16-bit Proprietary Microcontroller

CMOS

F²MC-16F MB90246A Series

MB90246A

DESCRIPTION

The MB90246A series is a 16-bit microcontroller optimum to control mechatronics such as a hard disk drive unit.

The instruction set of F²MC-16F CPU core inherits AT architecture of F²MC*-16/16H family with additional instruction sets for high-level languages, extended addressing mode, enhanced multiplication/division instructions, and enhanced bit manipulation instructions. The microcontroller has a 32-bit accumulator for processing long word data (32-bit).

The MB90246A series contains a production addition unit as peripheral resources for enabling easy implementation of functions supported by IIR and FIR digital filters. It also supports a wealth of peripheral functions including:

- an 8/10-bit A/D converter having eight channels;
- an 8-bit D/A converter having three channels;
- UART;
- an 8-bit PWM timer having four channels;
- a timer having three plus one channels;
- an input capture (ICU) having two channels; and
- a DTP/external interrupt circuit having four channels.
- * : F²MC stands for FUJITSU Flexible Microcontroller.

PACKAGE

■ FEATURES

- Clock Operating clock can be selected from divided-by-2, 4, 8 or 32 of oscillation (at oscillation of 32 MHz, 1 MHz to 16 MHz).
- Minimum instruction execution time of 62.5 ns (at machine clock of 16 MHz)
- CPU addressing space of 16 Mbytes Internal addressing of 24-bit External accessing can be performed by selecting 8/16-bit bus width (external bus mode)
- Instruction set optimized for controller applications
 Rich data types (bit, byte, word, long word)
 Rich addressing mode (23 types)
 High code efficiency
 Enhanced precision calculation realized by the 32-bit accumulator
 Signed multiplication/division instruction
- Instruction set designed for high level language (C) and multi-task operations Adoption of system stack pointer Enhanced pointer indirect instructions Barrel shift instructions
- Enhanced execution speed 8-byte instruction queue
- Enhanced interrupt function Priority levels: 8 levels External interrupt input ports: 4 ports
- Automatic data transmission function independent of CPU operation Extended intelligent I/O service function (EI²OS)
- Low-power consumption (stand-by) mode
 Sleep mode (mode in which CPU operating clock is stopped)
 Stop mode (mode in which oscillation is stopped)
 Hardware stand-by mode
 Gear function
- Process CMOS technology
- I/O port General-purpose I/O ports (CMOS): 38 General-purpose I/O ports (TTL): 11 General-purpose I/O ports (N-ch open-drain): 8 Total: 57
- Timer
 Timebase timer/watchdog timer: 1 channel
 8-bit PWM timer: 4 channels
 16-bit re-load timer: 3 channels
- 16-bit I/O timer
 16-bit free-run timer: 1 channel Input capture (ICU): 2 channels
- I/O simple serial interface Clock synchronized transmission can be used.
- UART: 1 channel Clock asynchronized or clock synchronized serial transmission can be selectively used.
- DTP/external interrupt circuit: 4 channels
 A module for starting extended intelligent I/O service (EI²OS) and generating an external interrupt triggered
 by an external input.

(Continued)

- Delayed interrupt generation module Generates an interrupt request for switching tasks.
- 8/10-bit A/D converter: 8 channels
 8-bit or 10-bit resolution can be selectively used. Starting by an external trigger input.
- 8-bit D/A converter Resolution: 8 bits × 3 channels
- DSP interface for the IIR filter
 Function dedicated to IIR calculation
 Up to eight items of results of signed multiplication of 16 × 16 bits are added.

Execution time of $Yk = \sum_{n=0}^{N} bn Yk - n + \sum_{m=0}^{M} am Xk - m$: 0.625 µs (When oscillation is 32 MHz and when N = M = 3)

Up to three N and M values can be set at your disposal.

■ PRODUCT LINEUP

Part number Item		MB90246A	MB90V246		
Classificati	on	Mass-produced product Evaluation product			
ROM size		Nc	ne		
RAM size		4 k \times 8 bits	6 k × 8 bits		
CPU functions		The number of instructions: 412 Instruction bit length: 8 bits, 16 bits Instruction length: 1 byte to 7 bytes Data bit length: 1 bit, 4 bits, 8 bits, 16 bits, 32 bits Minimum execution time: 62.5 ns (at machine clock of 16 MHz) Interrupt processing time: 1.0 μ s (at machine clock of 16 MHz, minimum value)			
Ports		General-purpose I/O ports (CMOS output): 38 General-purpose I/O ports (TTL input): 11 General-purpose I/O ports (N-ch open-drain output): 8 Total: 57			
Timebase	timer	18-bit counter Interrupt interval: 0.256 ms, 1.024 ms, 4.096 ms, 16.384 ms (at oscillation of 32 MHz)			
Watchdog	timer	Reset generation interval: 3.58 ms, 14.33 ms, 28.67 ms, 57.34 ms (at oscillation of 32 MHz, minimum value)			
8/16-bit PV	VM timer	Number of channels: 4 Pulse interval: 0.25 μs to 32.77 ms (at oscillation of 32 MHz)			
16-bit re-lo	ad timer	Number of channels: 3 16-bit re-load timer operation Interval: 125 ns to 131 ms (at machine clock of 16 MHz) External event count can be performed.			
16-bit	16-bit free-run timer	Number of channel: 1 Overflow interrupts or intermediate bit interrupts may be generated.			
I/O timer	Input capture (ICU)	Number of channel: 2 Rewriting a register value upon a pin input (rising, falling, or both edges)			
I/O simple	serial interface	Number of channels: 2 Clock synchronized transmission (62.5 kbps to 8 Mbps)			
UART		Clock asynchronized transmission (2404 bps to 500 kbps) Clock synchronized transmission (250 kbps to 2 Mbps) Transmission can be performed by bi-directional serial transmission or by master/slave connection.			
DTP/external interrupt circuit		Number of inputs: 4 Started by a rising edge, a falling edge, an "H" level input, or an "L" level input. External interrupt circuit or extended intelligent I/O service (El ² OS) can be used.			
Delayed in module	terrupt generation	An interrupt generation module for switching tasks used in real-time operating systems.			

(Continued)

Part number Item	MB90246A	MB90V246	
8/10-bit A/D converter	Conversion precision: 10-bit or 8-bit can be selectively used. Number of inputs: 8 One-shot conversion mode (converts selected channel only once) Continuous conversion mode (converts selected channel continuously) Stop conversion mode (converts selected channel and stop operation repeatedly)		
8-bit D/A converter	Number of channels: 3 Resolution: 8 bits Based on the R-2R system		
DSP interface for the IIR filter	Function dedicated to IIR calculation Up to 8 items of results of signed multiplication of 16×16 bits are added. Execution time of $Yk = \Sigma$ bn $Yk - n + \Sigma$ am $Xk - m$: 0.625 µs n = 0 (When oscillation is 32 MHz and when N = M = 3) Up to three N and M values can be set at your disposal.		
Low-power consumption (stand-by) mode	Sleep/stop/hardware stand-by/gear function		
Process	CMOS		
Power supply voltage for operation*	4.5 V to 5.5 V		

* : Varies with conditions such as the operating frequency. (See section "■ Electrical Characteristics.") Assurance for the MB90V246 is given only for operation with a tool at a power voltage of 4.5 V to 5.5 V, an operating temperature of 0 to 70 degrees centigrade, and an clock frequency of 1.6 MHz to 32 MHz.

Note: A 64-word RAM for product addition is supported in addition to the above RAMs.

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB90246A	MB90V246	
FPT-100P-M05	0	×	
PGA-256C-A02	×	0	

 \bigcirc : Available \times : Not available

Note: For more information about each package, see section "■ Package Dimensions."

DIFFERENCES AMONG PRODUCTS

Memory Size

In evaluation with an evaluation chips, note the difference between the evaluation chip and the chip actually used.

The RAM size is 4 Kbytes for the MB90246A, and 6 Kbytes for the MB90V246.

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin no.	Din namo	Circuit	Eurotion	
LQFP*		type	Function	
80	X0	А	This is a crystal oscillator pin.	
81	X1			
47 to 49	MD0 to MD2	С	This is an input pin for selecting operation modes. Connect directly to V_{CC} or V_{SS} .	
75	RST	В	This is external reset request signal.	
50	HST	С	This is a hardware stand-by input pin.	
91 to 98	P10 to P17	D	This is a general-purpose I/O port. This function is valid in the 8-bit mode where the external bus is valid.	
	D08 to D15		This is an I/O pin for the upper 8-bit of the external address data bus. This function is valid in the 16-bit mode where the external bus is valid.	
16 to 20, 22 to 24	P40 to P44, P45 to P47	E	This is a general-purpose I/O port. This function becomes valid in the bit where the upper address control register is set to select a port.	
	A16 to A20, A21 to A23		This is an output pin for the upper 8-bit of the external address bus. This function is valid in the mode where the external bus is valid and the upper address control register is set to select an address.	
70	P50	E	This is a general-purpose I/O port. This function becomes valid when the CLK output is disabled.	
	CLK		This is a CLK output pin. This function becomes valid when CLK output is enabled.	
71	P51	D	This is a general-purpose I/O port. This function becomes valid when the external ready function are disabled.	
	RDY		This is a ready input pin. This function becomes valid when the external ready function is enabled.	
72	P52	D	This is a general-purpose I/O port. This function becomes valid when the hold function are disabled.	
	HAK		This is a hold acknowledge output pin. This function becomes valid when the hold function is enabled.	
73	P53	D	This is a general-purpose I/O port. This function becomes valid when the hold function are disabled.	
	HRQ		This is a hold request input pin. This function becomes valid when the hold function is enabled.	
74	P54	E	This is a general-purpose I/O port. This function becomes valid, in the external bus 8-bit mode, or WRH pin output is disabled.	
	WRH		This is a write strobe output pin for the upper 8-bit of the data bus. This function becomes valid when the external bus 16-bit mode is selected, and WRH output pin is enabled.	

Pin no. LQFP*	- Pin name	Circuit type	Function
76	P55	E	This is a general-purpose I/O port. This function becomes valid when WRL/WR pin output is disabled.
	WR WRL		This is a write strobe output pin for the lower 8-bit of data bus. This function becomes valid when WRL/WR pin output is enabled. WRL is used for holding the lower 8-bit for write strobe in 16-bit access operations, while WR is used for holding 8-bit data for write strobe in 8-bit access operations.
77	P56	E	This pin cannot be used as a general-purpose port.
	RD		This is a read strobe output pin for the data bus. This function is valid in the mode where the external bus is valid.
78,28,27	P57,P73,P72	E	This is a general-purpose I/O port.
36 to 39, 41 to 44	P60 to P63, P64 to P67	G	This is an I/O port of an N-ch open-drain type. When the data register is read by a read instruction other than the modify write instruction with the corresponding bit in ADER set at "0", the pin level is acquired. The value set in the data register is output to the pin as is.
	AN0 to AN3, AN4 to AN7		This is an analog input pin of the 8/10-bit A/D converter. When using this input pin, set the corresponding bit in ADER at "1". Also, set the corresponding bit in the data register at "1".
25	P70	E	This is a general-purpose I/O port.
	ASR0		This is a data input pin for input capture 0. Because this input is used as required when the input capture 0 is performing input operations, and it is necessary to stop outputs from other functions unless such outputs are made intentionally.
26	P71	Е	This is a general-purpose I/O port.
	ASR1		This is a data input pin of input capture 1. Because this input is used as required when input capture 1 is performing input operations, and it is necessary to stop outputs by other functions unless such outputs are made intentionally.
29 to 31	P74 to P76	E	This is a general-purpose I/O port. This function becomes valid when outputs from 16-bit re-load timer $0 - 2$ are disabled.
	TIN0 to TIN 2	-	This is an input pin of 16-bit timer. Because this input is used as required whin 16-bit timer 0 - 2 is performing input operations,and it is necessary to stop outputs by other functions unless such outputs are made intentionally.
	TOT0 to TOT2		These are output pins for 16-bit re-load timer 0 and 1. This function becomes valid when output from 16-bit re-load timer $0-2$ are enabled.
51 to 53P82 to P84HThis is a general-purpose I/O port. This function becomes valid when converter 0 – 2 are disabled.		This is a general-purpose I/O port. This function becomes valid when data output from 8-bit D/A converter $0 - 2$ are disabled.	
	DAO0 to DAO2		This is an output pin of 8-bit D/A converter. This function becomes valid when data output from 8-bit D/A converter $0 - 2$ are enabled.

* : FPT-100P-M05

Pin no. LQFP*	Pin name	Circuit type	Function			
54 to 56	P85 to P87	E	This is a general-purpose I/O port. This function becomes valid when output from PWM0 – PWM2 are disabled.			
	PWM0 to PWM2		This is an output pin of 8-bit PWM timer. This function becomes valid when output from PWM0 – PWM2 are enabled.			
57, 58	P90, P91	F	This is a general-purpose I/O port.			
	INTO, INT1		This is a request input pin of the DTP/external interrupt circuit ch and 1. Because this input is used as required when the DTP/external interrupt circuit is performing input operations, and it is necessa to stop outputs from other functions unless such outputs are ma intentionally.			
59	P92	E	This is a general-purpose I/O port.			
	INT2		This is an input pin of the DTP/external interrupt circuit ch.2. Because this input is used as required when the DTP/external interrupt circuit is performing input operations, and it is necessary to stop outputs from other functions unless such outputs are made intentionally.			
	ATG		This is a trigger input pin of the 8/10-bit A/D converter. Because this input is used as requited when the 8/10-bit A/D converter is performing input operations, and it is necessary to stop outputs by other functions unless such outputs are made intentionally.			
60	P93	E	This is a general-purpose I/O port. This function is always valid. This function becomes valid when output from PWM3 is disabled.			
	INT3	-	This is a request input of the DTP/external interrupt circuit ch. 3. Because this input is used as required when the DTP/external interrupt circuit is performing input operations, and it is necessary to stop outputs from other functions unless such output are made intentionally.			
	PWM3		This is an output pin of 8-bit PWM timer. This function becomes valid when output from PWM3 is enabled.			
61 P94 E This is a general-purpose I/O por This function becomes valid whe disabled.		This is a general-purpose I/O port. This function becomes valid when serial data output from UART is disabled.				
	SIDO		This is a serial data I/O pin of UART. This function becomes valid when serial data output from UART is enabled. Because this input is used as required when UART is performing input operations, and it is necessary to stop outputs by other functions unless such outputs are made intentionally.			

* : FPT-100P-M05

Pin no.	Pin name	Circuit	Function
LQFP*	D 07		
62	P95	E	This is a general-purpose I/O port. This function becomes valid when data output from UART is disabled.
	SOD0		This is a data output pin of UART. This function becomes valid when data output from UART is enabled.
63	P96	E	This is a general-purpose I/O port. This function becomes valid when clock output from UART is disabled.
	SCK0		This is a clock I/O pin of UART. This function becomes valid when clock output from UART is enabled. Because this input is used as required when UART is performing input operations, and it is necessary to stop outputs by other
			functions unless such outputs are made intentionally.
1 to 6, 100, 99	A02 to A07, A01, A00	E	This is an output pin for the lower 8-bit of the external address bus.
7, 8, 10 to 15	A08, A09, A10 to A15	E	This is an output pin for the middle 8-bit of the external address bus. This function is valid in the mode where the external bus is valid and the middle address control refister is set to select an address.
64	PA0	E	This is a general-purpose I/O port.
	SID1		This is a data input pin of I/O simple serial interface 1. Because this input is used as required when I/O simple serial interface 1 is performing input operations, and it is necessarey to stop outputs by other functions unless such outputs are made intentionally.
65	PA1	E	This is a general-purpose I/O port. This function becomes valid when data output from I/O simple serial interface 1 is disabled.
	SOD1		This is a data output pin of I/O simple serial interface 1. This function becomes valid when data output from I/O simple serial interface 1 is enabled.
66	PA2	E	This is a general-purpose I/O port. This function becomes valid when clock output from I/O simple serial interface 1 is disabled.
	SCK1		This is a clock output pin of I/O simple serial interface 1. This function becomes valid when clock output from I/O simple serial interface 1 is enabled.

* : FPT-100P-M05

(Continued)

Pin no.	Pin name	Circuit	Function		
LQFP*	Tinname	type	T unction		
67	PA3	E	This is a general-purpose I/O port.		
	SID2		This is a data input pin of I/O simple serial interface 2. Because this input is used as required when is performing input operations, and it is I/O simple serial interface 2 necessarey to sto outputs by other functions unless such outputs are made intentionally.		
68	PA4	E	This is a general-purpose I/O port. This function becomes valid when data output from I/O simple serial interface 2 is disabled.		
	SOD2		This is a data output pin of I/O simple serial interface 2. This function becomes valid when data output from I/O simple serial interface 2 is enabled.		
69	PA5	E	This is a general-purpose I/O port. This function becomes valid when clock output from I/O simple serial interface 2 is disabled.		
	SCK2		This is clock output pin of I/O simple serial interface 2. This function becomes valid when clock output from I/O simple serial interface 2 is enabled.		
83 to 90	D00 to D07	D	This is an I/O pin for the lower 8-bit of the external data bus.		
21, 82	Vcc	Power supply	This is power supply to the digital circuit.		
9, 40, 79	Vss	Power supply	This is a ground level of the digital circuit.		
32	AVcc	Power supply	This is power supply to the analog circuit. Make sure to turn on/turn off this power supply with a voltage exceeding AV $_{CC}$ applied to V $_{CC}$.		
33	AVRH	Power supply	This is a reference voltage input to the A/D converter. Make sure to turn on/turn off this power supply with a voltage exceeding AVRH applied to AVcc.		
34	AVRL	Power supply	This is a reference voltage input to the A/D converter.		
35	AVss	Power supply	This is a ground level of the analog circuit.		
45	DVRH	Power supply	This is an external reference power supply pin for the D/A converter.		
46	DVRL	Power supply	This is an external reference power supply pin for the D/A converter.		

* : FPT-100P-M05

■ I/O CIRCUIT TYPE

■ HANDLING DEVICES

1. Make Sure that the Voltage not Exceed the Maximum Rating (to Avoid a Latch-up)

In CMOS ICs, a latch-up phenomenon is caused when an voltage exceeding Vcc or an voltage below Vss is applied to input or output pins or a voltage exceeding the rating is applied across Vcc and Vss.

When a latch-up is caused, the power supply current may be dramatically increased causing resultant thermal break-down of devices. To avoid the latch-up, make sure that the voltage not exceed the maximum rating.

In turning on/turning off the analog power supply, make sure the analog power voltage (AVcc, AVRH) and analog input voltages not exceed the digital voltage (Vcc).

2. Connection of Unused Pins

Leaving unused pins open may result in abnormal operations. Clamp the pin level by connecting it to a pull-up or a pull-down resistor.

3. Notes on Using External Clock

In using the external clock, drive X0 pin only and leave X1 pin unconnected.

4. Power Supply Pins

In products with multiple V_{CC} or V_{SS} pins, the pins of a same potential are internally connected in the device to avoid abnormal operations including latch-up. However, connect the pins external power and ground lines to lower the electro-magnetic emission level and abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating.

Make sure to connect Vcc and Vss pins via lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1 µF between Vcc and Vss pin near the device.

5. Crystal Oscillator Circuit

Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuit not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board art work surrounding X0 and X1 pins with an grand area for stabilizing the operation.

6. Turning-on Sequence of Power Supply to A/D Converter, D/A Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL), D/A converter power supply and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage not exceed AVRH or AVcc (turning on/off the analog and digital supplies simultaneously is acceptable).

7. Connection of Unused Pins of A/D Converter

Connect unused pins of A/D converter to AVcc = Vcc, AVss = AVRH = AVRL = Vss.

8. "MOV @AL, AH", "MOVW @AL, AH" Instructions

When the above instruction is performed to I/O space, an unnecessary writing operation may be performed (#FF, #FFFF) in the internal bus.

Use the compiler function for inserting an NOP instruction before the above instructions to avoid the writing operation.

Accessing RAM space with the above instruction does not cause any problem.

9. Initialization

In the device, there are internal registers which is initialized only by a power-on reset. To initialize these registers turning on the power again.

10.External Reset Input

To reset the internal securely, "L" level input to the RST pin must be at least 5 machine cycle.

11.HST Pin

Make sure HST pin is set to "H" level when turn on the power supply. Also make sure HST pin is never set to "L" level, when RST pin is set to "L" level.

