INTEGRATED CIRCUITS

DATA SHEET

74LV4040

12-stage binary ripple counter

Product specification

1998 Jun 23

IC24 Data Handbook

12-stage binary ripple counter

74LV4040

FEATURES

- Optimized for Low Voltage applications: 1.0 to 5.5V
- ullet Accepts TTL input levels between V_{CC} = 2.7V and V_{CC} = 3.6V
- Typical V_{OLP} (output ground bounce) < 0.8V @ V_{CC} = 3.3V, T_{amb} = 25°C
- \bullet Typical V_{OHV} (output V_{OH} undershoot) > 2V @ V_{CC} = 3.3V, $T_{amb} = 25 ^{\circ} C$
- Frequency dividing circuits
- Time delay circuits
- Control counters
- Output capability: standard
- I_{CC} category: MSI

DESCRIPTION

The 74LV4040 is a low–voltage Si–gate CMOS device and is pin and function compatible with 74HC/HCT4040.

The 74LV4040 is a 12-stage binary ripple counter with a click input (\overline{CP}) , an overriding asynchronous master reset input (MR) and twelve fully buffered parallel outputs (Q₀ to Q₁₁). The counter is advanced on the HIGH-to-LOW transition of \overline{CP} . A HIGH on MR clears all counter stages and forces all outputs LOW, independent of the state of \overline{CP} .

Each counter stage is a static toggle flip-flop.

QUICK REFERENCE DATA

GND = 0V; $T_{amb} = 25^{\circ}C$; $t_r = t_f \le 2.5 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	Propagation delay $\overline{\text{CP}}$ to Q_0 Q_n to Q_{n+1} MR to Q_n	C _L = 15pF V _{CC} = 3.3V	12 7 16	ns
f _{max}	Maximum clock frequency		100	MHz
C _I	Input capacitance		3.5	pF
C _{PD}	Power dissipation capacitance per gate	Notes 1 and 2	30	pF

NOTES:

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. #	
16-Pin Plastic DIL	-40°C to +125°C	74LV4040 N	74LV4040 N	SOT38-4	
16-Pin Plastic SO	-40°C to +125°C	74LV4040 D	74LV4040 D	SOT109-1	
16-Pin Plastic SSOP Type II	-40°C to +125°C	74LV4040 DB	74LV4040 DB	SOT338-1	
16-Pin Plastic TSSOP Type I	-40°C to +125°C	74LV4040 PW	74LV4040PW DH	SOT403-1	

^{1.} C_{PD} is used to determine the dynamic power dissipation (P_D in μ W) $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where: f_i = input frequency in MHz; C_L = output load capacity in pF; f_o = output frequency in MHz; V_{CC} = supply voltage in V;

 $[\]Sigma$ (C_L × V_{CC}² × f_o) = sum of the outputs. 2. The condition is V_I = GND to V_{CC}

12-stage binary ripple counter

74LV4040

PIN CONFIGURATION

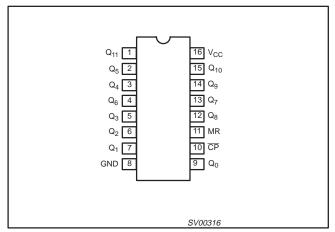


Figure 1. Pin configuration

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
9, 7, 6, 5, 3, 2, 4, 13, 12, 14, 15, 1	Q ₀ to Q ₁₁	Parallel outputs
8	GND	Ground (0V)
10	СP	Clock input (HIGH-to-LOW, edge-triggered)
11	MR	Master reset input (active HIGH)
16	V _{CC}	Positive supply voltage

LOGIC SYMBOL (IEEE/IEC)

