13	01
48	$V_{S S}$	P
49	$V_{\text {D }}$	P
50	RD14	01
51	RD15	01
52	RD00	01
53	RD01	01
54	$V_{D D}$	P
55	$V_{S S}$	P
56	RD02	01
57	RD03	01
58	RD04	01
59	RD05	01
60	$V_{D D}$	P
61	$V_{S S}$	P
62	HSYNC	02
63	VSYNC	02
64	HDEN	02
65	$\mathrm{V}_{S S}$	P
66	CLK	03
67	$\mathrm{V}_{S S}$	P
68	$V_{D D}$	P
69	CLKB	03
70	CTL	01
71	NC	NC
72	$\mathrm{V}_{S S}$	P

No.	Name	1/0
73	$V_{D D}$	P
74	GSPMD0	12
75	GSPMD1	12
76	GSPMD2	12
77	VMD	11
78	SHDEN	12
79	SHSYNC	12
80	SVSYNC	12
81	SCLK	12
82	$V_{S S}$	P
83	SCTL	11
84	PWRSV	11
85	BYPASS	11
86	SRD07	12
87	SRD06	12
88	SRD05	12
89	SRD04	12
90	$V_{D D}$	P
91	$V_{S S}$	P
92	SRD03	12
93	SRD02	12
94	SRD01	12
95	SRD00	12
96	SRD17	12
97	SRD16	12
98	SRD15	12
99	SRD14	12
100	$V_{S S}$	P
101	SRD13	12
102	SRD12	12
103	SRD11	12
104	SRD10	12
105	SGD07	12
106	SGD06	12
107	SGD05	12
108	$V_{S S}$	P

No.	Name	I/O
109	$V_{D D}$	P
110	SGD04	12
111	SGD03	12
112	SGD02	12
113	SGD01	12
114	SGD00	12
115	SGD17	12
116	SGD16	12
117	SGD15	12
118	$V_{S S}$	P
119	SGD14	12
120	SGD13	12
121	SGD12	12
122	SGD11	12
123	SGD10	12
124	SBD07	12
125	SBD06	12
126	$V_{D D}$	P
127	$\mathrm{V}_{S S}$	P
128	SBD05	12
129	SBD04	12
130	SBD03	12
131	SBD02	12
132	SBD01	12
133	SBD00	12
134	SBD17	12
135	$\mathrm{V}_{S S}$	P
136	SBD16	12
137	SBD15	12
138	SBD14	12
139	SBD13	12
140	SBD12	12
141	SBD11	12
142	SBD10	12
143	DSIFT	11
144	$V_{D D}$	P