12.CLK Pin

BLOCK DIAGRAM

The ROM data of bank FF is reflected in the upper address of bank 00, realizing effective use of the C compiler small model. The lower 16-bit of bank FF and the lower 16-bit of bank 00 is assigned to the same address, enabling reference of the table on the ROM without stating "far".

MEMORY MAP

■ F²MC-16F CPU PROGRAMMING MODEL

(1) Dedicated Registers

АН	AL	: Accumlator (A) Dual 16-bit register used for storing results of calculation etc. The two 16-bit registers can be combined to be used as a 32-bit register.
	USP	: User stack pointer (USP) The 16-bit pointer for containing a user stack address.
	SSP	: System stack pointer (SSP) The 16-bit pointer for displaying the status of the system stack address.
	PS	: Processor status (PS) The 16-bit register for displaying the system status.
	PC	: Program counter (PC) The 16-bit register for displaying storing location of the current instruction code.
	USPCU	: User stack upper limit register (USPCU) The 16-bit register for specifying the upper limit of the user stack.
	SSCPU	: System stack upper limit register (SSPCU) The 16-bit register for specifying the upper limit of the system stack.
	USPCL	: User stack lower limit register (USPCL) The 16-bit register for specifying the lower limit of the user stack.
	SSPCL	: System stack lower limit register (SSPCL) The 16-bit register for specifying the lower limit of the system stack.
	DPR	: Direct page register (DPR) The 8-bit register for specifying bit 8 through 15 of the operand address in the short direct addressing mode.
	РСВ	: Program bank register (PCB) The 8-bit register for displaying the program space.
	DTB	: Data bank register (DTB) The 8-bit register for displaying the data space.
	USB	: User stack bank register (USB) The 8-bit register for displaying the user stack space.
	SSB	: System stack bank register (SSB) The 8-bit register for displaying the system stack space.
	ADB	: Additional data bank register (ADB) The 8-bit register for displaying the additional data.
l ⊿ 32	2-DIT	

(2) General-purpose Registers

(3) Processor Status (PS)

■ I/O MAP

Address	Abbreviated Register name		Read/ write	Resource name	Initial value				
00000н	(System reservation area)*1								
000001н	PDR1	Port 1 data register	R/W!	Port 1	ХХХХХХХАв				
000002н	(System recording area)*1								
00003н	(System reservation area)**								
000004н	PDR4	Port 4 data register	R/W!	Port 4	ХХХХХХХАв				
000005н	PDR5	Port 5 data register	R/W!	Port 5	ХХХХХХХХВ				
000006н	PDR6	Port 6 data register	R/W!	Port 6	11111118				
000007н	PDR7	Port 7 data register	R/W!	Port 7	— X X X X X X X в				
000008н	PDR8	Port 8 data register	R/W!	Port 8	ХХХХХХв				
000009н	PDR9	Port 9 data register	R/W!	Port 9	— X X X X X X X в				
00000AH	PDRA	Port A data register	R/W!	Port A	— — X X X X X X в				
00000Вн to 00000Fн	(Vacancy)								
000010н	(System reservation area)*1								
000011н	DDR1	Port 1 direction register	R/W	Port 1	00000000в				
000012н		(System reserv	ation area)*1					
000013н				/					
000014н	DDR4	Port 4 direction register	R/W	Port 4	0000000в				
000015 н	DDR5	Port 5 direction register	R/W	Port 5	00000000в				
000016н	ADER	Analog input enable register	R/W	Port 6, 8/10-bit A/D converter	11111111в				
000017н	DDR7	Port 7 direction register	R/W	Port 7	-0000000в				
000018 _H	DDR8	Port 8 direction register	R/W	Port 8	000000в				
000019н	DDR9	Port 9 direction register	R/W	Port 9	— X X X X X X X в				
00001Ан	DDRA	Port A direction register	R/W	Port A	— — О О О О О О В				
00001Вн to 00001Fн	(Vacancy)								
000020н	SCR1	Serial control status register 1	R/W		10000000в				
000021н	SSR1	Serial status register 1	R	I/O simple serial	—————— 1 в				
000022н	SDR1L	Serial data register 1 (L)	R/W	interface 1	ХХХХХХХАв				
000023н	SDR1H Serial data register 1 (H) R/W XXXX								

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value			
000024н	SCR2	Serial control status register 2	R/W		10000000в			
000025н	SSR2	Serial status register 2	R	I/O simple serial	1 в			
000026н	SDR2L	Serial data register 2 (L)	R/W	interface 2	ХХХХХХХХВ			
000027н	SDR2H	Serial data register 2 (H)	2 (H) R/W					
000028н	UMC	Mode control register	00000100в					
000029н	USR	Status register	R/W		0001000в			
00002Ан	UIDR/ UODR	Input data register/ output data register	R/W	UART	ХХХХХХХХв			
00002Вн	URD	Rate and data register	R/W	Ť	00000000в			
00002Сн	PWMC3	PWM3 operating mode control register	R/W	8-bit PWM timer 3	00000ХХ1в			
00002Dн		(Vacar	ncy)					
00002Ен	PRLL3	PWM3 re-road register (L)	R/W	8-bit PWM	ХХХХХХХХВ			
00002Fн	PRLH3	PWM3 re-road register (H)	R/W	timer 3	ХХХХХХХХВ			
000030н	ENIR	DTP/interrupt enable register	R/W		0000в			
000031н	EIRR	DTP/interrupt factor register	R/W	interrupt circuit	0000в			
000032н	ELVR	Request level setting register	R/W	· · · · · · · · · · · · · · · · · · ·	00000000в			
000033н	(Vacancy)							
000034н	PWMC0	PWM0 operating mode control register	R/W	8-bit PWM timer 0	00000ХХ1в			
000035н		(Vacar	ncy)					
000036н	PRLL0	PWM0 re-road register (L)	R/W	8-bit PWM	ХХХХХХХХВ			
000037н	PRLH0	PWM0 re-road register (H)	R/W	timer 0	ХХХХХХХАв			
000038н	PWMC1	PWM1 operating mode control register	R/W	8-bit PWM timer 1	00000ХХ1в			
000039н		(Vacar	ncy)					
00003Ан	PRLL1	PWM1 re-road register (L)	R/W	8-bit PWM	ХХХХХХХХВ			
00003Вн	PRLH1	PWM1 re-road register (H)	R/W	timer 1	ХХХХХХХХВ			
00003Сн	PWMC2	PWM2 operating mode control register	R/W	8-bit PWM timer 2	00000ХХ1в			
00003Dн		(Vacar	ncy)					
00003Ен	PRLL2	PWM2 re-road register (L)	R/W	8-bit PWM	ХХХХХХХАв			
00003Fн	PRLH2	PWM2 re-road register (H)	R/W	timer 2	ХХХХХХХХВ			
000040н	TMCSRO	Timer control status register 0 lower digits	R/W	16-bit re-load	00000000в			
000041н		Timer control status register 0 upper digits	R/W	timer 0	0 0 0 0 в			

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value				
000042н	TMDO	16 bit timer register 0	Р		ХХХХХХХАв				
000043н	TIMIKU	ro-bit timer register 0	ĸ	16-bit re-load	ХХХХХХХАв				
000044н		16 bit to load register 0		, timer 0	ХХХХХХХАв				
000045н	TMRLRU	To-bit re-load register 0	R/W		ХХХХХХХАв				
000046н	(Macana)								
000047н	(Vacancy)								
000048н		Timer control status register 1 lower digits	R/W		00000000в				
000049н	TWCSKT	Timer control status register 1 upper digits	R/W	16 bit to load	—————————————————————————————————————				
00004Ан		16 bit timor register 1	D	timer 1	ХХХХХХХХВ				
00004Вн			ĸ		ХХХХХХХАв				
00004Сн		16 bit to load register 1	D/M		ХХХХХХХАв				
00004Dн			R/W		ХХХХХХХАв				
00004Eн									
00004Fн		(vaca	ncy)						
000050н	TMCSP2	Timer control status register 2 lower digits	R/W	16-bit re-load	00000000в				
000051н	TWOORZ	Timer control status register 2 upper digits	R/W		— — — — 1 1 1 1 в				
000052н		16-bit timer register 2	P	timer 2	ХХХХХХХХВ				
000053н			ĸ		ХХХХХХХХВ				
000054н		16-bit re-load register 2	6-bit re-load register 2 R/W		ХХХХХХХХВ				
000055н		To-bit re-load register 2			ХХХХХХХХВ				
000056н to 000059н		(Vaca	ncy)						
00005Ан	DADR0	D/A data register 0	R/W	8-bit D/A	ХХХХХХХХВ				
00005Вн	DACR0	D/A control register 0	R/W	converter 0	—————————————————————————————————————				
00005Сн	DADR1	D/A data register 1	R/W	8-bit D/A	ХХХХХХХХВ				
00005Dн	DACR1	D/A control register 1	R/W	converter 1	—————————————————————————————————————				
00005Ен	DADR2	D/A data register 2	R/W	8-bit D/A	ХХХХХХХХВ				
00005Fн	DACR2	D/A control register 2	R/W	converter 2	—————————————————————————————————————				
000060н		Input conture register 0	D		ХХХХХХХАв				
000061н		Input capture register 0	r.	16-bit I/O timer	ХХХХХХХАв				
000062н		Input conturo register 1	D	(input	ХХХХХХХАв				
000063н		Input capture register 1	r.	capture 0, 1)	ХХХХХХХАв				
000064н	ICS0 Input capture control register		R/W		00000000в				

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value						
000065н to 00006Вн		(Vacar	ıcy)								
00006Сн		_	D 444	16 bit I/O timor	0000000в						
00006Dн	TCDT	l imer data register	R/W	(16-bit free-run	00000000в						
00006Eн	TCCS	Timer control status register	R/W	timer)	0000000в						
00006Fн		(Vacar	ncy)								
000070н	ADCSL	A/D control status register lower digits	R/W		000-0000в						
000071н	ADCSH	A/D control status register upper digits	R/W	*	— 0 0 0 — — 0 0 в						
000072н		Conversion time setting register	R/W		ХХХХХХХХВ						
000073н	Abol	Conversion time setting register	10,00		ХХХХХХХАв						
000074н	ADTL0	A/D data register 0	R	8/10-bit A/D	ХХХХХХХХВ						
000075н	ADTH0		R	converter	————— * * в						
000076н	ADTL1	A/D data register 1	R		ХХХХХХХАв						
000077н	ADTH1		R		————— * * в						
000078н	ADTL2	A/D data register 2	R		ХХХХХХХАв						
000079н	ADTH2		R	_	————— * * в						
00007Ан	ADTL3	A/D data register 3	R		ХХХХХХХАв						
00007Bн	ADTH3		R		————— * * в						
00007Сн to 00007Fн		(Vacar	icy)								
000080н	MCSR	Product addition control status register lower digits	R/W		ХХХОХХХО в						
000081н	MOOR	Product addition control status register digits	R/W		— X X X X X X X в						
000082н	MCCRL	Product addition continuation control register lower digits	R/W		00000000						
000083н	MCCRH	Product addition continuation control register upper digits	R/W	DSP interface for the IIR filter	—————————————————————————————————————						
000084н	MDORI		R		ХХХХХХХАв						
000085н	MDOILE				ХХХХХХХАв						
000086н	MDORM	Production addition output	R		ХХХХХХХХВ						
000087н	MDORH		R		ХХХХХХХХВ						
000088н					ХХХХХХХХВ						

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value							
000089н												
to 00008Fн		(Vacar	icy)									
000090н												
to 00009F⊬		(System reservation area)*1										
00009 F н	DIRR	Delayed interrupt factor generation/ cancellation register	R/W	Delayed interrupt generation module	—————————————————————————————————————							
0000А0н	STBYC	Standby control register	R/W	Low-power consumption (stand-by) mode	0001ХХХХв							
0000A1н to 0000A3н		(System reserve	ation area)*1								
0000A4н	HACR	Upper address control register	Extornal bus pin	*2								
0000A5н	EPCR	External pin control register	W	External bus pin	*2							
0000A8H	WDTC	Watchdog timer control register	R/W	Watchdog timer	ХХХХХХХХВ							
0000A9н	TBTC	Timebase timer control register	R/W	Timebase timer	- X X 0 0 1 0 0 в							
0000В0н	ICR00	Interrupt control register 00	R/W		00000111в							
0000B1н	ICR01	Interrupt control register 01	R/W		00000111в							
0000В2н	ICR02	Interrupt control register 02	R/W	-	00000111в							
0000ВЗн	ICR03	Interrupt control register 03	R/W		00000111в							
0000В4н	ICR04	Interrupt control register 04	R/W		00000111в							
0000В5н	ICR05	Interrupt control register 05	R/W		00000111в							
0000В6н	ICR06	Interrupt control register 06	R/W		00000111в							
0000 B7 н	ICR07	Interrupt control register 07	R/W	Interrupt	00000111в							
0000B8н	ICR08	Interrupt control register 08	R/W	controller	00000111в							
0000В9н	ICR09	Interrupt control register 09	R/W		00000111в							
0000BAH	ICR10	Interrupt control register 10	R/W		00000111в							
0000BBH	ICR11	Interrupt control register 11	R/W		00000111в							
0000BCH	ICR12	Interrupt control register 12	R/W		00000111в							
0000BDH	ICR13	Interrupt control register 13	R/W		00000111в							
0000BEн	ICR14	Interrupt control register 14	R/W	*	00000111в							
0000BFн	ICR15	Interrupt control register 15	R/W		00000111в							
0000C0н to 0000FFн		(External a	area)*3									

Descriptions for read/write

R/W: Readable and writable

R: Read only

W: Write only

R/W!: Bits for reading operation only or writing operation only are included. Refer to the register lists for specific resource for detailed information.

Descriptions for initial value

- 0 : The initial value of this bit is "0".
- 1 : The initial value of this bit is "1".
- X : The initial value of this bit is indeterminate.
- : This bit is not used. The initial value is indeterminate.
- * : The storage type varies with the value of the ADCSH CREG bit.
- *1: Access prohibited.
- *2: The initial value varies with bus mode.
- *3: This area is the only external access area having an address of 0000FF_H or lower. Access to any of the addresses specified as reserved areas in the table is handled as if an internal area were accessed. A signal for accessing an external bus is not generated.
- *4: When a register described as R/W! or W in the read/write column is accessed by a bit setting instruction or other read modify write instructions, the bit pointed to by the instruction becomes a set value. If a bit is writable by other bits, however, malfunction occurs. You must not, therefore, access that register using these instructions.
- Note: For bits that is initialized by an reset operation, the initial value set by the reset operation is listed as an initial value. Note that the values are different from reading results.

■ INTERRUPT FACTORS, INTERRUPT VECTORS, INTERRUPT CONTROL REGISTER

	El ² OS	In	terrupt	vector	Interrupt cor		
interrupt source	support	Num	nber	Address	ICR	Address	Priority
Reset	×	# 08	08н	FFFFDC H	—	—	High
INT9 instruction	×	# 09	09н	FFFFD8H	—		▲
Exception	×	# 10	0Ан	FFFFD4 _H	—		
DTP/external interrupt circuit Channel 0	0	# 11	0Вн	FFFFD0H	ICR00	0000В0н	
DTP/external interrupt circuit Channel 1	0	# 13	0Dн	FFFFC8H	ICR01	0000B1 н	
Input capture (ICU) Channel 0	0	# 15	0Fн	FFFFC0H	ICR02	0000В2н	
Input capture (ICU) Channel 1	\bigtriangleup	# 17	11н	FFFFB8 _H			
I/O simple serial interface Channel 2	\bigtriangleup	# 18	12н	FFFFB4H	ICR03	0000ВЗн	
DTP/external interrupt circuit Channel 2	0	# 19	13 н	FFFFB0H	ICR04	0000В4н	
DTP/external interrupt circuit Channel 3	0	# 21	15 н	FFFFA8H	ICR05	0000В5н	
16-bit free-run timer Overflow	0	# 23	17 н	FFFFA0H	ICR06	0000В6н	
Timebase timer Interval interrupt	0	# 25	19 н	FFFF98⊦	ICR07	0000В7 н	
16-bit re-load timer Channel 0	0	# 27	1Bн	FFFF90⊦	ICR08*1	0000B8u	
8-bit PWM timer Channel 0	×	# 28	1Cн	FFFF8C _H		00000001	
16-bit re-load timer Channel 1	0	# 29	1Dн	FFFF88 _H		000080	
8-bit PWM timer Channel 1	×	# 30	1 Ен	FFFF84 _H	ICR09	0000098	
16-bit re-load timer Channel 2	0	# 31	1Fн	FFFF80H		0000BA	
8-bit PWM timer Channel 2	×	# 32	20н	FFFF7CH		UUUUDAH	
8/10-bit A/D converter measurement complete	0	# 33	21н	FFFF78⊦	ICR11*1	0000BBн	
8-bit PWM timer Channel 3	×	# 34	22н	FFFF74н	-		
I/O simple serial interface Channel 1	0	# 35	23н	FFFF70н	ICR12	0000BCн	
UART transmission complete	0	# 37	25н	FFFF68 _H	ICR13	0000BDн	
UART reception complete	0	# 39	27 н	FFFF60H	ICR14	0000BEн	
Delayed interrupt generation module	×	# 42	2Ан	FFFF54H	ICR15	0000BFн	•
Stack fault	×	# 255	FFн	FFFC00H	—		Low

 $\, \odot \,$: Can be used

 $\times \ :$ Can not be used

◎ : Can be used. With Extended intelligent I/O service (EI²OS) stop function at abnormal operation.

 \bigtriangleup : Can be used if interrupt request using ICR are not commonly used.

- *1: Interrupt levels for peripherals that commonly use the ICR register are in the same level.
 - When the extended intelligent I/O service (EI²OS) is specified in a peripheral device commonly using the ICR register, only one of the functions can be used.
 - When the extended intelligent I/O service (EI²OS) is specified for one of the peripheral functions, interrupts can not be used on the other function.
- *2: The level shows priority of same level of interrupt invoked simultaneously.

PERIPHERALS

1. I/O Port

(1) Input/output Port

Ports 1, 4, 5, 7 to 9, A are general-purpose I/O ports having a combined function as an external bus pin and a resource input. The input output ports function as general-purpose I/O port only in the single-chip mode. In the external bus mode, the ports are configured as external bus pins, and part of pins for port 4 can be configured as general-purpose I/O port by setting the bus control signal select register (ECSR).

· Operation as output port

The pin is configured as an output port by setting the corresponding bit of the DDR register to "1". Writing data to PDR register when the port is configured as output, the data is retained in the output latch in the PDR and directly output to the pin.

The value of the pin (the same value retained in the output latch of PDR) can be read out by reading the PDR register.

- Note: When a read-modify-write type instruction (e.g. bit set instruction) is performed to the port data register, the destination bit of the operation is set to the specified value, not affecting the bits configured by the DDR register for output, however, values of bits configured by the DDR register as inputs are changed because input values to the pins are written into the output latch. To avoid this situation, configure the pins by the DDR register as output after writing output data to the PDR register when configuring the bit used as input as outputs.
- Operation as input port

The pin is configured as an input by setting the corresponding bit of the DDR register to "0".

When the pin is configured as an input, the output buffer is turned-off and the pin is put into a high-impedance status.

When a data is written into the PDR register, the data is retained in the output latch of the PDR, but pin outputs are unaffected.

Reading the PDR register reads out the pin level ("0" or "1").

(2) N-ch Open-drain Port

Port 6 is general-purpose I/O port having a combined function as resource input/output. Each pin can be switched between resource and port bitwise.

· Operation as output port

When a data is written into the PDR register, the data is latched to the output latch of PDR. When the output latch value is set to "0", the output transistor is turned on and the pin status is put into an "L" level output, while writing "1" turns off the transistor and put the pin in a high-impedance status.

If the output pin is pulled-up, setting output latch value to "1" puts the pin in the pull-up status. Reading the PDR register returns the pin value (same as the output latch value in the PDR).

Note: Execution of a read-modify-write instruction (e.g. bit set instruction) reads out the output latch value rather than the pin value, leaving output latch that is not manipulated unchanged.

• Operation as input port Setting corresponding bit of the PDR register to "1" turns off the output transistor and the pin is put into a highimpedance status.

Reading the PDR register returns the pin value ("0" or "1").

