ASSP

IF Band
 PLL Frequency Synthesizer

MB15C103

DESCRIPTION

The Fujitsu MB15C103 is an exclusive Intermediate Frequency (IF) band Phase Locked Loop (PLL) frequency synthesizer with pulse swallow operation. The reference divider and comparison divider have fixed divide ratios, so that it is not required to set the divide ratios by a microcontroller externally.
It operates with a supply voltage of 3.0 V typ. and dissipates 0.9 mA typ. $(200 \mathrm{MHz}$) of current realized through the use of Fujitsu's CMOS technology.
The MB15C103 is ideally suitable for PDC systems.

■ FEATURES

- Low power supply current: Icc $=0.9 \mathrm{~mA}$ typ. (Vcc $=3 \mathrm{~V}, 200 \mathrm{MHz})$
- Pulse swallow function; Prescaler: 16/17
- Setting frequency (Selectable by DIV input.)
- fosc $=12.8 \mathrm{MHz}$, fIF $=178.00 \mathrm{MHz}\left(\right.$ DIV $=$ " ${ }^{\prime}$ ")
- fosc $=12.8 \mathrm{MHz}$, fIF = 129.55 MHz (DIV = "L")
- Lock detector
- Low power supply voltage: $\mathrm{V}_{\mathrm{cc}}=2.4$ to 3.6 V
- Wide operating temperature: $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$

PACKAGES
8-pin plastic SSOP
(FPT-8P-M03)
(LCC-16P-M06)

PIN ASSIGNMENT

- PIN DESCRIPTIONS

Pin No.		Pin name	$\mathbf{I / O}$	Descriptions
SSOP-8	BCC-16			

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating		Unit
		Min.	Max.	
Power supply voltage	V_{cc}	-0.5	+4.0	V
Input voltage	V_{c}	-0.5	V cc +0.5	V
Output voltage	Vout	-0.5	$\mathrm{~V}_{\mathrm{cc}}+0.5$	V
Output current	lout	0	+5	mA
Storage temperature	Tsta	-55	+125	${ }^{\circ} \mathrm{C}$

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit	Note
		Min.	Typ.	Max.		
Power supply voltage	V_{cc}	2.4	3.0	3.6	V	
Input voltage	$\mathrm{V} \mathbb{N}$	GND	-	V_{cc}	V	
Operating temperature	Ta	-40	-	+85	${ }^{\circ} \mathrm{C}$	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Condition	Value			Unit	
		Min.		Typ.	Max.			
Power supply current			Icc	PLL is locked. (200 MHz) $\mathrm{Vcc}=3.0 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}$	0.1	0.9	1.8	mA
Operating frequency	fin	fin	AC coupling by 1000 pF capacitor	50	-	200	MHz	
	OSCIn	fosc	AC coupling by 1000 pF capacitor	3	12	26	MHz	
Input sensitivity	fin	Pfin	AC coupling by 1000 pF capacitor	-10	-	+2	dBm	
	OSCIn	Vosc	AC coupling by 1000 pF capacitor	0.5	-	-	Vpp	
Input voltage	DIV	V_{1}	-	Vcc $\times 0.7$	-	-	V	
		VIL	-	-	-	$\mathrm{V} \mathrm{cc} \times 0.3$	V	
Input current	DIV	IH	-	-	-	+1.0	$\mu \mathrm{A}$	
		11.	-	-1.0	-	-	$\mu \mathrm{A}$	
Input current	OSCIn	losc	-	-100		+100	$\mu \mathrm{A}$	
Output voltage	Do	Vон	$\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$, І-н $=-0.3 \mathrm{~mA}$	2.6	-	-	V	
		VoL	$\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$, loL $=0.3 \mathrm{~mA}$	-	-	0.4	V	
Output current	Do	Іон	$\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$, V оH $=2 \mathrm{~V}$	-	-6.0	-	mA	
		loL	$\mathrm{Vcc}=3.0 \mathrm{~V}$, Vol $=1 \mathrm{~V}$	-	6.0	-	mA	
High impedance cut off current	Do	loff	$\mathrm{OV} \leq \mathrm{V}_{\text {Do }} \leq \mathrm{V}_{\text {cc }}$	-	-	3	nA	

MB15C103

FUNCTIONAL DESCRIPTIONS

Two different frequencies can be selected by DIV input " H " or " L ".
The divide ratios are calculated using the following equation:
f fvo $=\{(P \times N)+A\} \times$ fosc $\div R \quad(A<N)$