Pin Functions

Symbol	Pin No.	I/0	Function
SRD0 [7:0]	86 to 89, 92 to 95	I	Input pins for red, green and blue gray-scale data. SRD07, SRD17, SGD07, SGD17, SBD07, SBD17 are the MSBs. SRD00, SRD10, SGD00, SGD10, SBD00, SBD10 are the LSBs. Input data 00_{H} corresponds to minimum brightness, and FF_{H} to maximum brightness. Note that correct gray-scale display does not occur when an input is set to either the minimum or maximum. If 2-pixel data is set on both $\mathrm{S} \times \mathrm{DO}$ and S×D1, the display data on $\mathrm{S} \times \mathrm{D} 0$ is displayed first. In input/output modes 1 and 2, inputs SRD1[0:7], SGD1[0:7] and SBD1[0:7] should be tied high or low.
SRD1 [7:0]	96 to 99, 101 to 104	I	
SGD0 [7:0]	$\begin{aligned} & 105 \text { to } 107, \\ & 110 \text { to } 114 \end{aligned}$	1	
SGD1 [7:0]	$\begin{aligned} & 115 \text { to } 117, \\ & 119 \text { to } 123 \end{aligned}$	1	
SBD0 [7:0]	124, 125, 128 to 133	I	
SBD1 [7:0]	134, 136 to 142	1	
SHSYNC	79	I	Horizontal and vertical synchronization signal inputs. These are the sources for the HSYNC and VSYNC signals. They are also used to control data processing. Active-low signals.
SVSYNC	80	I	
SHDEN	78	I	Horizontal data valid-period signal input. Set this pin high during periods when the horizontal data is valid. If this signal is not used, tie it high and set the input data to 0 during the horizontal blanking period.
SCTL	83	1	LCD control signal input. Input control signal that must be matched to the data signal timing. This is the source for the CTL signal. If the CTL signal is not used, there is no internal signal processing of this input and hence there is no need to input the SCTL signal.
CLKSEL	8	1	CLKSEL is the dot clock output select pin. It is used to select the output mode of the dot clock signal output pin. In input/output modes 0 and 2: When CLKSEL is low, a signal with the opposite phase from SCLK is output from CLK. When CLKSEL is high, a signal with the same phase as SCLK is output from CLKB. In input/output mode 1: When CLKSEL is low, a signal with half the frequency of SCLK is output from CLK. When CLKSEL is high, a signal with the opposite phase from CLK is output from CLKB.
CLK	66	0	
CLKB	69	0	
RDO [0:5]	52 to 53, 56 to 59	0	Red, green and blue gray-scale data output pins. RD05, RD15, GD05, GD15, BD05, BD15 are the MSBs. RD00, RD10, GD00, GD10, BD00, BD10 are the LSBs. If a 2-pixel data set is on $\times D 0$ and \times D1, the data on \times D0 is displayed first. In input/output modes 1 and 2, outputs RD1[0:5], GD1[0:5] and BD1[0:5] are low. In 3-bit data output mode: RD03, RD13, GD03, GD13, BD03, BD13 are the LSBs. RD0[2:0], RD1[2:0], GDO[2:0], GD1[2:0], BD0[2:0], BD1[2:0] are low. In 4-bit data output mode: RD02, RD12, GD02, GD12, BD02, BD12 are the LSBs. RD0[1:0], RD1[1:0], GDO[1:0], GD1[1:0], BD0[1:0], BD1[1:0] are low. In 3-bit data output mode: RD01, RD11, GD01, GD11, BD01, BD11 are the LSBs. RD0[0], RD1[0], GDO[0], GD1[0], BDO[0], BD1[0] are low.
RD1 [0:5]	44 to 47, 50, 51	0	
GD0 [0:5]	34, 35, 38 to 41	0	
GD1 [0:5]	26 to 28, 31 to 33	0	
BD0 [0:5]	17, 20 to 23, 25	0	
BD1 [0:5]	10, 11, 13 to 16	0	
HSYNC	62	0	Vertical and horizontal synchronization signal outputs. To match the data signal timing, these outputs are delayed with respect to their input signals. In input/output mode 0, they are delayed by 8 SCLK cycles, and in input/output modes 1 and 2 , they are delayed by 16 SCLK cycles. When PWRSV is high, these signals are output without being latched internally.
VSYNC	63	0	
HDEN	64	0	Horizontal data valid-period signal output. To match the data signal timing, this output is delayed with respect to the input signal. In input/output mode 0 , they are delayed by 8 SCLK cycles, and in input/output modes 1 and 2, they are delayed by 16 SCLK cycles. When PWRSV is high, this signal is output without being latched internally.
CTL	70	0	LCD control signal output. To match the data signal timing, this output is delayed with respect to the SCTL input signal. In input/output mode 0, they are delayed by 8 SCLK cycles, and in input/output modes 1 and 2, they are delayed by 16 SCLK cycles. When PWRSV is high, this signal is output without being latched internally.
PWRSV	84	1	Power-save control input. When this input goes high, the internal clock stops and the LSI enters powersave mode. Output data are held high. VSYNC, HSYNC, HDEN and CTL control signals, and either CLK or CLKB are output without being latched internally. Tie low or leave open for normal operation.
BYPASS	85	1	Gray-scale processing bypass pin. When high, the input signals are latched and output without change. When a high-level input on this pin is sampled on the falling edge of SCLK: in input/output mode 0 , output is delayed by 8 SCLK cycles, and in input/output modes 1 and 2, output is delayed by 16 SCLK cycles.
TEST [0:3]	4 to 7	1	Test pins [0:3]; left open for normal operation
NC	71	-	Must be left open.

Specifications

Absolute Maximum Ratings at $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$\mathrm{V}_{\mathrm{DD}} \max$		-0.3 to +4.6	V
Input voltage	$\mathrm{V}_{\text {IN }}$		-0.3 to +5.8	V
Output voltage	V_{O}		-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg		-40 to +125	${ }^{\circ} \mathrm{C}$

Allowable Operating Ranges at $\mathrm{Ta}=0$ to $+70^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	\min	typ	\max	Unit
Supply voltage	V_{DD}		3.15	3.3	3.45	V
Input voltage	$\mathrm{V}_{\text {IN }}$		0	-	5.5	V
Clock frequency 1	$\mathrm{f}_{\text {CLK }}$	Input/output mode 0	-	-	40	MHz
Clock frequency 1	$\mathrm{f}_{\text {CLK }}$	Input/output mode 1	-	-	65	MHz
Clock frequency	$\mathrm{f}_{\text {CLK }}$	Input/output mode 2	-	-	50	MHz

1. $1024 ¥ 768$; At timing $\geq 60 \mathrm{~Hz}$ (XGA timing), the display interval is less than 75%.