(3) Register Configuration

Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10) bit 9	bit 8	bit 7.		· · · ·bit 0	
000001н	P17	P16	P15	P14	P13	P12	P11	P10	(Syste	m reserva	tion area)	Port 1 data register (PDR1)
	R/W	R/W	R/W	R/W	R/W	R/W	/ R/W	R/W				()
Address	bit 15···		·bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
000004н	(PDR5)		P47	P46	P45	P44	P43	P42	P41	P40	Port 4 data register
	i		·····	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 1() bit 9	bit 8	bit 7.		· · · ·bit 0	
000005н	P57	P56	P55	P54	P53	P52	P51	P50		(PDR4)	Port 5 data register
	R/W	R/W	R/W	R/W	R/W	R/W	/ R/W	R/W				(1010)
Address	bit 15· · ·		·bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
00006н	(PDR7)	·····	P67	P66	P65	P64	P63	P62	P61	P60	Port 6 data register
	l			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	(1 01(0)
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10) bit 9	bit 8	bit 7.		· · · · bit 0	
000007н	_	P76	P75	P74	P73	P72	P71	P70	1	(PDR6)		Port 7 data register (PDR7)
	L	R/W	R/W	R/W	R/W	R/W	/ R/W	R/W				(1 2111)
Address	bit 15···		·bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
00008н	(PDR9)	Γ	P87	P86	P85	P84	P83	P82	_	_	Port 8 data register
	·	·····	L	R/W	R/W	R/W	R/W	R/W	R/W			(1 DR0)
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10) bit 9	bit 8	bit 7·		· · · · bit 0	
000009н	_	P96	P95	P94	P93	P92	P91	P90		(PDR8)	Port 9 data register (PDR9)
	R/W	R/W	R/W	R/W	R/W	R/W	/ R/W					(* = * * *)
Address	bit 15···		·bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
00000Ан	(V	'acancy)		_	_	PA5	PA4	PA3	PA2	PA1	PA0	Port A data register
	L		·····			R/W	R/W	R/W	R/W	R/W	R/W	
Addross	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10) bit 9	bit 8	bit 7·		· · · ·bit 0	
000011н	P17	P16	P15	P14	P13	P12	P11	P10	(Syste	m reserva	tion area)	Port 1 direction register (DDR1)
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Address	bit 15· · ·		·bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
000014н	(DDR5)	Γ	P47	P46	P45	P44	P43	P42	P41	P40	Port 4 direction register (DDR4)
	·		· · · · · · · · · · · · · · · · · · ·	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	()
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10) bit 9	bit 8	bit 7·		· · · · bit 0	
000015н	P57	P56	P55	P54	P53	P52	P51	P50		(DDR4)	Port 5 direction register (DDR5)
	R/W	R/W	R/W	R/W	R/W	R/W	/ R/W	R/W				(, ,
Address	bit 15···		·bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
000016н	(DDR7)		P67	P66	P65	P64	P63	P62	P61	P60	Analog input enable register (ADER)
	·			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	× /

٦

Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7.		····bit 0			
000017 н	_	P76	P75	P74	P73	P72	P71	P70		(ADER)	(DDR7)		
	—	R/W	R/W	R/W	R/W	R/W	R/W	R/W						
Address	bit 15· · ·	••••	∙ •bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
000018 н	(I	DDR9)		P87	P86	P85	P84	P83	P82	—	—	Port 8 direction register (DDR8)		
				R/W	R/W	R/W	R/W	R/W	R/W	—	_			
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10) bit 9	bit 8	bit 7·		····bit 0			
000019н	—	P96	P95	P94	P93	P92	P91	P90		(DDR8))	Port 9 direction register (DDR9)		
	R/W	R/W	·R/W	····R/W	R/W	R/W	R/W	R/W						
Address	bit 15· · ·		• •bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
00001Ан	(V	acancy)		_	_	PA5	PA4	PA3	PA2	PA1	PA0	Port A direction register (DDRA)		
				—	—	R/W	R/W	R/W	R/W	R/W	R/W			
R/W :	Readble a	and writa	able											
— .	Unuseu													

(Continued)

Г

2. Timebase Timer

The timebase timer is a 18-bit free-run counter (timebase counter) for counting up in synchronization to the internal count clock (divided-by-2 of oscillation) with an interval timer function for selecting an interval time from four types of 2¹³/HCLK, 2¹⁵/HCLK, 2¹⁷/HCLK, and 2¹⁹/HCLK.

The timebase timer also has a function for supplying operating clocks for the timer output for the oscillation stabilization time or the watchdog timer etc.

(1) Register Configuration

(2) Block Diagram

3. Watchdog Timer

The watchdog timer is a 2-bit counter operating with an output of the timebase timer and resets the CPU when the counter is not cleared for a preset period of time.

(1) Register Configuration

(2) Block Diagram

4. 8-bit PWM Timer

The 8-bit PWM timer is a re-load timer module that can generate a pulse wave with any period/duty ratio. It uses pulse output control according to timer operation for PWM (Pulse Width Modulation) output.

An appropriate external circuit allows the 8-bit PWM timer to operate as a D/A converter.

The 8-bit PWM timer module consists of two 8-bit re-load registers used to specify "H" width and "L" width and of a down counter that is loaded alternately with those values and counts down.

- A pulse waveform with any period and duty ratio is generated.
- An output pulse's duty ratio of 0.4 to 99.6 percent can be set.
- An appropriate external circuit allows this PWM timer to operate as a D/A converter.
- An interrupt request can be generated by counter underflow.
- The count clock can be selected from two types of timebase timer output.

(1) Register Configuration

Address PWMC0 : 000034н	bit 15	· · · · · ·		· · bit 8	3 bit	7	bit 6	bit 5	5 k	oit 4	bit 3	3 t	oit 2	bit 1	t	oit 0	Initial value 00000XX1 в
PWMC1 : 000038н PWMC2 : 00003Сн	l	(Vaca	ancy)		PE	N F	CKS	PO	E	PIE	PUF	-	_		R	ESV	00000XX1B
PWMC3 : 00002CH					R/W	/ F	R/W	R/W	/ F	R/W	R/W	/ F	R/W	R/W	F	R/W	00000XX1в 00000XX1в
PWM0 to 3 re-loa	d reg	ister	(PR	LL, F	PRLF	I)											
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
PRLH0 : 000037н PRLH1 : 00003Bн																	XXXXXXX1 B XXXXXXX1 B
РRLH1 : 00003Вн PRLH2 : 00003Fн PRLH3 : 00002Fн PRLL0 : 000036н PRLL1 : 00003Ан PRLL2 : 00003Eн PRLL2 : 00002Eн	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	XXXXXXX1B XXXXXXX1B XXXXXXX1B XXXXXXX1B XXXXXXX1B XXXXXXX1B XXXXXXX1B
R/W : X RESV:	Reada Jnuse ndetei Reserv	ble ar d minat ved bit	nd writ re	able													

(2) Block Diagram

5. 16-bit Re-load Timer

The 16-bit re-load timer has an internal clock mode for counting down in synchronization to three types of internal clocks and an event count mode for counting down detecting a given edge of the pulse input to the external bus pin, and either of the two functions can be selectively used.

For this timer, an "underflow" is defined as the timing of transition from the counter value of " 0000_{H} " to "FFFFH". According to this definition, an underflow occurs after [re-load register setting value + 1] counts.

In operating the counter, the re-load mode for repeating counting operation after re-loading a counter value after an underflow or the one-shot mode for stopping the counting operation after an underflow can be selectively used.

Because the timer can generate an interrupt upon an underflow, the timer conforms to the extended intelligent I/O service (EI²OS).

The MB90246A series has 3 channels of 16-bit re-load timers.

(1) Register Configuration

Address	bit 15	bit 14	bit 1	3 bit 12	2 bit 1'	l bit 10) bit 9	bit 8	bit 7			bit 0	Initial value
TMCSR0 : 000041H TMCSR1 : 000049H	-	—	—	-	CSL		MOD2	2 MOD	1 (TMCS	R : L)	0000в
TMCSR2 : 000051⊦	_	_	_	_	R/W	R/W	R/W	R/W					
Timer control star	tus reais	ter 0	1.210	wer d	iaits (T	MCSR		SR1 -	TMCS	R2∙ I)		
Address	bit 15···	· · · · · · · · · · ·	· ·bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1) k	oit 0	Initial value
TMCSR0 : 000040н TMCSR1 : 000048н	(TN	ICSR : F	I)	MOD0	OUTE	OUTL	RELD	INTE	UF	CNT	E T	RG	0000000в
TMCSR2 : 000050H	·			R/W	R/W	R/W	R/W	R/W	R/W	R/W	F	R/W	
 16-bit timer regist Address ТМК0 : 000042н ТМК1 : 00004Ан ТМК2 : 000052н 16-bit re-load regional 	ter 0, 1 (bit 15bit D15 D R F	(TMR0 14bit 13 14 D13 R R 1 (TMF	, TMF bit 12b D12 R	R1, TM it 11bit D11 D1 R R	R2) 10 bit 9 0 D9 2 R	bit 8 bit D8 D R R	7 bit 6 7 D6 2 R	bit 5 bit D5 D R F	4 bit 3 4 D3 R R	bit 2 D2 R	bit 1 D1 R	bit 0 D0 R	Initial value XXXXXXXB XXXXXXXB XXXXXXXB XXXXXXXB
Address	bit 15bit	14bit 13	bit 12b	it 11bit	, 10 bit 9	bit 8 bit	7 bit 6	bit 5 bit	4 bit 3	bit 2	bit 1	bit 0	Initial value
TMRLR0 : 000044н TMRLR1 : 00004Сн	D15 D	14 D13	D12	D11 D1	0 D9	D8 D	7 D6	D5 D	4 D3	D2	D1	D0	XXXXXXXXAB XXXXXXXXB XXXXXXXXB
TMRLR2 : 000054H	W V	vw	W	w w	/ W	w w	/ W	w v	vw	W	W	W	ллллллв
R/W : Read R : Read W : Write — : Unus X : Indet	dable and d only e only sed terminate	writable											

6. 16-bit I/O Timer

The 16-bit I/O timer module consists of one 16-bit free-run timer, two input capture (ICU) circuits, and four output comparators.

This complex module allows two independent waveforms to be output on the basis of the 16-bit free-run timer. Input pulse width and external clock periods can, therfore, be measured.

The 16-bit I/O timer consists of:

- a 16-bit free-run timer; and
- two input captures (ICU).
- Block diagram

(1) 16-bit Free-run Timer

The 16-bit free-run timer consists of a 16-bit up counter, a prescaler, and a control register. The value output from the timer counter is used as basic timer (base timer) for input capture (ICU).

- A counter operation clock can be selected from four internal clocks.
- An interrupt request can be issued to the CPU by counter overflow.
- The extended intelligent I/O service (EI²OS) can be activated.
- The 16-bit free-run timer counter is cleared to "0000H" by a reset or by clearing the timer (TCCS: CLK = 0).
- Register configuration

00006	БЕн	(Vac	ancy)		RES	SV SV	IVF	IVF					/nt Z	DICT			
		·····								SIUP	RES	$v \mid c$	CLR	CLK	1 C	LK0	0000000в
					R/V	V	R/W	R/V	V	R/W	R/W	/	R/W	R/W	/ I	R/W	
 Timer data re 	egister (TCDT)															
Addre	ess bit	, t 15bit 14	lbit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00006 00006	6Dн Т 6Cн Т	15 T14	T13	T12	T11	T10	T09	T08	Т07	T06	T05	T04	T03	T02	T01	тоо	00000000 00000000в
	R	/W R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
R/W · Read	dable and	l writable															
RESV: Rese	erved bit																

• Block diagram

(2) Input Capture (ICU)

The input capture (ICU) consists of a capture register corresponding to two 16-bit external input pins, a control register, and an edge detector. Upon input of a trigger edge through an external input pin, the counter value of the 16-bit free-run timer is stored into the input capture register, and an interrupt request can be generated concurrently.

- A capture interrupt can be generated independently for each capture unit.
- The extended intelligent I/O service (EI2OS) can be activated.
- A trigger edge direction can be selected from rising/falling/both edges.
- Since two input capture units can be operated independent of each other, up to two events can be measured independently.
- The input capture function is suited for measurements of intervals (frequencies) and pulse-widths.

• Register configuration

 Input capture cor 	trol status register (ICS)
---------------------------------------	----------------------------

• Block diagram

7. Simple I/O Serial Interface

The 8/16-bit simple I/O serial interface transfers data synchronously with a clock.

- Communications direction: Concurrent processing of transmission (Whether data is to be sent or received must be judged by the user.)
- Transfer mode: Clock synchronization function (Only data are transferred.)
- Transfer rate: DC to φ/2 (φ: Machine clock. Frequencies of up to 8 MHz are available when the machine clock is rated at 16 MHz.)
- Shift clock: A machine clock division clock is used as the shift clock. (One of four division ratios can be selected.). A shift clock is output only during data transfer.
- Data transfer format: MSB first can be selected. 8 or 16 bits can be selected as data length. Only data are transferred.
- Interrupt request: An interrupt request is issued upon termination of transfer.
- Inter-CPU connection: Only 1:1 (bidirectional communication)

(1) Register Configuration

 Serial control state 	us regis	ter 1, 2	2 (SC	R)											
Address	bit 15· · · ·		· ·bit 8	bit 7	bit 6	b	it 5	bit 4	bit	3	bit 2	bit '	II	bit 0	Initial value
SCR0:000020H		(SSR)		STOP	OCKE	s	OE	SIE	SIF	י ۶	NBS	SME	01 S	SMD0	1000000в
SCR1:000024H	·		·····	R/W	R/W	R	/W	R/W	R/V	V	R/W	R/V	/	R/W	
 Serial status regis 	ter 1, 2	(SSR)													
Address	bit 15	bit 14	bit 13	bit 1	2 bit 1	1	bit 10	bit 9) b	it 8	bit 7·			· ∙bit 0	Initial value
SSR1 : 000021н SSR2 : 000025н	—	—	_	_			_	-	В	USY		(SC	R)		1в
	_	_		·			_			R	••••••				
Serial data registe	er 1, 2 (S	SDR)													
Address	bit 15bit	14bit 13	bit 12b	it 11bit	10 bit 9	bit	8 bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
SDR1H : 000023H SDR2H : 000027H	D15 D1	4 D13	D12	D11 D1	0 D09	D0	8 D07	D06	D05	D04	D03	D02	D01	D00	XXXXXXXXXB XXXXXXXXB
SDR1L : 000022н SDR2L : 000026н	R/W R/	N R/W	R/W F	R/W R/	W R/W	R/V	V R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
R/W : Readal R : Read o — : Unused X : Indeter	ble and w nly d minate	itable													

8. UART

UART0 is a general-purpose serial data communication interface for performing synchronous or asynchronous communication (start-stop synchronization system). In addition to the normal duplex communication function (normal mode), UART0 has a master-slave type communication function (multi-processor mode).

- Data buffer: Full-duplex double buffer
- Transfer mode:Clock synchronized (with start and stop bit)
 - Clock asynchronized (start-stop synchronization system)
- Baud rate: With dedicated baud rate generator, selectable from 12 types
 External clock input possible
 - Internal clock (A clock supplied from 16-bit re-load timer 2 can be used.)
- Data length: 7 bit to 9 bit selective (with a parity bit)
 - 6 bit to 8 bit selective (without a parity bit)
- Signal format: NRZ (Non Return to Zero) system
- · Reception error detection: Framing error
 - Overrun error

Parity error (not available in multi-processor mode)

• Interrupt request: Receive interrupt (receive complete, receive error detection)

Receive interrupt (transmit complete)

Transmit/receive conforms to extended intelligent I/O service (El²OS)

 Master/slave type communication function: 1 (master) to n (slave) communication possible (multi-processor mode)

(1) Register Configuration

 Status register (US 	R)										
Address	bit 15 bit 14	bit 13	3 bit 12	bit 11	bit 10	bit 9	bit 8	bit 7∙ ·		· · ·bit 0	Initial value
000029н	RDRF OREF	F PE	TDRE	RIE	BCH	RBF	TBF		(UMC)	00010000в
	R R	R	R	R/W	R/W	R	R				
 Mode control regist 	ter (UMC)										
Address	bit 15·····	· · · bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000028н	(USR)		PEN	SBL	MC1	MC0	SMDE	RFC	SCKE	SOE	00000100в
Rate and data regis	ster (URD)		R/W	R/W	R/W	R/W	R/W	W	R/W	R/W	
Address	bit 15 bit 14	bit 13	3 bit 12	bit 11	bit 10	bit 9	bit 8	bit 7· ·		· · ·bit 0	Initial value
00002Вн	BCH RC3	RC2	RC1	RC0	BCH) P	D8	(UIDR/UC	DR)	0000000в
Input data register	R/W R/W (UIDR)	R/W	R/W	R/W	R/W	R/W	R/W				
Address	bit 15····bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00002Ан	(URD)	D8	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXXB
		R	R	R	R	R	R	R	R	R	
 Output data registe 	er (UODR)										
Address	bit 15····bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00002Ан	(URD)	D8	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXXB
		W	W	W	W	W	W	W	W	W	
R/W : Reada R : Read c W : Write c X : Indeter	ble and writable only minate										

9. DTP/External Interrupt Circuit

The DTP (Data Transfer Peripheral)/external interrupt circuit is located between peripheral equipment connected externally and the F²MC-16F CPU and transmit interrupt requests or data transfer requests generated by peripheral equipment to the CPU, generates external interrupt request and starts the extended intelligent I/O service (El²OS).

(1) Register Configuration

DTP/interrupt	factor r	egister	EIRF	R)								
Address	bit 15	bit 14	bit 13	bit 12	bit 1	1 bit 10) bit 9	bit 8	bit 7	•••••	···· bit 0	Initial value
000031н	RESV	RESV	RESV	RES\	/ ER3	B ER2	2 ER1	ER0	7	(ENIR)	0000в
	_	_	_	_	R/W	/ R/W	/ R/W	R/W				
DTP/interrupt	enable	registe	er (ENI	R)								
Address I	oit 15 · · ·		· bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000030н	(EIRR)	F	RESV	RESV	RESV	RESV	EN3	EN2	EN1	EN0	0000в
				_	_	_		R/W	R/W	R/W	R/W	
Request level	setting	registe	er (EL	/R)								
Address I	oit 15 · · ·		·bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000032н	(V	acancy)		LB3	LA3	LB2	LA2	LB1	LA1	LB0	LA0	00000000в
				R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
R/W: Read — : Unus RESV : Rese	able and ed rved bit	writable										

10. Delayed Interrupt Generation Module

The delayed interrupt generation module generates interrupts for switching tasks for development on a realtime operating system (REALOS series). The module can be used to generate softwarewise generates hardware interrupt requests to the CPU and cancel the interrupts.

This module does not conform to the extended intelligent I/O service (EI²OS).

(1) Register Configuration

11. 8/10-bit A/D Converter

The 8/10-bit A/D converter has a function of converting analog voltage input to the analog input pins (input voltage) to digital values (A/D conversion) and has the following features.

- Minimum conversion time: 6.13 µs (at machine clock of 16 MHz, including sampling time)
- Minimum sampling time: 3.75 μs (at machine clock of 16 MHz)
- Conversion time: The sampling time can be set arbitrarily.

Serial to parallel converter with a sample hold circuit

- Conversion method
- Resolution: 10-bit or 8-bit selective
- · Analog input pins: Selectable from eight channels by software

Single conversion mode: Single conversion for the specified channel

Scan conversion mode: Scan conversions for maximum of four channel

- Interrupt requests can be generated and the extended intelligent I/O service (EI²OS) can be started after the end of A/D conversion.
- Starting factors for conversion: Selected from software activation, 16-bit re-load timer 1 output (rising edge), and external trigger (falling edge).
- A data buffer that covers four channels is supported. The results of conversion are stored into the data buffer.