Symbol	Description	DIV = "H"	DIV = "L"
fvco	Output frequency of external VCO	178.00 MHz	129.55 MHz
fosc	Reference oscillation frequency	12.8 MHz	12.8 MHz
N	Divide ratio of the main counter	27	161
A	Divide ratio of the swallow counter	13	15
P	Preset divide ratio of dual modulus prescaler	$16 / 17$	$16 / 17$
R	Divide ratio of the reference counter	$32(\mathrm{fr}=400 \mathrm{kHz})$	$256(\mathrm{fr}=50 \mathrm{kHz})$

PHASE DETECTOR TIME CHART

Note: - Phase error detection range: -2π to $+2 \pi$

- Pulses on Do output signal during locked state are output to prevent dead zone.
- LD output becomes low when phase is twu or more. LD output becomes high when phase error is twL or less and continues to be so for three cycles or more.
- twu and tws depend on OSCIn input frequency.
twu $\geq 8 / f o s c$ (s) (e. g.twu $\geq 625.0 \mathrm{~ns}$, fosc $=12.8 \mathrm{MHz}$)
$\mathrm{twL} \leq 16 / \mathrm{fosc}(\mathrm{s})(\mathrm{e} . \mathrm{g} . \mathrm{twL} \leq 1250.0 \mathrm{~ns}$, fosc $=12.8 \mathrm{MHz})$

MEASURMENT CIRCUIT (for measuring input sensitivity fin/OSCNㅗ)

TYPICAL CHARACTERISTICS

1. fin Input Sensitivity

Input Sensitivity (fin)
(DIV = "L")

2. OSCIn Input Sensitivity

Input Sensitivity (OSCIN)
(DIV = "H")

3. fin Input Impedance

4. OSCin Input Impedance

MB15C103

5. Do Output Current

Charge pump current

[Vон - Ioн]

[Vol - loc]

[Measurement Circuit]

REFERENCE INFORMATION

1. Application Measurement

Test results

		Results
Lock up time $\pm 1 \mathrm{kHz}$	Unlock --> Lock Power on --> Lock	$\begin{aligned} & 350 \mu \mathrm{~s} \\ & 2.15 \mathrm{~ms} \end{aligned}$
Reference leakage($\Delta \mathrm{f}=400 \mathrm{kHz}$)		89.2 dBc
Phase noise	($\Delta \mathrm{f}=1 \mathrm{kHz}$)	$97.1 \mathrm{dBc} / \mathrm{Hz}$
	($\Delta \mathrm{f}=10 \mathrm{kHz}$)	99.8 dBc/Hz
	($\Delta \mathrm{f}=100 \mathrm{kHz}$)	119.0 dBc/Hz
	($\Delta \mathrm{f}=1 \mathrm{MHz}$)	130.1 dBc/Hz
V cc (V)		3.0 V
VCO		$\begin{gathered} \text { Discrete } \mathrm{VCO}(\mathrm{KV}=8.2 \mathrm{MHz} / \mathrm{V}) \\ \text { Lock Frequency }=178.0 \mathrm{MHz}(\mathrm{fr}=400 \mathrm{kHz}) \\ \hline \end{gathered}$

Measurement circuits

2. Phase Noise

$$
\Delta \mathrm{f}=100 \mathrm{kHz} \quad \text { SPAN } 200 \mathrm{kHz}
$$

CENTER 178.0000 MHz
RBW 1.0 kHz VBW 30 Hz

3. Lock Up Time

Un-Lock to Lock: DIV = "L" \rightarrow " H "
$\Delta \mathrm{Mkr}: 350 \mu \mathrm{~s}$

Vcc "OFF" to Vcc "ON"
$\Delta \mathrm{Mkr}: 2.15 \mathrm{~ms}$

USAGE PRECAUTIONS

- This device should be transported and stored in anti-static containers.
- This is a static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off before inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handling or transporting PC boards with devices.

- ORDERING INFORMATION

Part number	Package	Remarks
MB15C103PFV	8-pin, Plastic SSOP (FPT-8P-M03)	
MB15C103PV1	16-pad, Plastic BCC (LCC-16P-M06)	

PACKAGE DIMENSIONS
8-pin, Plastic SSOP
(FPT-8P-M03)

© 1994 FUJTSU LIMTED F08005S-1C-2
Dimensions in mm (inches)
(Continued)
(Continued)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8588, Japan
Tel: +81-44-754-3763
Fax: +81-44-754-3329
http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, USA
Tel: +1-408-922-9000
Fax: +1-408-922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: +1-800-866-8608
Fax: +1-408-922-9179
http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10, D-63303 Dreieich-Buchschlag, Germany
Tel: +49-6103-690-0
Fax: +49-6103-690-122
http://www.fujitsu-fme.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD \#05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741
Tel: +65-281-0770
Fax: +65-281-0220
http://www.fmap.com.sg/

All Rights Reserved.
The contents of this document are subject to change without notice.
Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.). CAUTION:
Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