DC Characteristics at $\mathrm{Ta}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.15$ to 3.45 V

Parameter	Symbol	Conditions	min	typ	max	Unit
High-level input voltage	V_{IH}		2.0	-	-	V
Low-level input voltage	$\mathrm{V}_{\text {IL }}$		-	-	0.5	V
High-level output voltage	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-0.6$	-	-	V
Low-level output voltage	V_{OL}	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$	-	-	0.4	V
Operating current drain ${ }^{1}$	I_{CC}		-	110	170	mA
Power-save current drain ${ }^{2}$	$\mathrm{I}_{\text {CPS }}$		-	-	30	mA
Standby current drain ${ }^{3}$	$I_{\text {CST }}$		-	-	100	$\mu \mathrm{A}$

1. Input/output mode 0 , gray-scale mode $7, \mathrm{f}_{\mathrm{CLK}}=32.5 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF},(1024 \times 768$, measured with 60 Hz XGA timing)
2. Input/output mode 0 , $\mathrm{PWRSV}=\mathrm{low}, \mathrm{f}_{\mathrm{CLK}}=32.5 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (control signals: VSYNC, HSYNC, HDEN, CTL, CLK), all other outputs open
3. $V_{D D}=3.3 \mathrm{~V}$, all outputs open, all input pins tied low

Switching Characteristics at $\mathrm{Ta}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.15$ to $3.45 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

Parameter	Symbol	min	typ	max	Unit
SCLK cycle time ${ }^{1}$	Tsclk	25	-	-	ns
SCLK cycle time ${ }^{23}$	Tsclk	15.4	-	-	ns
SCLK cycle time ${ }^{4}$	Tsclk	20	-	-	ns
SCLK high-level pulse width ${ }^{1}$	Tschw	10	-	-	ns
SCLK high-level pulse width ${ }^{23}$	Tschw	6.2	-	-	ns
SCLK high-level pulse width ${ }^{4}$	Tschw	8	-	-	ns
SCLK low-level pulse width ${ }^{1}$	Tsclw	10	-	-	ns
SCLK low-level pulse width ${ }^{23}$	Tsclw	6.2	-	-	ns
SCLK low-level pulse width ${ }^{4}$	Tsclw	8	-	-	ns
HSYNC low-level pulse width	Thpw	2Tsclk	-	-	ns
HSYNC high-level pulse width	Tvpw	2Tsclk	-	-	ns
CLK propagation delay time ${ }^{1}$	Tpckh	7	11	22	ns
CLK propagation delay time ${ }^{1}$	Tpckl	7	11	22	ns
CLKB propagation delay time ${ }^{1}$	Tpcbh	6	10	20	ns
CLKB propagation delay time ${ }^{1}$	Tpcbl	7	12	24	ns
CLK propagation delay time ${ }^{23}$	Tpckh	7	12	24	ns
CLK propagation delay time ${ }^{23}$	Tpckl	8	13	25	ns
CLKB propagation delay time ${ }^{23}$	Tpcbh	7	12	23	ns
CLKB propagation delay time ${ }^{23}$	Tpcbl	8	13	26	ns
CLK propagation delay time ${ }^{4}$	Tpckh	7	11	22	ns
CLK propagation delay time ${ }^{4}$	Tpckl	7	11	22	ns
CLKB propagation delay time ${ }^{4}$	Tpcbh	6	10	20	ns
CLKB propagation delay time ${ }^{4}$	Tpcbl	8	12	25	ns
Data setup time	Tdsu	5	-	-	ns
Data hold time	Tdhd	5	-	-	ns
Data output propagation delay time ${ }^{1}$	Tpdata	8Tsclk + 9	8Tsclk + 14	8Tsclk + 28	ns
Data output propagation delay time ${ }^{23}$	Tpdt0sl	16Tsclk + 9	16Tsclk + 15	16Tsclk + 29	ns
Data output propagation delay time ${ }^{23}$	Tpdt1sl	15Tsclk + 9	15Tsclk + 15	15Tsclk + 30	ns
Data output propagation delay time ${ }^{23}$	Tpdt0sh	15Tsclk + 9	15Tsclk + 15	15Tsclk + 29	ns
Data output propagation delay time ${ }^{23}$	Tpdt1sh	16Tsclk + 9	16Tsclk + 15	16Tsclk + 30	ns
Data output propagation delay time ${ }^{4}$	Ttdatass	16Tsclk + 9	16Tsclk + 14	16Tsclk + 27	ns
Control signal setup time	Tcsu	5	-	-	ns
Control signal hold time	Tchd	5	-	-	ns
Control signal propagation delay time ${ }^{1}$	Tpctl	8Tsclk + 8	8Tsclk + 13	8Tsclk + 24	ns
Control signal propagation delay time ${ }^{234}$	Tpctlsp	16Tsclk + 8	16Tsclk + 13	16Tsclk + 26	ns

1. Parallel input, parallel output

2. Serial input, parallel output (1H number of pixels is even)
3. Serial input, parallel output (1H number of pixels is odd)
4. Serial input, serial output

Timing Diagrams
Input/output mode 0 (parallel input, serial output)

Input/output mode 1 (serial input, parallel output: 1 H number of pixels is even)

Input/output mode 1 (serial input, parallel output: 1H number of pixels is odd)

Input/output mode 2 (serial input, serial output)

Usage Notes

Parallel input, parallel output

Serial input, parallel output

Serial input, serial output

Usage Note

Since this LSI performs spatial modulation using an error diffusion algorithm, patterns that differ from the original images may be displayed for certain display pattern and gray-scale mode combinations.

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
(1) Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
(2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees, jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
This catalog provides information as of June, 1997. Specifications and information herein are subject to change without notice.