(1) Register Configuration

· //D control ato				:a:ta (/		I)						
 A/D control sta Address 	tus regi	ster up bit 14	bit 13	igits (F	NDCSF hit 11	1) bit 1(0 hit 0) hit 8	8 hit 7		bit 0	
000071		AC92										Initial value
00007111		D/M	D/M	D/M	/ _				<u>v</u>	(ADC3	·L)	-000008
	—	r////	r////	r/ VV	_	_	r./ v	V N/V	v			
 A/D control state 	tus regi	ster lo	wer di	igits (A	DCSL)						
Address	bit 15 · · ·		• • bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000070н	(A	DCSH)		BUSY	INT	INTE	—	STS1	STS0	STAR	RESV	000 - 0000в
	·			R/W	R/W	R/W	_	R/W	R/W	R/W	R/W	
• A/D data regist	or 0 to 1	רח א) ג	гш лг	ודר								
• A/D data legist	bit 15 bit	14 bit 13	bit 12 b	ובן it 11 bit 1	0 bit 9	bit 8 bi	t7 bit6	bit 5 bi	it 4 bit 3	bit 2 b	it 1 bit 0	
ADTH0 : 000075н									14 03		1 00	Initial value
ADTH1 : 000077н ADTH2 : 000079н		R	R	R R	*	* 5		R I		R		XXXXXXXXB
АDTH3 : 00007Вн		IX.	IX.				X IX		X IX	IX I		
ADTL0 : 000074н ADTL1 : 000076н												
ADTL2:000078H												
AD123.00007AH												
 Conversion tim 	e settin	g regis	ster (A	DCT)								
Address	bit 15 bit	14 bit 13	bit 12 b	it 11 bit 1	0 bit 9	bit 8 bi	t7 bit6	bit 5 bi	it 4 bit 3	bit 2 b	it 1 bit 0	Initial value
000072н	SMP3 SM	P2 SMP1	SMP0 C	CV03 CV0	2 CV01	CV00 CV	V13 CV12	CV11 C	V10 CV23	CV22 C	V21 CV20	
	R/W R/\	N R/W	R/W F	R/W R/\	V R/W	R/W R	/W R/W	R/W R	/W R/W	R/W R	/W R/W	~~~~~
 Analog input er 	nable re	gister	(ADE	R)								
Address	bit 15 · · ·		• • bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000016н	(E	DR7)		ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0	11111111B
	·			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
R/W:	Readable	e and w	ritable									
R :	Read on	ly										
— — — — — — — — — — — — — — — — — — — —	Indeterm	inate										
* : RFQ\/:	The CRE	EG bit va d bit	alue of <i>i</i>	ADCSH	makes o	different	t storage	styles.				
ILEV.	110301100	ם טונ										

12. 8-bit D/A Converter

The 8-bit D/A converter, which is based on the R-2R system, supports 8-bit resolution mode. It contains two channels each of which can be controlled in terms of output by the D/A control register.

(1) Register Configuration

 D/A control registered 	er 0 (DACR0)									
Address	bit 15 bit 14 bit 1	3 bit 1	2 bit 11	l bit 1	0 bit 9	bit 8	bit 7·		· · · · bit 0	Initial value
00005Вн		_	-	-	_	DAE	2 C	(DADR	0)	0в
						R/W				
 D/A control registered 	er 1 (DACR1)									
Address	bit 15 bit 14 bit 1	3 bit 1	2 bit 11	l bit 1	0 bit 9	bit 8	bit 7·		····bit 0	Initial value
00005Dн		-	-	-	_	DAE	1	(DADR	1)	Ов
						R/W				
 D/A control register 	er 2 (DACR2)									
Address	bit 15 bit 14 bit 1	3 bit 1	2 bit 11	l bit 1	0 bit 9	bit 8	bit 7.		· · · · bit 0	Initial value
00005 F н		_			_	DAE	2	(DADR	2)	0в
						R/W				
D/A data register	0 (DADR0)									
Address	bit 15 · · · · · · bit 8	3 bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00005Ан	(DACR0)	DA07	DA06	DA05	DA04	DA03	DA02	DA01	DA00	XXXXXXXX B
		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
• D/A data register	1 (DADR1)									
Address	bit 15 · · · · · · bit 8	3 bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00005Сн	(DACR1)	DA17	DA16	DA15	DA14	DA13	DA12	DA11	DA10	XXXXXXXX B
		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
D/A data register	2 (DADR2)									
Address	bit 15 · · · · · · bit 8	B bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00005EH	(DACR2)	DA27	DA26	DA25	DA24	DA23	DA22	DA21	DA20	XXXXXXXXB
	·	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
R/W : Read — : Unus X : Inde	dable and writable sed terminate									

13. DSP Interface for the IIR Filter

The DSP interface for the IIR filter is a unit which covers product addition ($\Sigma Bi \times Yj + \Sigma Am \times Xn$) by hardware. This interface allows IIR filter calculation to be performed readily and in a high speed.

The DSP interface for the IIR filter has the following features.

- Coefficients A and B, and variables X and Y have 16-bit length, and four banks are supported.
- (1 to 4) + (1 to 4) product terms can be selected.
- Data can be rounded and clipped in units of 10 or 12 bits.
- With two or more concatenated banks used, the results of an operation can be transferred to the subsequent bank register.
- Operation time: ((M + N + 1) × B + 1)/φ μs(M, N = number of product terms, B = number of banks, φ: machine clock)

(1) Register Configuration

 Product addi 	tion o	conti	rol st	atus	regi	ister	uppe	r dig	its (I	MCS	R:H)							
Address	bit 1	5 b	it 14	bit 1	3 t	oit 12	bit 1	1 b	it 10	bit 9) b	oit 8	bit 7·	•••••		·bit 0	Initial value	
000081 н	_	V	VEY	WEN	IY V	VENX	N1		N0	M1		M0		(MCS	SR:L)		- XXXXXXXX	3
	_	F	R/W	R/V	/	R/W	R/W	/ F	R/W	R/W	/ F	R/W						
 Product addi 	tion o	conti	rol st	atus	regi	ister	lowe	r dig	its (N	//CSF	R:L)							
Address	bit 15			• • bit 8	3 bit	7	bit 6	bit	5	bit 4	bit	3 I	oit 2	bit	1 I	oit 0	Initial value	
000080н		(MCS	SR:H)		RN	ID I	CLP	DI۱	/	BF	BNK	1 B	NK0	TRO	G N	1AE	XXX0XXX0	3
	·				R/\	N F	R/W	R/V	V	R	R/W	/ F	R/W	W	F	R/W		
 Product add 	lition	cont	trol re	egist	er u	pper	digits	s (M	CCR	:H)								
Address	bit 1	5 b	it 14	bit 1	3 k	oit 12	bit 1	1 b	it 10	bit 9) b	oit 8	bit 7·			·bit 0	Initial value	
000083н			—	_		—	—		—	RES	V RI	ESV		(MCC	R:L)		00 F	3
	_		_			—			_ '	R/W	/ F	R/W						
 Product addi 	tion o	conti	rol re	giste	er lov	wer c	ligits	(MC	CR:	L)								
Address	bit 15			••bit 8	3 bit	7	bit 6	bit	5	, bit 4	bit	3 I	oit 2	bit	1 ł	oit 0	Initial value	
000082н		(MCC	CR:H)		οv	/F C	NTD	CNT	c c	NTB	CDR	DC	DRC	CDR	вС	DRA	0000000	3
					R/\	N F	R/W	R/V	VF	R/W	R/W	/ F	R/W	R/W	/ F	R/W		
 Product addi 	tion o	outp	ut reg	giste	r (M	DOR	L, M	, H)										
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	
MDORH : 000088н									S	S	S	S	S	D34	D33	D32	XXXXXXX	3
									R	R	R	R	R	R	R	R		
MDORM : 000086H	D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16	XXXXXXXX XX	(XXXXXX B
	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		////////
MDORL : 000084н	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	~~~~ ~/	\^^^B
	ĸ	ĸ	ĸ	ĸ	ĸ	ĸ	ĸ	ĸ	ĸ	ĸ	ĸ	R	ĸ	ĸ	ĸ	ĸ		
R/W: Re R : Re	adable ad only	and /	writat	ble														
W : Wr — : Un	ite only used	/																
X Ind RESV Re	etermi	nate I bit																
11201110																		

14. Low-power Consumption (Stand-by) Mode

The F²MC-16F has the following CPU operating mode configured by selection of an clock operation control.

• Stand-by mode

The hardware stand-by mode is a mode for reducing power consumption by stopping clock supply to the CPU by the low-power consumption control circuit, and stopping oscillation clock (stop mode, hardware standby mode).

Gear function contributes to the low-power dissipation by providing options of divide-by-2, 4, or 16 external clock frequencies, which are usually derived from non-divided frequencies.

(1) Register Configuration

Address	bit 15 · · · · · · · bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial valu
0000А0н	(Vacancy)	STP	SLP	SPL	RST	OSC1	OSC0	CLK1	CLK0	0001XXXX
	•••••••	W	W	R/W	R/W	R/W	R/W	R/W	R/W	I
R/W W	: Readable and writable : Write only									

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(AVss = Vss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Pomarks
Faranieter	Symbol	Min.	Max.	Onit	itemarks
	Vcc	Vss-0.3	Vss + 7.0	V	
	AVcc	Vss-0.3	Vss + 7.0	V	*1
Power supply voltage	AVRH, AVRL	Vss-0.3	Vss + 7.0	V	*1
	DVRH, DVRL	Vss-0.3	Vss + 7.0	V	*1
Input voltage	Vı	Vss-0.3	Vcc + 0.3	V	*2
Output voltage	Vo	Vss-0.3	Vcc + 0.3	V	*2
"L" level maximum output current	lol		10	mA	*3
"L" level average output current	IOLAV		4	mA	*4
"L" level total average output current	ΣΙοιαν		50	mA	*5
"H" level maximum output current	Іон		-10	mA	*3
"H" level average output current	Іонач		-4	mA	*4
"H" level total average output current	ΣΙοήαν		-48	mA	*5
Power consumption	PD		600	mW	
Operating temperature	TA	-30	+70	°C	
Storage temperature	Tstg	-55	+150	°C	

*1: AVcc, AVRH, AVRL, DVRH and DVRL shall never exceed Vcc.

DVRL shall never exceed DVRH. AVRL shall never exceed AVRH.

*2: V_I and V_o shall never exceed V_{cc} + 0.3 V.

*3: The maximum output current is a peak value for a corresponding pin.

*4: Average output current is an average current value observed for a 100 ms period for a corresponding pin.

*5: Total average current is an average current value observed for a 100 ms period for all corresponding pins.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(AVss = Vss = 0.0 V)

Baramatar	Symbol	Va	lue	Unit	Pomarka
Farameter	Symbol	Min.	Max.	Unit	Remains
	Vcc	4.5	5.5	V	Normal operation
Power supply voltage	Vcc	2.0	5.5	V	Retains RAM data at the time of operation stop
Operating temperature	TA	-30	+70	°C	External bus mode

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

			(AVcc = Vcc = 4.5)	/ to 5.5 V, A	AVss = Vss	= 0.0 V, TA	= -30	°C to +70°C)
Parameter	Symbol	Pin name	Condition		Value		Unit	Romarke
Falametei	Symbol		Condition	Min.	Тур.	Max.	Unit	itemai ka
	Vін	CMOS input pin		0.7 Vcc		Vcc + 0.3	V	
"H" level	VIH2	TTL input pin	Vcc = 5.0 V ±10%	2.2	_	Vcc + 0.3	V	
input voltage	VIH1S	Hysteresis input pin		0.8 Vcc	_	Vcc + 0.3	V	
	VIHM	MD0 to MD2		Vcc - 0.3	_	Vcc + 0.3	V	
	VIL1	CMOS input pin	+	Vcc - 0.3	_	0.3 Vcc	V	
"L" level	VIL2	TTL input pin	Vcc = 5.0 V ±10%	Vcc - 0.3	—	0.8	V	
input voltage	VILIS	Hysteresis input pin		Vcc - 0.3	_	0.2 Vcc	V	
	VILM	MD0 to MD2	-	Vcc - 0.3		Vcc + 0.3	V	
"H" level output voltage	Vон	All ports other than P60 to P67	Vcc = 4.5 V Іон = -4.0 mA	Vcc-0.5	_	_	V	
"L" level output voltage	Vol	All output pins	Vcc = 4.5 V IoL = 4.0 mA	_	_	0.4	V	
Open-drain output leakage current	Ileak	P60 to P67	_		0.1	10	μΑ	
"H" level	Іінт	CMOS input pins other than RST	Vcc = 5.5 V Vн = 0.7 Vcc	_	_	-10	μΑ	
input current	Іін2	TTL input pin	Vcc = 5.5 V Vін = 2.2 Vcc	—	_	-10	μA	
	Іінз	Hysteresis input pin	Vcc = 5.5 V Vih = 0.8 Vcc	—	_	-10	μA	
"I " level	lı∟ı	CMOS input pins other than RST	Vcc = 5.5 V VIL = 0.3 Vcc	_	_	10	μΑ	
input current	IIL2	TTL input pin	Vcc = 5.5 V VIL = 0.8 V	—	_	10	μΑ	
	IIL3	Hysteresis input pin	Vcc = 5.5 V VIL = 0.2 Vcc	—	—	10	μΑ	
Pull-up resistance	R	RST	_	22	—	110	kΩ	

(Continued)

(Continued)

			(AVcc = Vcc = 4.5 V)	′ to 5.5 V, A	AVss = Vss	= 0.0 V, TA	= -30	°C to +70°C)
Parameter	Symbol	Pin name	Condition		Value	Unit	Pomarke	
Falameter	Symbol		Condition	Min.	Тур.	Max.	Unit	itelliai k5
	Icc	Vcc	Internal operation at 16 MHz $V_{CC} = 5.0 V \pm 10\%$ Normal operation	_	80	100	mA	
Power supply current	Iccs	_	Internal operation at 16 MHz $V_{cc} = 5.0 V \pm 10\%$ In sleep mode	_	30	50	mA	
	Іссн	_	$T_A = +25^{\circ}C$ Vcc = 4.5 V to 5.5 V In stop mode and hardware standby mode	_	0.1	10	μΑ	
Input capacitance	CIN	Other than AVcc, AVss, Vcc, Vss	_	_	10		pF	

4. AC Characteristics

(1) Reset, Hardware Standby Input Timing

(AVcc = Vcc = 4.5 V to 5.5 V, AVss = Vss = 0.0 V, $T_A = -30^{\circ}C$ to +70°C)

Deremeter	Symbol	Din nomo	Condition	Va	lue	Unit	Pomorko
Parameter	Symbol	Fin name	Condition	Min.	Max.	Unit	Remarks
Reset input time	t rstl	RST		5 t cyc*	—	ns	
Hardware standby input time	t HSTL	HST		5 t cyc*	—	ns	

*: For tcyc (cycle time (machine cycle)), see paragraph (4), "Clock output timing."

Note: Upon hardware standby input, divide-by-32 is selected as the machine cycle.

(2) Specification for Power-on Reset

				(AVs	s = Vss = 0.0) V, TA =	= -30°C to +70°C)
Paramatar	Symbol	Din nomo	Condition	Value		Unit	Pomarks
Farameter	Symbol		Condition	Min.	Max.	Unit	Nellia K5
Power supply rising time	tR	Vcc		_	30	ms	*
Power supply cut-off time	toff	Vcc	—	1	_	ms	Due to repeated operations

*: Vcc must be kept lower than 0.2 V before power-on.

Notes: • The above ratings are values for causing a power-on reset.

- When HST is set to "L", apply power according to this table to cause a power-on reset irrespective of whether or not a power-on reset is required.
- For built-in resources in the device, re-apply power to the resources to cause a power-on reset.

Vcc	0.2 V 0.2 V 0.2 V 0.2 V 0.2 V
Sudden changes in the pov	ver supply voltage may cause a power-on reset.
I o change the power suppl smoothly to suppress fluctu	ations as shown below.
smoothly to suppress fluctu	ations as shown below.
To change the power supply smoothly to suppress fluctu Main power supply voltage	ations as shown below.
I o change the power suppl smoothly to suppress fluctu Main power supply voltage Vcc	ations as shown below.
I o change the power suppl smoothly to suppress fluctu Main power supply voltage Vcc Sub power supply voltage	It is recommended to keep the rising speed of the supply voltage at 50 mV/

(3) Clock Timings

• Operation at 5.0 V $\pm 10\%$

•	$(AV_{SS} = V_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -30^{\circ}\text{C to } +70^{\circ}\text{C})$												
Deremeter	Symbol	Din nomo	Condition	Value			Unit	Pomarks					
Parameter	Symbol	Fin hame	Min. Typ. I		Max.	Unit	Remarks						
Clock frequency	Fc	X0, X1	$Vcc = 5.0 V \pm 10\%$	16	—	32	MHz						
Clock cycle time	tc	X0, X1		1/Fc	—	—	ns						
Input clock pulse width	Р _{WH} , Рw∟	X0		10	_	_	ns	Recommended duty ratio of 30% to 70%					
Input clock rising/ falling time	tcr, tcf	X0	Vcc = 5.0 V ±10%			11	ns	Maximum value = t _{CR} + t _{CF}					

. . . .

(4) Clock Output Timing

		(AVcc	= Vcc $=$ 4.5 V to 5.	5 V, AVss = Vs	s = 0.0 V, T _A =	-30°0	C to +70°C)
Parameter	Symbol	Pin name	Condition	Va	Unit	Pomarke	
			Condition	Min.	Max.	Unit	Remarks
Cycle time (machine cycle)	t cyc	CLK	_	2 tc*1	32t c*1*2	ns	
$CLK \uparrow ightarrow CLK \downarrow$	t CHCL	CLK	$Vcc = 5.0 V \pm 10\%$	1 tcyc/2 - 20	1 tcyc/2 + 20	ns	

*1: For tc (clock cycle time), refer to "(3) Clock Timings."

*2: This case is applied when the lowest speed (1/16) is selected by the clock gear function with the clock frequency (Fc) set at 16 MHz.

- - -

(3) Bus Read Timing

$(AVcc = Vcc = 2.7 V \text{ to } 5.5 V, AVss = Vss = 0.0 V, TA = -40^{\circ}C \text{ to } +85^{\circ}C$									
Paramotor	Symbol	Din namo	Condition	Val	lue	Unit	Pomarks		
Falameter	Symbol	Fininame	Condition	Min.	Max.	Unit	Neillai KS		
$\frac{\text{Effective address}}{\text{RD}} \downarrow \text{time}$	t avrl	A00 to A23	Voo – 5 0 V +10%	1 tcyc*/2 – 20	_	ns			
Effective address \rightarrow effective data input	t avdv	D15 to D00	$v_{cc} = 5.0 \ v \pm 10\%$		(N + 1.5) × 1 tcyc* – 40	ns			
RD pulse width	t rlrh	RD		(N + 1) × 1 tcyc* − 25	—	ns			
$\overline{RD} \downarrow \rightarrow effective \ data$ input	t rldv	D15 to D00	Vcc = 5.0 V ±10%	_	(N + 1) × 1 tcyc∗* – 30	ns			
$\overline{RD} \uparrow \rightarrow data hold time$	t RHDX	D15 to D00		0		ns			
$\overline{RD} \uparrow \rightarrow address$ effective time	t rhax	A00 to A23	-	1 tcyc*/2 – 20	—	ns			
Effective address \rightarrow CLK \uparrow time	tаvсн	CLK, A00 to A23		1 tcyc*/2 – 25	_	ns			
$\overline{RD} \downarrow \to CLK \uparrow time$	t rlcl	RD, CLK		1 tcrc*/2 - 25		ns			

N: Stands for the number of wait cycles. With no wait, N is set at "0". (The number of wait cycles depends on an automatic wait and external RDY.)

*: For taxa (cycle time (machine cycle)), see paragraph (4), "Clock output timing."

....

(4) Bus Write Timing

		(AVCC =	$vcc = 4.5 \ v \ 10 \ 5.5 \ v$	7, AVSS = VSS	= 0.0 V, IA =	-30 0	$\frac{1}{2}$ (0 + 70 C)
Paramatar	Symbol	Din namo	Condition	Va	Unit	Bomorko	
Farameter	Symbol	Fin name	Condition	Min.	Max.	Unit	Kelliarks
Effective address → WRL, WRH ↓ time	t avwl	A00 to A23	Vcc = 5.0 V ±10%	1 tcyc*/ 2 – 20	—	ns	
\overline{WRL} , \overline{WRH} pulse width	t wlwh	$\overline{WRL}, \overline{WRH}$		(N + 1) × 1 tcrc∗* – 25	—	ns	
$ \begin{array}{l} \text{Write } \text{data} \rightarrow \overline{\text{WRL}}, \\ \overline{\text{WRH}} \uparrow \text{time} \end{array} $	t dvwh	D15 to D00		(N + 1) × 1 tcyc* – 40	—	ns	
WRL, WRH $\uparrow \rightarrow$ data hold time	t whdx	D15 to D00	$Vcc = 5.0 V \pm 10\%$	1 tcyc*/ 2 – 20	—	ns	
WRL, WRH $\uparrow \rightarrow$ address effective time	t whax	A00 to A23		1 tcyc*/ 2 – 20	—	ns	
$\frac{WRL}{time}, \frac{WRH}{VRH} \downarrow \rightarrow CLK \downarrow$	twlcl	WRL, CLK		1 tcyc*/ 2 – 25	_	ns	

/ ^ / / 2000 +0 ±20°C) ٠, • •

N: Stands for the number of wait cycles. With no wait, N is set at "0". (The number of wait cycles depends on an automatic wait and external RDY.)

*: For tcyc (cycle time (machine cycle)), see paragraph (4), "Clock output timing."

(5) Ready Input Timing

• CLK signal standards

		(AVcc = V	/cc = 4.5 V to 5.5 V,	AVss = Vss =	= 0.0 V, T _A =	-30°C	C to +70°C)
Parameter	Symbol	Din nomo	Condition	Value		Unit	Domorko
		Pin name	Condition	Min.	Max.	Unit	Remarks
$ \overline{\text{RD}/\text{WRH}/\text{WRL}} \downarrow \rightarrow \\ \text{RDY} \downarrow \text{time} $	t RYHS	RD/WRH/ WRL, RDY		0	N ×1 tcvc* + 15	ns	
RDY setup time (in diallocating)	t rhdv	RDY	Vcc = 5.0 V ±10%	30	—	ns	
RDY hold time	t ryhh	RDY	—	0		ns	

N: Stands for the number of wait cycles. With no wait, N is set at "0". (The number of wait cycles depends on an automatic wait and external RDY.)

* : For taxa (cycle time (machine cycle)), see paragraph (4), "Clock output timing."

Note: Use the automatic ready function when the setup time for the rising edge of the RDY signal is not sufficient.

• RD/WRH/WRL signal standards

		(AVcc = \	/cc = 4.5 V to 5.5 V,	AVss = Vss =	$= 0.0 V, T_A =$	-30°C	C to +70°C)
Paramotor	Symbol	Din nomo	Condition	Va	ue	Unit	Bomarka
Parameter	Symbol	Fin name	Condition	Min.	Max.	Unit	Reillarks
$ \overline{\text{RD}/\text{WRH}/\text{WRL}} \downarrow \rightarrow \\ \text{RDY} \downarrow \text{time} $	t ryhs	RD/WRH/ WRL, RDY	_	0	N ×1 tcyc*3 + 15*1	ns	
RDY pulse width	t rypw	RDY	Vcc = 5.0 V ±10%	1/2 tcyc*3 + 20	$(m + 1) \times 1$ tcyc ^{*2,*3}	ns	
$RDY \uparrow \rightarrow \overline{RD} \uparrow$	t RHDV	RD/WRH/ WRL, RDY		1 tcyc*3 – 15	2 tcyc*3 - 25	ns	

N: Stands for the number of wait cycles. With no wait, N is set at "0". (The number of wait cycles depends on an automatic wait and external RDY.)

m: Stands for the number of RDY wait cycles. With no wait, m is set at "0".

- *1: Use the automatic ready function when the setup time is not sufficient.
- *2: If the pulse width has exceeded the maximum value, the wait period may be extended beyond the specified number of cycles by one cycle.
- *3: For teve (cycle time (machine cycle)), see paragraph (4), "Clock output timing."

(8) Hold Timing

		(AVCC = V	$fcc = 4.5 \vee 10 \ 5.5 \vee,$	AVSS = VSS =	= 0.0 V, IA =	-30 0	$\frac{10+10}{0}$
Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Bomorko
			Condition	Min.	Max.	Unit	Remarks
$\frac{\text{Pins}}{\text{HAK}} \stackrel{\text{in floating status}}{\downarrow \text{time}} \rightarrow$	t xhal	HAK	Vcc = 5.0 V ±10%	30	1 t cyc*	ns	
$\overline{HAK} \uparrow \rightarrow pin valid time$	tнанv	HAK	—	1 tcyc*	2 t cyc*	ns	

-30°C to +70°C) $(\Lambda)/co$ Vac $A \in V$ to $E \in V$ ۸۱/۰۰ 00VTVa

*: For taxa (cycle time (machine cycle)), see paragraph (4), "Clock output timing."

Note: More than 1 machine cycle is needed before HAK changes after HRQ pin is fetched.

(9) UART Timing

 $(AVcc = Vcc = 4.5 V to 5.5 V, AVss = Vss = 0.0 V, T_A = -30^{\circ}C to +70^{\circ}C)$

Deremeter	Symbol	Din nomo	Condition	Va	lue	Unit	Remarks
Parameter	Symbol	Fin name	Condition	Min.	Max.	Unit	Remarks
Serial clock cycle time	t scyc	SCK0	—	8 t cyc*	—	ns	
$SCK \downarrow \rightarrow SOD delay$ time	t slov	SCK0, SOD0		-80	80	ns	Internal shift
Valid SID $ ightarrow$ SCK \uparrow	t i∨sн	SCK0, SID0	Vcc = 5.0 V ±10%	100	_	ns	$C_{L} = 80 \text{ pF for}$ an output pin
$SCK \uparrow \rightarrow valid SID hold time$	tsнıx	SCK0, SID0		60	_	ns	
Serial clock "H" pulse width	tsнs∟	SCK0		4 t cyc*	_	ns	
Serial clock "L" pulse width	t slsh	SCK0		4 tcyc*	_	ns	External shift
$SCK \downarrow \rightarrow SOD delay$ time	t slov	SCK0, SID0		_	150	ns	Clock mode $C_L = 80 \text{ pF for}$
$Valid\;SID\toSCK\;\uparrow$	t ivsh	—	Vcc = 5.0 V ±10%	60	_	ns	an output pin
$\begin{array}{l} SCK \uparrow \to valid \ SID \ hold \\ time \end{array}$	tsнix	SCK0, SID0		60		ns	

*: For taxa (cycle time (machine cycle)), see paragraph (4), "Clock output timing."

Notes: • These are AC ratings in the CLK synchronous mode.

• CL is the load capacitor value connected to pins while testing.

(10) Timer Input Timing

$(AV_{CC} = V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}, AV_{SS} = V_{SS} = 0.0 \text{ V}, T_A = -30^{\circ}\text{C to } +70^{\circ}\text{C})$								
Parameter	Symbol	Pin name	Condition	Value		Unit	Pomarke	
				Min.	Max.	Unit	ILCIIIAI KS	
Input pulse width	tтıwн, tтıw∟	ASR0, ASR1, TIN0 to TIN2		4 tcrc*		ns		

*: For taxa (cycle time (machine cycle)), see paragraph (4), "Clock output timing."

(11) Timer Output Timing

(AVcc = Vcc = 4.5 V to 5.5 V, AVss = Vss = 0.0 V, $T_A = -30^{\circ}C$ to +70°C)

Parameter	Symbol	Pin name	Condition	Value		Unit	Pomarke
				Min.	Max.	Om	itema ka
$CLK \uparrow \rightarrow TOT$ transition time	t to	TOT0 to TOT2, PWM0 to PWM3	Vcc = 5.0 V ±10%		40	ns	

(12) I/O Simple Serial Timing

$(AV_{CC} = V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}, AV_{SS} = V_{SS} = 0.0 \text{ V}, T_A = -30^{\circ}\text{C to } +70^{\circ}\text{C})$							
Parameter	Symbol	Pin name	Condition	Value		Unit	Domorko
				Min.	Max.	Unit	Remarks
Serial clock cycle time	t scyc	SCK1, SCK2	- 	2 t cyc*	—	ns	Internal shift clock mode C∟ = 80 pF for an output pin
$SCK \downarrow \to SOD delay time$	t slov	SCK1, SOD1, SCK2, SOD2,		_	1 tcrc*/2	ns	
Valid SID $ ightarrow$ SCK \uparrow	t ivsh	SCK1, SID1, SCK2, SID2,		1 tcyc*	_	ns	
$SCK \uparrow \rightarrow valid SID hold time$	t shix	SCK1, SID1, SCK2, SID2,		1 tcyc*		ns	

*: For tarc (cycle time (machine cycle)), see paragraph (4), "Clock output timing."

(13) Trigger input timing

$(AV_{CC} = V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -30^{\circ}\text{C to } +70^{\circ}\text{C})$											
Parameter	Symbol	Din nomo	n nome Condition		lue	llnit	Bomorko				
	Symbol	Pin name	Condition	Min.	Max.	Unit	Reinarks				
Input pulse width	tтrgн, ttrgl	ATG, INT0 to INT3		5 t cyc*	—	ns					

* : For taya (cycle time (machine cycle)), see paragraph (4), "Clock output timing."

5. A/D Converter Electrical Characteristics

			(AVcc = V	cc = 4.5 V to 5.5 V, AV	ss = Vss =	0.0 V, Ta =	= –30°C to	+70°C)
D	arameter	Symbol	Pin name	Condition		Value		Unit
	arameter	Cymbol	T III Hame	Condition	Min.	Тур.	Max.	onic
Resolutio	n	—	_		—	8, 10	10	bit
Total erro	r	—	_		_	—	±3.0	LSB
Linearity	error	—	_		—	—	±2.0	LSB
Differentia	al linearity error	_				_	±1.9	LSB
Zero tran	sition voltage	Vот	AN0 to AN7		AVRL – 1.0 LSB	AVRL + 1.0 LSB	AVRL + 3.0 LSB	mV
Full-scale voltage	transition	Vfst	AN0 to AN7	-	AVRH – 4.0 LSB	AVRH AVRH – 4.0 LSB – 1.0 LSB		mV
Conversion	on time*1	—			1.25	—	—	μs
	Sampling period				560	_	_	ns
	Conversion period a	Use the A/D data register for setup.		125	_	_	ns	
	Conversion period b		_	$V_{cc} = 5.0 V \pm 10\%$	125		_	ns
	Conversion period c				250	_	—	ns
Analog po	ort input current	lain	AN0 to AN7		_	0.1	3	μΑ
Analog in	put voltage	VAIN	AN0 to AN7		AVRL —		AVRH	V
Poferonc	e voltage	_	AVRH		AVRL + 2.7	AVRL		V
Relefenc	e voltage	_	AVRL	$AVRD - AVRL \leq 2.7$	0		AVRH - 2.7	V
		la	AVcc	—	—	15	20	mA
Power supply current		las*2	AVcc	Supply current when the CPU stops $(AV_{CC} = 5.5 \text{ V})$	_		5	μΑ
		Ir	AVRH	—		0.7	2	μΑ
Referenc supply cu	e voltage rrent	Irs ^{*2}	AVRH	Supply current when the CPU stops (AVcc = 5.5 V)	_	_	5	μΑ
Offset be	tween channels	—	AN0 to AN7	—	—	—	4	LSB

*1: Glossary for conversion time

^{*2:} IAS and IRS signify currents when the A/D converter does not operate and when the CPU is out of service, respectively.

6. A/D Converter Glossary

Resolution: Analog changes that are identifiable with the A/D converter With 10 bits supported, an analog voltage can be divided into 2¹⁰ parts.

- Linearity error: The deviation of the straight line connecting the zero transition point ("00 0000 0000" ↔ "00 0000 0001") with the full-scale transition point ("11 1111 1110" ↔ "11 1111 1111") from actual conversion characteristics
- Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value
- Total error: The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error, linearity error, differential linearity error and error caused by noise.

7. Notes on Using A/D Converter

Select the output impedance value for the external circuit of analog input according to the following conditions. Output impedance values of the external circuit of 300 Ω or lower are recommended.

When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.

When the output impedance of the external circuit is too high, the sampling time for analog voltages may not be sufficient (sampling time = $0.56 \,\mu s$ @machine clock of 16 MHz).

• Error

The smaller the | AVRH – AVRL |, the greater the error would become relatively.

8. 8-bit D/A Converter Electrical Characteristics

(AVcc = Vcc = 4.5 V to 5.5 V, AVss = Vss = 0.0 V, TA = -30°C to +70°C)										
Baramotor	Symbol	Din namo	Condition			Unit				
Falameter	Symbol		Condition	Min.	Тур.	Max.	Unit			
Resolution	—	—			8	8	bit			
Differential linearity error	—	—	—	_	_	±0.9	LSB			
Absolute accuracy	_		Vcc = DVRH = 5.0 V, DVRL = 0.0 V	_	—	1.2	%			
Conversion time	—	—	Load capacitance:	_	10	20	μs			
Analog power supply	—	DVRH	20 pF	Vss + 2.0	—	Vcc	V			
voltage	—	DVRL	DVRH – DVRL ≧ 2.0 V	Vss	—	Vcc - 2.0	V			
Poforonco voltago	D	DVRH	During conversion	—	1.0	1.5	mΑ			
supply current	Ідн	DVRH	When the CPU is stopped	_	_	10	μΑ			
Analog output impedance	—			—	28	_	kΩ			

AVcc = Vcc = 4.5 V to 5.5 V, AV	$V_{SS} = V_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -30^{\circ}\text{C} \text{ to } + 10^{\circ}\text{C} \text{ to } + 10^{\circ}\text$	-70°C
	1/ 1	1

■ EXAMPLE CHARACTERISTICS

(1) "H" Level Output Voltage

(2) "L" Level Output Voltage

(3) Power Supply Current

■ INSTRUCTIONS (421 INSTRUCTIONS)

Table 1 Description of Items in Instruction List

ltem	Description
Mnemonic	English upper case and symbol: Described directly in assembler code. English lower case: Converted in assembler code. Number of letters after English lower case: Describes bit width in code.
#	Describes number of bytes.
~	Describes number of cycles. For other letters in other items, refer to table 4.
В	Describes correction value for calculating number of actual states. Number of actual states is calculated by adding value in the ~section.
Operation	Describes operation of instructions.
LH	Describes a special operation to 15 bits to 08 bits of the accumulator. Z : Transfer 0. X : Sign-extend and transfer. – : No transmission
АН	Describes a special operation to the upper 16-bit of the accumulator. * : Transmit from AL to AH. – : No transfer. Z : Transfer 00 _H to AH. X : Sign-extend AL and transfer 00 _H or FF _H to AH.
I	Describes status of I (interrupt enable), S (stack), T (sticky bit), N (negative), Z (zero),
S	V (overflow), and C (carry) flags. * Changes after execution of instruction
Т	– : No changes.
N	S: Set after execution of instruction. R: Reset after execution of instruction.
Z	
V	
С	
RMW	Describes whether or not the instruction is a read-modify-write type (a data is read out from memory etc. in single cycle, and the result is written into memory etc.). * : Read-modify-write instruction - : Not read-modify-write instruction Note: Not used to addresses having different functions for reading and writing operations.

ltem	Description						
A	32-bit accumlator The bit length is dependent on the instructions to be used. Byte : Lower 8-bit of AL Word:16-bit of AL Long : AL: 32-bit of AH						
AH	Upper 16-bit of A						
AL	Lower 16-bit of A						
SP	Stack pointer (USP or SSP)						
PC	Program counter						
SPCU	Stack pointer upper limited register						
SPCL	Stack pointer lower limited register						
PCB	Program bank register						
DTB	Data bank register						
ADB	Additional data bank register						
SSB	System stack bank register						
USB	User stack bank register						
SPB	Current stack bank register (SSB or USB)						
DPR	Direct page register						
brg1	DTB, ADB, SSB, USB, DPR, PCB						
brg2	DTB, ADB, SSB, USB, DPR						
Ri	R0, R1, R2, R3, R4, R5, R6, R7						
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7						
RWj	RW0, RW1, RW2, RW3						
RLi	RL0, RL1, RL2, RL3						
dir addr16 addr24 ad24 0 to 15 ad24 16 to 23	Specify shortened direct address. Specify direct address. Specify physical direct address. bit0 to bit15 of addr24 bit16 to bit 23 of addr24						
io	I/O area (000000н to 0000FFн)						
#imm4 #imm8 #imm16 #imm32 ext (imm8)	 4-bit immediate data 8-bit immediate data 16-bit immediate data 32-bit immediate data 16-bit data calculated by sign-extending an 8-bit immediate data 						
disp8 disp16	8-bit displacement 16-bit displacement						
bp	Bit offset value						
vct4 vct8	Vector number (0 to 15) Vector number (0 to 255)						

 Table 2
 Description of Symbols in Instruction Table

(Continued)

(Continued)

ltem	Description
()b	Bit address
rel ear eam	Specify PC relative branch. Specify effective address (code 00 to 07). Specify effective address (code 08 to 1F).
rlst	Register allocation

Table 3 Effective Address Field

Code		Symbol		Address type	Number of bytes in address extension block*			
00 01 02 03 04 05 06 07	R0 R1 R2 R3 R4 R5 R6 R7	RW0 RW1 RW2 RW3 RW4 RW5 RW6 RW7	RL0 (RL0) RL1 (RL1) RL2 (RL2) RL3 (RL3)	Register direct "ea" corresponds to byte, word, and long word from left respectively.	-			
08 09 0A 0B	@RW0 @RW1 @RW2 @RW3			Register indirect	0			
0C 0D 0E 0F	@RW0 + @RW1 + @RW2 + @RW3 +			Register indirect with post increment	0			
10 11 12 13 14 15 16 17	@RW0 + disp8 @RW1 + disp8 @RW2 + disp8 @RW3 + disp8 @RW4 + disp8 @RW5 + disp8 @RW6 + disp8 @RW7 + disp8			Register indirect with 8-bit displacement	1			
18 19 1A 1B	@RW0 + disp16 @RW1 + disp16 @RW2 + disp16 @RW3 + disp16		@RW0 + disp16Register indirect with 16-bit@RW1 + disp16displacement@RW2 + disp16RW3 + disp16		2			
1C 1D 1E 1F	@RW0 + RW7 @RW1 + RW7 @PC + disp16 addr16			@RW0 + RW7 @RW1 + RW7 @PC + disp16 addr16			Register indirect with index Register indirect with index PC indirect with 16-bit displacement Direct address	0 0 2 2

Note: Number of bytes for address extension corresponds to "+" in the # (number of bytes) part in the instruction table.

Codo	Operand	(a)*						
Code	Operand	Number of execution cycles for addressing modes						
00 to 07	Ri RWi RLi	Listed in instruction table						
08 to 0B	@RWj	1						
0C to 0F	@RWj +	4						
10 to 17	@RWi + disp8	1						
18 to 1B	@RWj + disp16	1						
1C 1D 1E 1F	@RW0 + RW7 @RW1 + RW7 @PC + disp16 addr16	2 2 2 1						

Table 4 Number of Execution Cycles in Addressing Modes

Note: (a) is used for ~ (number of cycles) and B (correction value) in instruction table.

Onerend	(b)*	(c)*	(d)*
Operand	byte	word	long
Internal register	+0	+0	+0
Internal RAM even address Internal RAM odd address	+0 +0	+0 +1	+0 +2
Other than internal RAM even address Other than internal RAM odd address	+1 +1	+1 +3	+2 +6
External data bus 8-bit	+1	+3	+6

Notes: • (b), (c), (d) is used for ~ (number of cycles) and B (correction value) in instruction table.

Mnemonic	#	~	В	Operation	LH	AH	S	Т	Ν	Ζ	V	С	RMW
MOV A, dir MOV A, addr16 MOV A, Ri MOV A, ear MOV A, ear MOV A, io MOV A, io MOV A, @A MOV A, @RLi + disp8 MOV A, @SP + disp8 MOV A, addr24 MOVP A, @A	2 3 1 2 2+ 2 2 3 3 5 2	2 2 1 2+(a) 2 2 6 3 3 2	(b) (b) (b) (b) (b) (b) (b) (b) (b) (b)	byte (A) \leftarrow (dir) byte (A) \leftarrow (addr16) byte (A) \leftarrow (Ri) byte (A) \leftarrow (ear) byte (A) \leftarrow (ear) byte (A) \leftarrow (io) byte (A) \leftarrow (io) byte (A) \leftarrow ((A)) byte (A) \leftarrow ((RLi) + disp8) byte (A) \leftarrow ((SP) + disp8) byte (A) \leftarrow (addr24) byte (A) \leftarrow ((A))		* * * * * * * * * *			* * * * * * * * *	* * * * * * * * * *			- - - - - - - - - - - - - - - - - - -
MOVN A, #imm4 MOVX A, dir MOVX A, addr16 MOVX A, Ri MOVX A, ear MOVX A, eam MOVX A, io MOVX A, io MOVX A, @A MOVX A, @RWi + disp8 MOVX A, @RLi + disp8 MOVX A, @SP + disp8 MOVX A, @A	1 2 3 2 2 2 + 2 2 2 2 2 3 3 5 2	1 2 1 2+(a) 2 2 3 6 3 3 2	0 (b) (b) (b) (b) (b) (b) (b) (b) (b)	byte (A) \leftarrow imm4 byte (A) \leftarrow (dir) byte (A) \leftarrow (addr16) byte (A) \leftarrow (Ri) byte (A) \leftarrow (ear) byte (A) \leftarrow (ear) byte (A) \leftarrow (io) byte (A) \leftarrow (io) byte (A) \leftarrow (io) byte (A) \leftarrow (i(A)) byte (A) \leftarrow ((RWi) + disp8) byte (A) \leftarrow ((RLi) + disp8) byte (A) \leftarrow ((SP) + disp8) byte (A) \leftarrow (addr24) byte (A) \leftarrow ((A))	Z X X X X X X X X X X X X X X X X X X X	* * * * * * * - * * * -			R * * * * * * * * * * * * * * *	* * * * * * * * * * * *			
MOV dir, A MOV addr16, A MOV Ri, A MOV ear, A MOV eam, A MOV io, A MOV @RLi + disp8, A MOV @SP + disp8, A MOVP addr24, A	2 3 1 2 2+ 2 3 3 5	2 2 1 2 2+(a) 2 6 3 3	(b) (b) 0 (b) (b) (b) (b) (b)	byte (dir) \leftarrow (A) byte (addr16) \leftarrow (A) byte (Ri) \leftarrow (A) byte (ear) \leftarrow (A) byte (ear) \leftarrow (A) byte (io) \leftarrow (A) byte (i(RLi) + disp8) \leftarrow (A) byte (i(SP) + disp8) \leftarrow (A) byte (addr24) \leftarrow (A)	- - - -				* * * * * * *	* * * * * * *			
MOV Ri, ear MOV Ri, eam MOVP @A, Ri MOV ear, Ri MOV eam, Ri MOV Ri, #imm8 MOV io, #imm8 MOV dir, #imm8 MOV ear, #imm8 MOV eam, #imm8	2 2+ 2 2+ 2 3 3 3 3+	2 3+(a) 3 3+(a) 2 3 3 2 2+(a)	0 (b) 0 (b) 0 (b) (b) 0 (b)	byte (Ri) \leftarrow (ear) byte (Ri) \leftarrow (eam) byte ((A)) \leftarrow (Ri) byte (ear) \leftarrow (Ri) byte (eam) \leftarrow (Ri) byte (Ri) \leftarrow imm8 byte (io) \leftarrow imm8 byte (dir) \leftarrow imm8 byte (ear) \leftarrow imm8 byte (eam) \leftarrow imm8					* * * * * *	* * * * * *			
MOV @AL, AH XCH A, ear XCH A, eam XCH Ri, ear XCH Ri, eam	2 2 2 + 2 2 +	2 3+(a) 4 5+(a)	(b) 0 $2 \times (b)$ 0 $2 \times (b)$	byte ((A)) \leftarrow (AH) byte (A) \leftrightarrow (ear) byte (A) \leftrightarrow (eam) byte (Ri) \leftrightarrow (ear) byte (Ri) \leftrightarrow (eam)	– Z Z –	- - -	 _ _ _		*	*			_ _ _ _

Table 6 Transmission Instruction (Byte) [50 Instructions]

Note: For (a) and (b), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

Mnemonic	#	~	В	Operation	LH	AH	Ι	S	Т	Ν	Ζ	۷	С	RMW
MOVW A, dir	2	2	(C)	word (A) \leftarrow (dir)	_	*	_	-	_	*	*	_	_	_
MOVW A, addr16	3	2	(c)	word (A) \leftarrow (addr16)	—	*	—	—	—	*	*	—	—	_
MOVW A, SP	1	2	0	word (A) \leftarrow (SP)	—	*	—	—	—	*	*	—	—	—
MOVW A, RWi	1	1	0	word (A) \leftarrow (RWi)	—	*	—	—	—	*	*	-	—	—
MOVW A, ear	2	1	0	word (A) \leftarrow (ear)	—	*	—	—	—	*	*	-	—	—
MOVW A, eam	2 +	2 + (a)	(c)	word (A) \leftarrow (eam)	—	*	—	—	—	*	*	-	—	—
MOVW A, io	2	2	(c)	word (A) \leftarrow (io)	—	*	—	—	—	*	*	—	—	—
MOVW A, @A	2	2	(C)	word (A) \leftarrow ((A))	-	-	-	-	-	*	*	-	-	—
MOVW A, #imm16	3	2	0	word (A) \leftarrow imm16	-	*	-	-	-	*	*	-	-	—
MOVW A, @RWI + disp8	2	3	(C)	word (A) \leftarrow ((RWI)	-	* *	-	—	-	*	- -	-	-	—
MOVW A, @RLi + disp8	3	6	(C)	+disp8)	—	Ŷ	_	_	—	- -	Ť.	-	-	_
MOVW A, @SP + disp8	3	3	(C)	word (A) \leftarrow ((RLI) +disp8)	—	Ŷ	_	_	—	^ +	Ŷ	-	-	_
MOVPW A, addr24	5	3	(C)	word (A) \leftarrow ((SP) + disp8)	-	î	_	_	-	~ +	- -	-	-	_
MOVPW A, @A	2	2	(C)	Word (A) \leftarrow (addr24)	_	_	-	-	-			_	_	_
MOVW dir A	2	2	(c)	word $(A) \leftarrow ((A))$	_	_	_	_	_	*	*	_	_	_
MOVW addr16. A	3	2	(c) (c)	word (dir) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW SP, #imm16	4	2	Ó	word (addr16) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW SP, A	1	2	0	word (SP) ← ímm16	_	_	_	_	_	*	*	_	_	_
MOVW RWi, A	1	1	0	word $(SP) \leftarrow (A)$	_	—	_	_	_	*	*	_	_	_
MOVW ear, A	2	2	0	word (RŴi) ← (Á)	_	—	_	_	_	*	*	_	_	_
MOVW eam, A	2+	2 + (a)	(c)	word (ear) \leftarrow (Å)	_	—	_	_	_	*	*	_	_	_
MOVW io, A	2	2	(c)	word (eam) \leftarrow (A)	—	—	_	_	_	*	*	—	—	_
MOVW @RWi + disp8, A	2	3	(c)	word (io) \leftarrow (A)	—	—	_	_	_	*	*	—	—	_
MOVW @RLi + disp8, A	3	6	(c)	word ((RWi) +disp8) \leftarrow	—	—	—	—	—	*	*	—	—	—
MOVW @SP + disp8, A	3	3	(C)	(A)	—	—	—	—	—	*	*	—	—	—
MOVPW addr24, A	5	3	(C)	word ((RLi) +disp8) \leftarrow (A)	—	—	—	—	—	*	*	—	—	—
MOVPW @A, RWi	2	3	(C)	word ((SP) + disp8) \leftarrow (A)	—	—	—	—	—	*	*	—	—	—
MOVW RWi, ear	2	2	0	word (addr24) \leftarrow (A)	—	—	—	—	—	*	*	—	—	—
MOVW RWi, eam	2+	3 + (a)	(C)	word ((A)) \leftarrow (RWi)	—	—	—	—	—	*	*	—	—	—
MOVW ear, RWi	2	3	0	word (RWi) ← (ear)	—	—	—	_	—	*	*	—	—	—
MOVW eam, RWi	2+	3 + (a)	(C)	word (RWi) ← (eam)	—	—	—	—	—	*	*	—	—	—
MOVW RWi, #imm16	3	2	0	word (ear) \leftarrow (RWi)	—	—	—	_	—	*	*	—	—	—
MOVW io, #imm16	4	3	(C)	word (eam) \leftarrow (RWi)	—	—	—	_	—	—	-	—	—	—
MOVW ear, #imm16	4	2	0	word (RWi) ← imm16	—	—	—	_	—	*	*	—	—	—
MOVW eam, #imm16	4 +	2 + (a)	(c)	word (io) — imm16	—	—	_	_	_	_	-	—	—	_
			. ,	word (ear) \leftarrow imm16										
MOVW @AL, AH	2	2	(c)	word (eam) \leftarrow imm16	—	-	-	—	—	*	*	-	—	-
XCHW A ear	2	2	0	word $((\Delta)) \neq (\Delta \Box)$				_	_		_	_		
$X \cap W$ Δ ear	2	$3 \pm (3)$	2×(0)				_	_	_	_				_
XCHW DWi oor	2	3 + (a)	2 ^ (0)	word $(\Lambda) < (aar)$										_
XCHW RW, ear	2	4 5 + (a)	$2 \times (n)$	word $(\Lambda) \leftrightarrow (edi)$			_	_	_	_	_	_		
	2 +	5 + (a)	2 ~ (0)	word ($\mathbf{P}(\mathbf{M}) \leftrightarrow (\mathbf{eann})$	_	_	_	_	-	-	-	_	-	_
				word ($(\nabla VI) \leftrightarrow (edI)$										
				word (κ wr) \leftrightarrow (earri)										

Table 7	Transmission	Instruction	(Word)	[40 Instructions]
---------	--------------	-------------	--------	-------------------

Note: For (a) and (c), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

Mnemonic	#	~	В	Operation	LH	AH	I	S	Т	Ν	Ζ	۷	С	RMW
MOVL A, ear	2	2	0	long (A) \leftarrow (ear)	-	-	-	-	-	*	*	-	-	_
MOVL A, eam	2+	3 + (a)	(d)	long (A) \leftarrow (eam)	-	-	_	-	-	*	*	_	_	_
MOVL A, #imm32	5	3	0	long (A) \leftarrow imm32	-	—	_	_	-	*	*	_	_	_
MOVL A, @SP + disp8	3	4	(d)	long (A) \leftarrow ((SP) + disp8)	-	—	_	_	-	*	*	_	_	_
MOVPL A, addr24	5	4	(d)	long (A) \leftarrow (addr24)	-	-	_	_	-	*	*	_	_	_
MOVPL A, @A	2	3	(d)	long (A) \leftarrow ((A))	-	-	_	_	-	*	*	_	_	_
MOVPL @A, RLi	2	5	(d)	$long\;((A)) \gets (RLi)$	_	_	_	_	_	*	*	_	_	_
MOVL @SP + disp8, A	3	4	(d)	long ((SP) + disp8) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVPL addr24, A	5	4	(d)	long (addr24) \leftarrow (A)	_	-	_	_	_	*	*	_	_	-
MOVL ear, A	2	2	0	long (ear) \leftarrow (A)	-	-	_	—	-	*	*	_	_	-
MOVL eam, A	2+	3 + (a)	(d)	long (eam) \leftarrow (A)	-	-	Ι	—	-	*	*	Ι	Ι	-

Table 8 Transmission Instruction (Long) [11 Instructions]

Note: For (a) and (c), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

Mne	emonic	#	~	В	Operation	LH	AH	Ι	S	Т	Ν	Ζ	۷	С	RMW
ADD	A,#imm8	2	2	0	byte (A) \leftarrow (A) +imm8	Ζ	-	-	_	-	*	*	*	*	_
ADD	A, dir	2	3	(b)	byte $(A) \leftarrow (A) + (dir)$	Ζ	—	—	_	-	*	*	*	*	-
ADD	A, ear	2	2	0	byte (A) \leftarrow (A) +(ear)	Ζ	—	—	-	—	*	*	*	*	-
ADD	A, eam	2 +	3 + (a)	(b)	byte (A) \leftarrow (A) +(eam)	Z	—	—	-	—	*	*	*	*	—
ADD	ear, A	2	2	0	byte (ear) \leftarrow (ear) + (A)	_	—	-	-	-	*	*	*	*	*
ADD	eam, A	2+	3 + (a)	$2 \times (b)$	byte (eam) \leftarrow (eam) + (A)	Z	—	-	-	-	*	*	*	*	*
ADDC	A	1	2	0	byte (A) \leftarrow (AH) + (AL) + (C)	Z	—	-	-	-	*	*	*	*	-
	A, ear	2	2	0	byte (A) \leftarrow (A) + (ear) + (C)		_	-	-	_	*	*	*	*	_
	A, eam	2+	3 + (a)	(0)	byte (A) \leftarrow (A) + (earn) + (C)		_	-	_	-	*	*	*	*	_
SUB	A A #imm8	2	2	0	byte (A) \leftarrow (A) $-$ imm8	7		_			*	*	*	*	_
SUB	Δ dir	2	2	(b)	byte (A) \leftarrow (A) – (dir)	7		_	_	_	*	*	*	*	_
SUB	A ear	2	2	(0)	byte (A) \leftarrow (A) – (air)	7		_	_	_	*	*	*	*	_
SUB	A eam	$\frac{2}{2}$ +	3 + (a)	(b)	byte (A) \leftarrow (A) – (eam)	7	_	_	_	_	*	*	*	*	_
SUB	ear. A	2	2	0	byte (ear) \leftarrow (ear) – (A)	_	_	_	_	_	*	*	*	*	*
SUB	eam. A	2+	$\frac{-}{3+(a)}$	$2 \times (b)$	byte (ear) \leftarrow (ear) – (A)	_	_	_	_	_	*	*	*	*	*
SUBC	A	1	2	0	byte (A) \leftarrow (AH) – (AL) – (C)	Ζ	_	_	_	_	*	*	*	*	_
SUBC	A, ear	2	2	0	byte $(A) \leftarrow (A) - (ear) - (C)$	Ζ	_	_	_	_	*	*	*	*	_
SUBC	A, eam	2 +	3 + (a)	(b)	byte $(A) \leftarrow (A) - (eam) - (C)$	Ζ	_	_	_	_	*	*	*	*	_
SUBDC	A	1	3`́) Ú	byte (A) \leftarrow (AH) – (AL) – (C) (decimal)	Ζ	-	-	-	-	*	*	*	*	-
ADDW	Α	1	2	0	word (A) \leftarrow (AH) + (AL)	_	_	_	_	-	*	*	*	*	-
ADDW	A, ear	2	2	0	word (A) \leftarrow (A) + (ear)	—	—	—	-	—	*	*	*	*	-
ADDW	A, eam	2 +	3 + (a)	(c)	word (A) \leftarrow (A) + (eam)	—	—	-	—	-	*	*	*	*	—
ADDW	A, #imm16	3	2	0	word (A) \leftarrow (A) + imm16	-	—	—	-	—	*	*	*	*	—
ADDW	ear, A	2	2	0	word (ear) $-$ (ear) $+$ (A)	—	-	-	-	-	*	*	*	*	*
ADDW	eam, A	2+	3 + (a)	2×(c)	word (eam) $-$ (eam) $+$ (A)	-	—	—	-	-	*	*	*	*	*
ADDCW	A, ear	2	2	0	word (A) \leftarrow (A) + (ear) + (C)	-	—	—	-	-	*	*	*	*	-
ADDCW	A, eam	2+	3 + (a)	(C)	word (A) \leftarrow (A) + (eam) + (C)	-	-	-	-	-	*	*	*	*	-
SUBW	A	1	2	0	word (A) \leftarrow (AH) – (AL)	-	-	-	-	-	*	~ +	*	~ +	—
SUBW	A, ear	2	2	(\mathbf{a})	word (A) \leftarrow (A) – (ear)	-	-	-	-	-	*	*	*	*	-
SUBW	A, eam	2+	3 + (a)	(C)	word (A) \leftarrow (A) – (earn)	-	_	_	_	_	*	*	*	*	_
SUBW	A, #IMM16	3	2	0	word $(A) \leftarrow (A) - IIIIIIIO$	-	_	-	_	_	*	*	*	*	*
SUBW	ear, A	2	$\frac{2}{2}$	$\frac{1}{2}$	word (ear) \leftarrow (ear) $-$ (A)	-	_	_	_	_	*	*	*	*	*
SUBW	eam, A	2 +	3 + (a)	$2 \times (0)$	word $(\Delta) \leftarrow (ean) = (A)$			_			*	*	*	*	
SUBCW	A, ear	2	2 ± (2)	(c)	word $(A) \leftarrow (A) = (ear) = (C)$						*	*	*	*	
SORCIN	A, eam	2 T	3 + (a)	(0)	word (A) \leftarrow (A) $=$ (earrow (C)	_	_	_		_					_
ADDL	A, ear	2	5	0	long (A) \leftarrow (A) + (ear)	-	-	-	-	-	*	*	*	*	—
ADDL	A, eam	2 +	6 + (a)	(d)	long (A) \leftarrow (A) + (eam)	-	-	-	-	-	*	*	*	*	—
ADDL	A, #imm32	5	4	0	long (A) \leftarrow (A) + imm32	-	-	-	-	-	*	*	*	*	—
SUBL	A, ear	2	5	0	long (A) \leftarrow (A) – (ear)	-	-	-	-	-	*	*	*	*	—
SUBL	A, eam	2 +	6 + (a)	(d)	long (A) \leftarrow (A) – (eam)	-	-	-	-	-	*	*	*	*	—
SUBL	A, #imm32	5	4	0	long (A) \leftarrow (A) – imm32	-	-	-	-	-	*	*	*	*	—

Table 9	Add/Subtract (Byte, Word, Long) [42 Instructions]
---------	---

Note: For (a) to (d), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

N	Inemonic	#	~	В	Operation	LH	AH	I	S	Т	Ν	Ζ	۷	С	RMW
INC INC	ear eam	2 2 +	2 3 + (a)	0 2 × (b)	byte (ear) \leftarrow (ear) +1 byte (eam) \leftarrow (eam) +1	_	_	-	_	_	*	*	*	_	*
DEC DEC	ear eam	2 2 +	2 3 + (a)	0 2 × (b)	byte (ear) ← (ear) −1 byte (eam) ← (eam) −1	-			_ _		*	*	*		*
INCW INCW	ear eam	2 2 +	2 3 + (a)	0 2 × (c)	word (ear) \leftarrow (ear) +1 word (eam) \leftarrow (eam) +1	_	_		_	_	*	*	*	_	*
DECW	ear	2	2	0	word (ear) \leftarrow (ear) –1	-	_	_	_	-	*	*	*	_	*
DECW	eam	2 +	3 + (a)	2 × (c)	word (eam) \leftarrow (eam) –1	-	-	_	_	-	*	*	*	-	*
INCL INCL	ear eam	2 2 +	4 5 + (a)	$0 \\ 2 \times (d)$	long (ear) \leftarrow (ear) +1 long (eam) \leftarrow (eam) +1	_	_		_	-	*	*	*	-	*
DECL DECL	ear eam	2 2 +	4 5 + (a)	0 2 × (d)	long (ear) ← (ear) −1 long (eam) ← (eam) −1	-		-	_ _	-	*	*	*	-	*

Table 10 Increment/Decrement (Byte, Word, Long) [12 Instructions]

Note: For (a) to (d), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

Table 11	Compare	(Byte,	Word, L	_ong) [11	Instructions]
----------	---------	--------	---------	-----------	---------------

М	nemonic	#	~	В	Operation	LH	AH	I	S	Т	Ν	Ζ	V	С	RMW
CMP	А	1	1	0	byte (AH) – (AL)	-	-	-	-	-	*	*	*	*	_
CMP	A, ear	2	2	0	byte (A) – (ear)	—	—	_	_	—	*	*	*	*	—
CMP	A, eam	2 +	3 + (a)	(b)	byte (A) – (eam)	—	—	_	_	—	*	*	*	*	_
CMP	A, #imm8	2	2	Û	byte (A) – imm8	-	-	—	—	-	*	*	*	*	-
CMPW	А	1	1	0	word (AH) – (AL)	_	-	Ι	I	-	*	*	*	*	_
CMPW	A, ear	2	2	0	word (A) – (ear)	-	-	—	_	-	*	*	*	*	—
CMPW	A, eam	2+	3 + (a)	(C)	word (A) – (eam)	-	-	—	_	-	*	*	*	*	—
CMPW	A, #imm16	3	2	0	word (A) – imm16	-	-	-	-	-	*	*	*	*	-
CMPL	A, ear	2	6	0	word (A) – (ear)	_	-	Ι	I	-	*	*	*	*	_
CMPL	A, eam	2 +	7 + (a)	(d)	word (A) – (eam)	-	-	—	—	-	*	*	*	*	—
CMPL	A, #imm32	5	3	0	word (A) – imm32	-	-	-	-	-	*	*	*	*	-

Note: For (a) to (d), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

Mne	emonic	#	۲	В	Operation	LH	AH	I	S	Т	Ν	Ζ	V	С	RMW
DIVU	А	1	*1	0	word (AH) /byte (AL) Quotient \rightarrow byte (AL)	-	-	-	-	-	-	-	*	*	_
DIVU	A, ear	2	*2	0	Remainder \rightarrow byte (AH) word (A)/byte (ear) Quotient \rightarrow byte (A)	_	_	_	_	_	_	_	*	*	-
DIVU	A, eam	2 +	*3	*6	word (A)/byte (eam) Quotient \rightarrow byte (A)	_	_	_	_	_	_	_	*	*	_
DIVUW	A, ear	2	*4	0	long (A)/word (ear) Quotient \rightarrow word (A)	-	_	_	_	_	_	_	*	*	_
DIVUW	A, eam	2+	*5	*7	long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (eam)	_	_	_	_	_	_	_	*	*	_
MULU	A	1	*8	0	byte (AH) byte (AL) \rightarrow word (A)	_	_	_	_	_	_	_	_	_	_
MULU	A, ear	2	*9	0	byte (A) byte (ear) \rightarrow word (A)	-	-	-	-	-	-	-	-	—	-
	A, eam	2+	^10 *11	(b)	byte (A) byte (eam) \rightarrow word (A)	_	_	_	_	_	_	_	_		_
MULUW	A. ear	2	*12	0	word (A) word (ear) \rightarrow long (A)		_	_	_	_		_	_		_
MULUW	A, eam	2 +	*13	(c)	word (A) word (eam) \rightarrow long (A)	-	-	-	-	—	_	-	-	_	—

Table 12 Unsigned Multiply/Division (Word, Long) [11 Instructions]

Note: For (b) and (c), refer to "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

*1: Set to 3 when the division-by-0, 6 for an overflow, and 14 for normal operation.

*2: Set to 3 when the division-by-0, 6 for an overflow, and 13 for normal operation.

*3: Set to 5 + (a) when the division-by-0, 7 + (a) for an overflow, and 17 + (a) for normal operation.

*4: Set to 3 when the division-by-0, 5 for an overflow, and 21 for normal operation.

*5: Set to 4 + (a) when the division-by-0, 7 + (a) for an overflow, and 25 + (a) for normal operation.

*6: When the division-by-0, (b) for an overflow, and $2 \times (b)$ for normal operation.

*7: When the division-by-0, (c) for an overflow, and $2 \times (c)$ for normal operation.

*8: Set to 3 when byte (AH) is zero, 7 when byte (AH) is not zero.

*9: Set to 3 when byte (ear) is zero, 7 when byte (ear) is not zero.

*10:Set to 4 + (a) when byte (eam) is zero, 8 + (a) when byte (eam) is not zero.

*11:Set to 3 when word (AH) is zero, 11 when word (AH) is not zero.

*12:Set to 4 when word (ear) is zero, 11 when word (ear) is not zero.

*13:Set to 4 + (a) when word (eam) is zero, 12 + (a) when word (eam) is not zero.

Mr	nemonic	#	~	В	Operation	LH	AH	I	S	Т	Ν	Ζ	۷	С	RMW
DIV	А	2	*1	0	word (AH)/byte (AL)	Ζ	_	Ι	_	—	—	_	*	*	—
					Quotient \rightarrow byte (AL) Remainder \rightarrow byte (AH)										
DIV	A, ear	2	*2	0	word (A)/byte (ear)	Ζ	_	_	_	_	_	_	*	*	—
					Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear)										
DIV	A, eam	2 +	*3	*6	word (A)/byte (eam)	Ζ	_	_	_	_	_	_	*	*	—
					Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam)										
DIVW	A, ear	2	*4	0	long (A)/word (ear)	—	-	_	-	-	—	-	*	*	-
					Quotient \rightarrow word (A) Remainder \rightarrow word (ear)										
DIVW	A, eam	2 +	*5	*7	long (A)/word (eam)	_	_	_	_	_	_	_	*	*	—
					Quotient \rightarrow word (A) Remainder \rightarrow word (eam)										
MUL	А	2	*8	0	byte (AH) \times byte (AL) \rightarrow word (A)	_	_	Ι	_	_	_	_	-		_
MUL	A, ear	2	*9	0	byte (A) \times byte (ear) \rightarrow word (A)	_	-	_	-	-	_	-	-	_	—
MUL	A, eam	2 +	*10	(b)	byte (A) \times byte (eam) \rightarrow word (A)	_	-	_	-	-	_	-	-	_	—
MULW	А	2	*11	0	word (AH) \times word (AL) \rightarrow long (A)	_	-	_	-	-	_	-	-	_	—
MULW	A, ear	2	*12	0	word (A) \times word (ear) \rightarrow long (A)	-	-	—	-	-	-	-	-	—	—
MULW	A, eam	2 +	*13	(b)	word (A) \times word (eam) \rightarrow long (A)	-	—	—	—	—	-	—	_	—	—

Table 0 Signed multiplication/division (Word, Long) [11 Instructions]

For (b) and (c), refer to "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

- *1: Set to 3 for divide-by-0, 8 or 18 for an overflow, and 18 for normal operation.
- *2: Set to 3 for divide-by-0, 10 or 21 for an overflow, and 22 for normal operation.
- *3: Set to 4 + (a) for divide-by-0, 11 + (a) or 22 + (a) for an overflow, and 23 + (a) for normal operation.
- *4: Positive divided: Set to 4 for divide-by-0, 10 or 29 for an overflow, and 30 for normal operation. Negative divided: Set to 4 for divide-by-0, 11 or 30 for an overflow, and 31 for normal operation.
- *5: Positive divided: Set to 4 + (a) for divide-by-0, 11 + (a) or 30 + (a) for an overflow, and 31 + (a) for normal operation.
 Negative divided: Set to 4 + (a) for divide-by-0, 12 + (a) or 31 + (a) for an overflow, and 32 + (a) for normal operation.
- *6: Set to (b) when the division-by-0 or an overflow, and $2 \times (b)$ for normal operation.
- *7: Set to (c) when the division-by-0 or an overflow, and $2 \times (c)$ for normal operation.
- *8: Set to 3 when byte (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
- *9: Set to 3 when byte (ear) is zero, 12 when the result is positive, and 13 when the result is negative.
- *10:Set to 4 + (a) when byte (eam) is zero, 13 + (a) when the result is positive, and 14 + (a) when the result is negative.
- *11:Set to 3 when word (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
- *12:Set to 3 when word (ear) is zero, 16 when the result is positive, and 19 when the result is negative.

```
*13:Set to 4 + (a) when word (eam) is zero, 17 + (a) when the result is positive, and 20 + (a) when the result is negative.
```

Note: When overflow occurs during DIV or DIVW instruction execution, the number of execution cycles takes two values because of detection before and after an operation.

When overflow occurs during DIV or DIVW instruction execution, the contents of AL are destroyed.

М	nemonic	#	~	В	Operation	LH	AH	I	S	Т	Ν	Ζ	V	С	RMW
AND AND AND AND AND	A, #imm8 A, ear A, eam ear, A eam, A	2 2+ 2 2+	2 2 3+(a) 3 3+(a)	0 (b) 0 2×(b)	byte (A) \leftarrow (A) and imm8 byte (A) \leftarrow (A) and (ear) byte (A) \leftarrow (A) and (eam) byte (ear) \leftarrow (ear) and (A) byte (eam) \leftarrow (eam) and (A)	 		 	 	 	* * * *	* * * * *	R R R R R	 	_ _ * *
OR OR OR OR OR	A, #imm8 A, ear A, eam ear, A eam, A	2 2+ 2 2+	2 2 3+(a) 3 3+(a)	0 (b) 0 2×(b)	byte (A) \leftarrow (A) or imm8 byte (A) \leftarrow (A) or (ear) byte (A) \leftarrow (A) or (eam) byte (ear) \leftarrow (ear) or (A) byte (eam) \leftarrow (eam) or (A)		_ _ _ _				* * * *	* * * *	R R R R R		 *
XOR XOR XOR XOR XOR NOT NOT NOT	A, #imm8 A, ear A, eam ear, A eam, A A ear eam	2 2+ 2 2+ 1 2 2+	2 2 3 + (a) 3 3 + (a) 2 3 + (a)	$0 \\ 0 \\ (b) \\ 0 \\ 2 \times (b) \\ 0 \\ 2 \times (b)$	byte (A) \leftarrow (A) xor imm8 byte (A) \leftarrow (A) xor (ear) byte (A) \leftarrow (A) xor (ear) byte (ear) \leftarrow (ear) xor (A) byte (ear) \leftarrow (ear) xor (A) byte (ear) \leftarrow not (A) byte (ear) \leftarrow not (ear) byte (eam) \leftarrow not (eam)		- - - -				* * * * * * *	* * * * * * *	R R R R R R R R		* * **
ANDW ANDW ANDW ANDW ANDW ANDW	A A, #imm16 A, ear A, eam ear, A eam, A	1 3 2 2 + 2 2 +	2 2 3 + (a) 3 3 + (a)	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) and (A) word (A) \leftarrow (A) and imm16 word (A) \leftarrow (A) and (ear) word (A) \leftarrow (A) and (eam) word (ear) \leftarrow (ear) and (A) word (eam) \leftarrow (eam) and (A)		- - - -		- - - -	- - - -	* * * * *	* * * * *	R R R R R R		_ _ _ *
ORW ORW ORW ORW ORW ORW	A A, #imm16 A, ear A, eam ear, A eam, A	1 3 2+ 2+ 2+	2 2 3 + (a) 3 3 + (a)	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) or (A) word (A) \leftarrow (A) or imm16 word (A) \leftarrow (A) or (ear) word (A) \leftarrow (A) or (eam) word (ear) \leftarrow (ear) or (A) word (eam) \leftarrow (eam) or (A)		- - - -		- - - -	- - - -	* * * * *	* * * * *	R R R R R R		_ _ _ *
XORW XORW XORW XORW XORW NOTW NOTW	A A, #imm16 A, ear A, eam ear, A eam, A A ear eam	1 3 2+ 2 2+ 1 2 2+	2 2 3 + (a) 3 3 + (a) 2 3 3 + (a)	$\begin{array}{c} 0 \\ 0 \\ (c) \\ 0 \\ 2 \times (c) \\ 0 \\ 2 \times (c) \end{array}$	word (A) \leftarrow (AH) xor (A) word (A) \leftarrow (A) xor imm16 word (A) \leftarrow (A) xor (ear) word (A) \leftarrow (A) xor (ear) word (ear) \leftarrow (ear) xor (A) word (eam) \leftarrow (ear) xor (A) word (ear) \leftarrow not (A) word (ear) \leftarrow not (ear) word (eam) \leftarrow not (eam)		- - - -				* * * * * * * *	* * * * * * * *	R R R R R R R R R		 * **

Table 14 Logic 1 (Byte, Word) [39 Instructions]

Note: For (a) to (c), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

M	Inemonic	#	~	В	Operation	LH	AH	I	S	Т	Ν	Ζ	V	С	RMW
ANDL ANDL	A, ear A, eam	2 2 +	5 6 + (a)	0 (d)	long (A) \leftarrow (A) and (ear) long (A) \leftarrow (A) and (eam)		_	-	-	_	*	*	R R	_	
ORL ORL	A, ear A, eam	2 2 +	5 6 + (a)	0 (d)	long (A) \leftarrow (A) or (ear) long (A) \leftarrow (A) or (eam)	_ _		_	_ _	-	* *	*	R R	_ _	-
XORL XORL	A, ear A, eam	2 2 +	5 6 + (a)	0 (d)	long (A) \leftarrow (A) xor (ear) long (A) \leftarrow (A) xor (eam)		_ _		_ _	-	*	*	R R	_	-

Table 15 Logic 2 (Long) [6 Instructions]

Note: For (a) and (d), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

Mn	emonic	#	~	RG	В	Operation	LH	AH	I	S	Т	Ν	Ζ	۷	С	RMW
NEG	А	1	2	0	0	byte (A) \leftarrow 0 – (A)	Х	-	-	-	-	*	*	*	*	_
NEG NEG	ear eam	2 2 +	3 5 + (a)	2 0	0 2×(b)	byte (ear) \leftarrow 0 – (ear) byte (eam) \leftarrow 0 – (eam)	-	_ _	_	_ _	_ _	*	*	*	*	 *
NEGW	А	1	2	0	0	word (A) \leftarrow 0 – (A)	_	-	Ι	_	_	*	*	*	*	_
NEGW NEGW	ear eam	2 2 +	3 5 + (a)	2 0	0 2×(c)	word (ear) $\leftarrow 0 - (ear)$ word (eam) $\leftarrow 0 - (eam)$	-	-	_			*	*	*	*	_ *

Table 16 Sign Reverse (Byte, Word) [6 Instructions]

Note: For (a) and (d), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

Table 17	Absolute	Values	(Byte,	Word,	Long)	[3	Instructions]
----------	----------	--------	--------	-------	-------	----	---------------

Mnemonic	#	~	В	Operation	LH	AH	I	S	Т	Ν	Ζ	V	С	RMW
ABS A	2	2	0	byte (A) \leftarrow Absolute value (A)	Ζ	-	-	-	-	*	*	*	_	_
ABSW A	2	2	0	word (A) \leftarrow Absolute value (A)	—	-	_	_	-	*	*	*	_	—
ABSL A	2	4	0	long $(A) \leftarrow Absolute value (A)$	-	-	—	-	—	*	*	*	—	—

Mnemonic	#	~	RG	В	Operation	LH	AH	Ι	S	Т	Ν	Ζ	۷	С	RMW
NRML A, RO	2	*1	1	0	long (A) \leftarrow Shift to where "1" is originally located byte (R0) \leftarrow Number of shifts in the operation		_	_		_	_	*	Ι	I	_

* : Set to 5 when the accumulator is all "0", otherwise set to 5 + (R0).

Mne	monic	#	~	В	Operation	LH	AH	I	S	Т	Ν	Ζ	۷	С	RMW
RORC ROLC	A A	2 2	2 2	0 0	byte (A) \leftarrow With right-rotate carry byte (A) \leftarrow With left-rotate carry	_	_		_	-	*	*		*	-
RORC RORC ROLC ROLC	ear eam ear eam	2 2 + 2 2 +	2 3+(a) 2 3+(a)	0 $2 \times (b)$ 0 $2 \times (b)$	byte (ear) \leftarrow With right-rotate carry byte (eam) \leftarrow With right-rotate carry byte (ear) \leftarrow With left-rotate carry byte (eam) \leftarrow With left-rotate carry	- - -	_ _ _		_ _ _		* * *	* * *		* * *	* * *
ASR LSR LSL	A, R0 A, R0 A, R0	2 2 2	*1 *1 *1	0 0 0	byte (A) \leftarrow Arithmetic right barrel shift (A, R0) byte (A) \leftarrow Logical right barrel shift (A, R0) byte (A) \leftarrow Logical left barrel shift (A, R0)	- - -	_ _ _		_ _ _	*	* *	* * *		* *	
ASR LSR LSL	A, #imm8 A, #imm8 A, #imm8	3 3 3	*3 *3 *3	0 0 0	byte (A) \leftarrow Arithmetic right barrel shift (A, imm8) byte (A) \leftarrow Logical right barrel shift (A, imm8) byte (A) \leftarrow Logical left barrel shift (A, imm8)	- - -	_ _ _		- - -	*	* * *	* * *		* * *	
ASRW LSRW ^A LSLW	A A/SHRW A/SHLW A	1 1 1	2 2 2	0 0 0	word (A) \leftarrow Arithmetic right shift (A, 1 bit) word (A) \leftarrow Logical right shift (A, 1 bit) word (A) \leftarrow Logical left shift (A, 1 bit)	- - -	_ _ _		_ _ _	* *	* R *	* * *		* *	- - -
ASRW LSRW LSLW	A, R0 A, R0 A, R0	2 2 2	*1 *1 *1	0 0 0	word (A) \leftarrow Arithmetic right barrel shift (A, R0) word (A) \leftarrow Logical right barrel shift (A, R0) word (A) \leftarrow Logical left barrel shift (A, R0)	- - -	_ _ _		_ _ _	*	* *	* * *		* *	
ASRW LSRW LSLW	A, #imm8 A, #imm8 A, #imm8	3 3 3	*3 *3 *3	0 0 0	word (A) \leftarrow Arithmetic right barrel shift (A, imm8) word (A) \leftarrow Logical right barrel shift (A, imm8) word (A) \leftarrow Logical left barrel shift (A, imm8)	- - -	_ _ _		_ _ _	*	* *	* * *		* *	
ASRL LSRL LSLL	A, R0 A, R0 A, R0	2 2 2	*2 *2 *2	0 0 0	long (A) ← Arithmetic right barrel shift (A, R0) long (A) ← Logical right barrel shift (A, R0) long (A) ← Logical left barrel shift (A, R0)	- - -	_ _ _		_ _ _	* -	* * *	* * *		* * *	
ASRL LSRL LSLL	A, #imm8 A, #imm8 A, #imm8	3 3 3	*4 *4 *4	0 0 0	long (A) ← Arithmetic right barrel shift (A, imm8) long (A) ← Logical right barrel shift (A, imm8) long (A) ← Logical left barrel shift (A, imm8)	- - -	_ _ _	- - -	_ _	*	* *	* * *	- - -	* *	

Table 19	Shift Type Instruction	(Byte, Word,	Long) [27 Instructions]
		(,,	=======================================

Note: For (a) and (b), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

*1: Set to 3 when R0 is 0, otherwise 3 + (R0).

*2: Set to 3 when R0 is 0, otherwise 4 + (R0).

*3: Set to 3 when imm8 is 0, otherwise 3 + imm8.

*4: Set to 3 when imm8 is 0, otherwise 4 + imm8.

Mn	emonic	#	~	В	Operation	LH	AH	I	S	Т	Ν	Ζ	۷	С	RMW
BZ/BEQ	rel	2	*1	0	Branch if (Z) = 1	_	_	_	_	_	_	_	_	_	_
BNZ/BNE	rel	2	*1	0	Branch if $(Z) = 0$	_	_	_	_	_	_	_	_	_	_
BC/BLO	rel	2	*1	0	Branch if $(C) = 1$	_	_	_	_	_	_	_	_	_	_
BNC/BHS	S rel	2	*1	0	Branch if $(C) = 0$	_	_	_	_	_	_	_	_	_	_
BN	rel	2	*1	0	Branch if $(N) = 1$	_	_	_	_	_	_	_	_	_	_
BP	rel	2	*1	0	Branch if $(N) = 0$	_	_	_	_	_	_	_	_	_	_
BV	rel	2	*1	0	Branch if $(V) = 1$	_	_	_	_	_	_	_	-	_	_
BNV	rel	2	*1	0	Branch if $(V) = 0$	_	_	_	—	_	—	_	—	_	_
BT	rel	2	*1	0	Branch if $(T) = 1$	_	_	_	_	_	_	_	_	_	_
BNT	rel	2	*1	0	Branch if $(T) = 0$	_	_	_	_	_	_	_	-	_	_
BLT	rel	2	*1	0	Branch if (V) xor $(N) = 1$	_	_	_	—	_	—	_	—	_	_
BGE	rel	2	*1	0	Branch if (V) xor $(N) = 0$	_	_	_	_	_	_	_	_	_	_
BLE	rel	2	*1	0	Branch if $((V) \text{ xor } (N)) \text{ or } (Z) = 1$	_	_	_	_	_	_	_	-	_	_
BGT	rel	2	*1	0	Branch if $((V) \text{ xor } (N)) \text{ or } (Z) = 0$	_	_	_	—	_	—	_	—	_	_
BLS	rel	2	*1	0	Branch if (C) or $(Z) = 1$	_	_	_	_	_	_	_	-	_	_
BHI	rel	2	*1	0	Branch if (C) or $(Z) = 0$	_	_	_	—	_	—	_	—	_	_
BRA	rel	2	*1	0	Branch unconditionally	—	—	—	-	_	-	_	-	—	-
	@ ^		•	0											
	@A	1	2	0	word (PC) \leftarrow (A)	—	_	_	-	-	-	_	-	-	—
JIMP	addr16	3	2	0	word (PC) \leftarrow addr16	-	-	-	-	-	-	—	-	-	-
	@ear	2	3	0	word (PC) \leftarrow (ear)	-	—	-	-	-	-	-	-	-	—
JIVIP	@eam	2+	4 + (a)	(C)	word (PC) \leftarrow (eam)	-	-	-	-	-	-	—	-	-	-
JMPP	@ear ^	2	3	0	word (PC) \leftarrow (ear), (PCB) \leftarrow (ear + 2)	—	-	-	-	-	-	-	-	-	—
JMPP	@eam *3	2+	4 + (a)	(d)	word (PC) \leftarrow (eam), (PCB) \leftarrow (eam + 2)	—	—	—	—	—	-	—	-	-	-
JMPP	addr24	4	3	0	word (PC) \leftarrow ad24 0 – 15,	—	-	-	-	-	-	-	-	-	—
0.1.1	@ • • • *1	-			$(PCB) \leftarrow ad24 \ 16 - 23$										
	@ear [™]	2	_ 4	(C)	word (PC) \leftarrow (ear)	—	-	-	-	-	-	-	-	-	—
CALL	@eam ^4	2+	5 + (a)	$2 \times (c)$	word (PC) \leftarrow (eam)	—	-	-	-	-	-	-	-	-	—
CALL	addr16 *5	3	5	(C)	word (PC) \leftarrow addr16	—	-	-	-	-	-	-	-	-	—
CALLV	#vct4 *5	1	5	$2 \times (c)$	Vector call instruction	—	-	—	—	—	-	—	-	-	-
CALLP	@ear *6	2	7	2×(c)	word (PC) \leftarrow (ear) 0 – 15 (PCB) \leftarrow (ear) 16 – 23	_	-	-	-	-	-	_	-	-	-
CALLP	@eam *6	2+	8 + (a)	*2	word (PC) \leftarrow (ear) $0 - 23$	_	_	_	_	_	_	_	_	_	_
	Geam	2 '	5 · (u)	~	$(PCB) \leftarrow (eam) 16 - 23$										
CALLP	addr24 *7	4	7	2×(c)	word (PC) \leftarrow addr0 – 15,	_	_	_	_	_	-	_	_	_	_
	-				$(PCB) \leftarrow addr16 - 23$										

Table 20 Branch 1 [31 Instructions]

Note: For (a), (c) and (d), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

*1: Set to 3 when branch is executed, and 2 when branch is not executed.

*2: 3 × (c) + (b)

*3: Reads (word) of the branch destination address.

*4: W pushes to stack (word), and R reads (word) of the branch destination address.

*5: Pushes to stack (word).

*6: W pushes to stack (long), and R reads (long) of the branch destination address.

*7: Pushes to stack (long).

Mnemonic	#	~	В	Operation	LH	AH	I	S	Т	Ν	Ζ	V	С	RMW
CBNE A, #imm8, rel CWBNE A, #imm16, rel	3 4	*1 *1	0 0	Branch if byte (A) \neq imm8 Branch if word (A) \neq imm16	-	_	_	_	_	*	*	*	*	_
CBNE ear, #imm8, rel CBNE eam, #imm8, rel CWBNE ear, #imm16, rel CWBNE eam, #imm16, rel	4 4+ 5 5+	*1 *3 *1 *3	0 (b) 0 (c)	Branch if byte (ear) \neq imm8 Branch if byte (eam) \neq imm8 Branch if word (ear) \neq imm16 Branch if word (eam) \neq imm16	_ _ _	- - -	_ _ _	- - -	- - -	* * *	* * *	* * *	* * *	- - -
DBNZ ear, rel DBNZ eam, rel	3 3+	*2 *4	0 2 × (b)	byte (ear) = (ear) - 1, Branch if (ear) \neq 0 byte (eam) = (eam) - 1, Branch if (eam) \neq 0	-	-	_	_	_	*	*	*	-	*
DWBNZ ear, rel DWBNZ eam, rel	3 3+	*2 *4	0 2 × (c)	word (ear) = (ear) $- 1$, Branch if (ear) $\neq 0$ word (eam) = (eam) $- 1$, Branch if (eam) $\neq 0$	_	-	_	_	-	*	*	*	_	*
INT #vct8 INT addr16 INTP addr24 INT9 RETI RETIQ *6	2 3 4 1 1 2	14 12 13 14 9 11	$8 \times (c)$ $6 \times (c)$ $6 \times (c)$ $8 \times (c)$ $6 \times (c)$ *5	Software interrupt Software interrupt Software interrupt Software interrupt Return from interrupt Return from interrupt	- - - -	- - - -	R R R *	S S S S *	 *	 *	 *	 *	 *	
LINK #imm8 UNLINK	2	6 5	(c) (c)	Stores old frame pointer in the beginning of the function, set new frame pointer, and reserves local pointer area Restore old frame pointer from stack in the end of the function	_	-	_	_	_	_	_	_	_	_
RET *7 RETP *8	1 1	4 5	(c) (d)	Return from subroutine Return from subroutine	-	-	_ _	_ _	-	-	_ _	_ _	_ _	_ _

Table 21 Branch 2 [20 Instructions]

Note: For (a) to (d), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

*1: Set to 4 when branch is executed, and 3 when branch is not executed.

*2: Set to 5 when branch is executed, and 4 when branch is not executed.

*3: Set to 5 + (a) when branch is executed, and 4 + (a) when branch is not executed.

*4: Set to 6 + (a) when branch is executed, and 5 + (a) when branch is not executed.

*5: Set to $3 \times (b) + 2 \times (c)$ when an interrupt request is issued, and $6 \times (c)$ for return.

*6: This is a high-speed interrupt return instruction. In the instruction, an interrupt request is detected. When an interrupt occurs, stack operation is not performed, with this instruction branching to the interrupt vector.

*7: Return from stack (word).

*8: Return from stack (long).

Mn	emonic	#	~	В	Operation	LH	AH	I	S	Т	Ν	Ζ	۷	С	RMW
PUSHW PUSHW PUSHW PUSHW	A AH PS rlst	1 1 1 2	3 3 3 *3	(c) (c) (c) *4	word (SP) \leftarrow (SP) - 2, ((SP)) \leftarrow (A) word (SP) \leftarrow (SP) - 2, ((SP)) \leftarrow (AH) word (SP) \leftarrow (SP) - 2, ((SP)) \leftarrow (PS) (PS) \leftarrow (PS) - 2n, ((SP)) \leftarrow (rlst)			_ _ _					- - -	_ _ _	_ _ _ _
POPW POPW POPW POPW	A AH PS rlst	1 1 1 2	3 3 3 *2	(c) (c) (c) *4	word (A) \leftarrow ((SP)), (SP) \leftarrow (SP) + 2 word (AH) \leftarrow ((SP)), (SP) \leftarrow (SP) + 2 word (PS) \leftarrow ((SP)), (SP) \leftarrow (SP) + 2 (rlst) \leftarrow ((SP)), (SP) \leftarrow (SP) + 2n		* 	*	*	*	*	*		*	_ _ _ _
JCTX	@A	1	9	6×(c)	Context switch instruction	_	_	*	*	*	*	*	*	*	-
AND OR	CCR, #imm8 CCR, #imm8	2 2	3 3	0 0	byte (CCR) \leftarrow (CCR) and imm8 byte (CCR) \leftarrow (CCR) or imm8	_	-	* *	*	*	*	*	* *	*	_ _
MOV MOV	RP, #imm8 ILM, #imm8	2 2	2 2	0 0	byte (RP) ← imm8 byte (ILM) ← imm8		_ _	_	-	-	-	-	_ _	_	_ _
MOVEA MOVEA MOVEA MOVEA	RWi, ear RWi, eam A, ear A, eam	2 2+ 2 2+	3 2 + (a) 2 1 + (a)	0 0 0 0	word (RWi) \leftarrow ear word (RWi) \leftarrow eam word(A) \leftarrow ear word (A) \leftarrow eam		*	_ _ _					_ _ _	_ _ _	- - -
ADDSP ADDSP	#imm8 #imm16	2 3	3 3	0 0	word (SP) \leftarrow (SP) + ext (imm8) word (SP) \leftarrow (SP) + imm16	_	-	_		-	-	-	_ _	_	_ _
MOV MOV MOV	A, brgl brg2, A brg2, #imm8	2 2 3	*1 1 2	0 0 0	byte (A) \leftarrow (brgl) byte (brg2) \leftarrow (A) byte (brg2) \leftarrow imm8	Z _ _	*	_ _ _			* *	* *	- - -	_ _ _	_ _ _
NOP ADB DTB PCB SPB NCC CMR		1 1 1 1 1	1 1 1 1 1	0 0 0 0 0 0	No operation Prefix code for accessing AD space Prefix code for accessing DT space Prefix code for accessing PC space Prefix code for accessing SP space Prefix code for no change in flag Prefix for common register bank		 	 						 	
MOVW SI MOVW SI SETSPC CLRSPC	PCU, #imm16 PCL, #imm16 ; ;	4 4 2 2	2 2 2 2	0 0 0 0	word (SPCU) \leftarrow (imm16) word (SPCL) \leftarrow (imm16) Enables stack check operation. Disables stack check operation.		_ _ _	_ _ _					- - -	_ _ _	_ _ _ _
BTSCN BTSCNS BTSCND	A A A	2 2 2	*5 *6 *7	0 0 0	Bit position of 1 in byte (A) from word (A) Bit position (\times 2) of 1 in byte (A) from word (A) Bit position (\times 4) of 1 in byte (A) from word (A)	Z Z Z	_ _ _	 _				* *	_ _ _		_ _ _

Table 22 Miscellaneous Control Types (Byte, Word, Long) [36 Instructions]

Note: For (a) and (c), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

*1: PCB, ADB, SSB, USB, and SPB : 1 state

- DTB
 - : 2 states : 3 states

*2: $3 + 4 \times$ (number of POPs)

DPR

- *3: $3 + 4 \times$ (number of PUSHes)
- *4: (Number of POPs) \times (c), or (number of PUSHes) \times (c)
- *5: Set to 3 when AL is 0, 5 when AL is not 0.
- *6: Set to 4 when AL is 0, 6 when AL is not 0.
- *7: Set to 5 when AL is 0, 7 when AL is not 0.

N	Inemonic	#	~	В	Operation	LH	AH	I	S	Т	Ν	Ζ	V	С	RMW
MOVB MOVB MOVB	A, dir:bp A, addr16:bp A, io:bp	3 4 3	3 3 3	(b) (b) (b)	byte (A) \leftarrow (dir:bp) b byte (A) \leftarrow (addr16:bp) b byte (A) \leftarrow (io:bp) b	Z Z Z	* *		_ _ _	_ _ _	* *	* *	_ _ _		
MOVB MOVB MOVB	dir:bp, A addr16:bp, A io:bp, A	3 4 3	4 4 4	$2 \times (b)$ $2 \times (b)$ $2 \times (b)$	bit (dir:bp) $b \leftarrow (A)$ bit (addr16:bp) $b \leftarrow (A)$ bit (io:bp) $b \leftarrow (A)$	_ _ _	_ _ _		_ _ _	_ _ _	* * *	* *	_ _ _		* * *
SETB SETB SETB	dir:bp addr16:bp io:bp	3 4 3	4 4 4	$2 \times (b)$ $2 \times (b)$ $2 \times (b)$	bit (dir:bp) b \leftarrow 1 bit (addr16:bp) b \leftarrow 1 bit (io:bp) b \leftarrow 1	_ _ _	_ _ _		_ _ _	_ _ _	_ _ _		_ _ _		* * *
CLRB CLRB CLRB	dir:bp addr16:bp io:bp	3 4 3	4 4 4	$2 \times (b)$ $2 \times (b)$ $2 \times (b)$	bit (dir:bp) $b \leftarrow 0$ bit (addr16:bp) $b \leftarrow 0$ bit (io:bp) $b \leftarrow 0$	_ _ _	_ _ _		_ _ _	_ _ _	_ _ _		_ _ _		* * *
BBC BBC BBC	dir:bp, rel addr16:bp, rel io:bp, rel	4 5 4	*1 *1 *1	(b) (b) (b)	Branch if (dir:bp) b = 0 Branch if (addr16:bp) b = 0 Branch if (io:bp) b = 0	_ _ _	_ _ _		_ _ _	_ _ _	_ _ _	* *	_ _ _		_ _ _
BBS BBS BBS	dir:bp, rel addr16:bp, rel io:bp, rel	4 5 4	*1 *1 *1	(b) (b) (b)	Branch if (dir:bp) b = 1 Branch if (addr16:bp) b = 1 Branch if (io:bp) b = 1	- - -	_ _ _		_ _ _	- - -	_ _ _	* *	- - -		- - -
SBBS	addr16:bp, rel	5	*2	2 × (b)	Branch if (addr16:bp) b = 1, bit = 1	_	-	_	_	_	-	*	_	_	*
WBTS	io:bp	3	*3	*4	Wait until (io:bp) b = 1	–	–	_	_	_	–	_	_	_	_
WBTC	io:bp	3	*3	*4	Wait until (io:bp) b = 0	_	_	-	_	_	_	-	_	Ι	_

Note: For (b), refer to "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

*1: Set to 5 when branch is executed, and 4 when branch is not executed.

*2: 7 if conditions are met, 6 when conditions are not met.

*3: Indeterminate times

*4: Until conditions are met

Mnemonic	#	2	В	Operation	LH	AH	Ι	S	Т	Ν	Ζ	۷	С	RMW
SWAP	1	3	0	byte (A) $0 - 7 \leftrightarrow$ (A) $8 - 15$	Ι	_	Ι	Ι	-	Ι	Ι	Ι	-	-
SWAPW/XCHW AL, AH	1	2	0	word $(AH) \leftrightarrow (AL)$	-	*	-	_	—	—	—	_	—	—
EXT	1	1	0	byte sign-extension	Х	—	-	_	—	*	*	_	_	—
EXTW	1	2	0	word sign-extension	-	Х	—	—	—	*	*	—	—	—
ZEXT	1	1	0	byte zero-extension	Ζ	—	-	_	—	R	*	_	—	—
ZEXTW	1	1	0	word zero-extension	-	Ζ	-	-	-	R	*	-	-	-

Table 24 Accumulator Manipulation Instruction (Byte, Word) [6 Instructions]

Mnemonic	#	~	В	Operation	LH	AH	Ι	S	Т	Ν	Ζ	۷	С	RMW
MOVS/MOVSI	2	*2	*3	byte transfer @AH + \leftarrow @AL +, Counter = RW0	_	_	_	_	_	_	—	-	—	_
MOVSD	2	*2	*3	byte transfer $@AH - \leftarrow @AL -$, Counter = RW0	-	_	-	-	_	_	-	-	-	-
SCEQ/SCEQI	2	*1	*4	byte search (@AH +) – AL, Counter = RW0	-	-	-	_	_	*	*	*	*	-
SCEQD	2	*1	*4	byte search (@AH –) – AL, Counter = RW0	-	_	_	-	_	*	*	*	*	-
FISL/FILSI	2	5m + 6	*5	byte fill @AH + \leftarrow AL, Counter = RW0	-	_	_	-	_	*	*	-	-	_
MOVSW/MOVSWI	2	*2	*6	word transfer @AH + \leftarrow @AL +, Counter = RW0	-	I	Ι	-	-	-	-	-	_	-
MOVSWD	2	*2	*6	word transfer $@AH - \leftarrow @AL -$, Counter = RW0	-	_	_	-	_	-	-	-	-	-
SCWEQ/SCWEQI	2	*1	*7	word search (@AH +) – AL, Counter = RW0	-	-	-	_	_	*	*	*	*	-
SCWEQD	2	*1	*7	word search (@AH –) – AL, Counter = RW0	-	_	_	-	_	*	*	*	*	-
FILSW/FILSWI	2	5m + 6	*8	word fill @AH + ← AL, Counter = RW0	-	-	-	-	_	*	*	-	-	_

Table 25 String Instruction [10 Instructions]

m: RW0 value (counter value)

*1: 3 when RW0 is 0, 2 + 6 \times (RW0) when count out, and 6n + 4 when matched

*2: 4 when RW0 is 0, otherwise $2 + 6 \times (RW0)$

*3: (b) \times (RW0)

*4: (b) × n

*5: (b) × (RW0)

*6: (c) × (RW0)

*7: (c) × n

*8: (c) × (RW0)

Mnemonic	#	~	В	Operation	LH	AH	I	S	Т	Ν	Ζ	V	С	RMW
MOVM @A, @RLi, #imm8	3	*1	*3	Multiple data transfer byte ((A)) \leftarrow ((RLi))	-	—	-	-	-	-	-	-	-	-
MOVM @A, eam, #imm8	3 +	*2	*3	Multiple data transfer byte ((A)) \leftarrow (eam)	-	-	-	_	_	-	-	-	_	-
MOVM addr16, @RLi, #imm8	5	*1	*3	Multiple data transfer byte (addr16) \leftarrow ((RLi))	_	_	-	—	-	-	-	-	-	_
MOVM addr16, @eam, #imm8	5 +	*2	*3	Multiple data transfer byte (addr16) ← (eam)	-	_	-	_	_	-	-	-	-	-
MOVMW@A, @RLi, #imm8	3	*1	*4	Multiple data transfer word ((A)) \leftarrow ((RLi))	-	-	-	_	_	-	-	-	_	-
MOVMW@A, eam, #imm8	3 +	*2	*4	Multiple data transfer word ((A)) \leftarrow (eam)	-	_	-	_	_	-	_	-	-	-
MOVMWaddr16, @RLi, #imm8	5	*1	*4	Multiple data transfer word (addr16) ← ((RLi))	-	_	_	_	_	-	_	_	_	_
MOVMWaddr16, @eam, #imm8	5 +	*2	*4	Multiple data transfer word (addr16) \leftarrow (eam)	-	-	-	-	-	-	-	-	-	-
MOVM @RLi, @A, #imm8	3	*1	*3	Multiple data transfer byte ((RLi)) ← ((A))	-	-	-	_	-	-	-	-	-	-
MOVM @eam, A, #imm8	3 +	*2	*3	Multiple data transfer byte (eam) \leftarrow ((A))	-	-	-	_	_	-	-	-	_	-
MOVM @RLi, addr16, #imm8	5	*1	*3	Multiple data transfer byte ((RLi)) ← (addr16)	-	-	-	-	-	-	-	-	-	-
MOVM @eam, addr16, #imm8	5 +	*2	*3	Multiple data transfer byte (eam) \leftarrow (addr16)	-	-	-	-	-	-	-	-	-	-
MOVMW@RLi, @A, #imm8	3	*1	*4	Multiple data transfer word ((RLi)) \leftarrow ((A))	-	-	-	-	-	-	-	-	-	-
MOVMW@eam, A, #imm8	3 +	*2	*4	Multiple data transfer word (eam) \leftarrow ((A))	-	-	-	-	-	-	-	-	-	-
MOVMW@RLi, addr16, #imm8	5	*1	*4	Multiple data transfer word ((RLi)) ← (addr16)	_	_	-	_	_	-	_	_	_	-
MOVMW@eam, addr16, #imm8	5 +	*2	*4	Multiple data transfer word (eam) \leftarrow (addr16)	-	-	-	-	_	-	-	-	-	-
MOVM bnk: addr16, bnk: addr16, #imm8* ⁵	7	*1	*3	Multiple data transfer byte (bnk: addr16) ← (bnk: addr16)	-	-	-	_	_	-	-	-	_	-
MOVMWbnk: addr16, bnk: addr16, #imm8* ⁵	7	*1	*4	Multiple data transfer word (bnk: addr16) ← (bnk: addr16)	-	-	-	_	-	-	-	-	_	-

Table 26 Multiple Data Transfer Instructions [18 Instruction]

*1: 256 when 5 + imm8 \times 5, imm8 is 0.

*2: 256 when 5 + imm8 \times 5 + (a), imm8 is 0.

*3: (Number of transfer cycles) \times (b) $\times\,2$

*4: (Number of transfer cycles) \times (c) \times 2

*5: The bank register specified by bnk is the same as that for the MOVS instruction.

■ ORDERING INFORMATION

Part number	Package	Remarks
MB90246APFV	100-pin Plastic LQFP (FPT-100P-M05)	

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-8588, Japan Tel: 81(44) 754-3763 Fax: 81(44) 754-3329

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, USA Tel: (408) 922-9000 Fax: (408) 922-9179

Customer Response Center *Mon. - Fri.: 7 am - 5 pm (PST)* Tel: (800) 866-8608 Fax: (408) 922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 D-63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122

http://www.fujitsu-ede.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220

http://www.fmap.com.sg/

F98010 © FUJITSU LIMITED Printed in Japan All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.