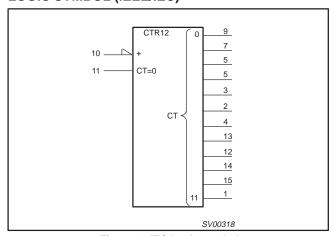


Figure 2. IEC Logic symbol

LOGIC SYMBOL

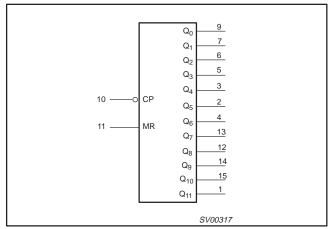


Figure 3. Logic symbol

FUNCTIONAL DIAGRAM

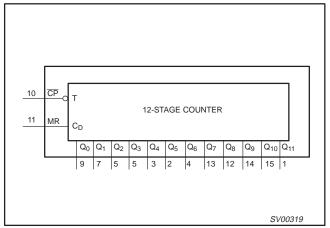


Figure 4. Functional diagram

LOGIC DIAGRAM

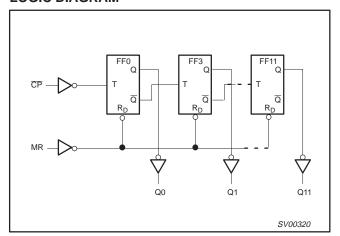


Figure 5. Logic diagram

12-stage binary ripple counter

74LV4040

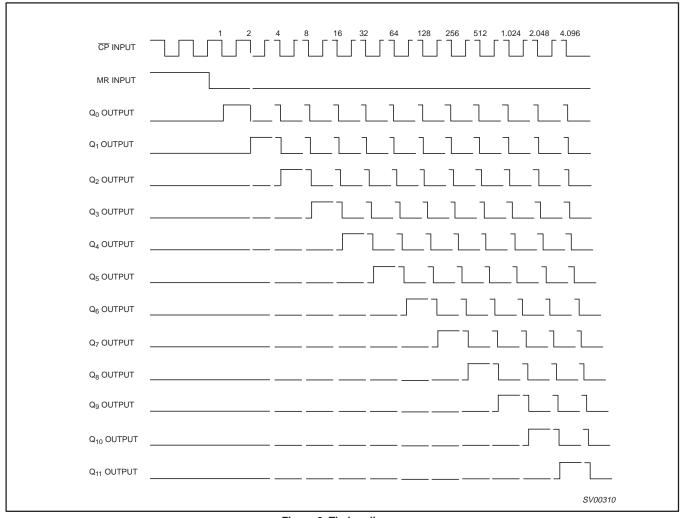


Figure 6. Timing diagram

FUNCTION TABLE

INP	INPUTS						
CP	Q ₀ , Q ₃ to Q ₁₃						
1	L	no change					
↓	L	count					
X	Н	L					

NOTES:

H = HIGH voltage level L = LOW voltage level X = Don't care

↑ = LOW -to-HIGH clock transition ↓ = HIGH-to-LOW clock transition

12-stage binary ripple counter

74LV4040

ABSOLUTE MAXIMUM RATINGS^{1, 2}

In accordance with the Absolute Maximum Rating System (IEC 134)

Voltages are referenced to GND (ground = 0V)

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
±I _{IK}	DC input diode current	$V_{I} < -0.5 \text{ or } V_{I} > V_{CC} + 0.5V$	20	mA
±I _{OK}	DC output diode current	$V_{O} < -0.5 \text{ or } V_{O} > V_{CC} + 0.5 V$	50	mA
±l _O	DC output source or sink current – standard outputs	$-0.5V < V_O < V_{CC} + 0.5V$	25	mA
±l _{GND} , ±l _{CC}	DC V _{CC} or GND current for types with –standard outputs		50	mA
T _{stg}	Storage temperature range		-65 to +150	°C
Ртот	Power dissipation per package -plastic DIL -plastic mini-pack (SO) -plastic shrink mini-pack (SSOP and TSSOP)	for temperature range: -40 to +125°C above +70°C derate linearly with 12mW/K above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K	750 500 400	mW

NOTES:

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNIT
V _{CC}	DC supply voltage	See Note ¹	1.0	3.3	5.5	V
V _I	Input voltage		0	-	V _{CC}	V
Vo	Output voltage		0	_	V _{CC}	V
T _{amb}	Operating ambient temperature range in free air	See DC and AC characteristics	-40 -40		+85 +125	°C
t _r , t _f	Input rise and fall times	$\begin{array}{c} V_{CC} = 1.0 \text{V to } 2.0 \text{V} \\ V_{CC} = 2.0 \text{V to } 2.7 \text{V} \\ V_{CC} = 2.7 \text{V to } 3.6 \text{V} \\ V_{CC} = 3.6 \text{V to } 5.5 \text{V} \end{array}$			500 200 100 50	ns/V

NOTE:

^{1.} Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

^{1.} The LV is guaranteed to function down to V_{CC} = 1.0V (input levels GND or V_{CC}); DC characteristics are guaranteed from V_{CC} = 1.2V to V_{CC} = 5.5V.

12-stage binary ripple counter

74LV4040

DC CHARACTERISTICS FOR THE LV FAMILY

Over recommended operating conditions voltages are referenced to GND (ground = 0V)

					LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	-40)°C to +8	5°C	-40°C to	+125°C	UNIT
			MIN	TYP ¹	MAX	MIN	MAX	1
		V _{CC} = 1.2V	0.9			0.9		
W	HIGH level Input	V _{CC} = 2.0V	1.4			1.4		
V_{IH}	voltage	V _{CC} = 2.7 to 3.6V	2.0			2.0		1
		V _{CC} = 4.5 to 5.5V	0.7*V _{CC}			0.7*V _{CC}		1
		V _{CC} = 1.2V			0.3		0.3	
V _{IL}	LOW level Input	V _{CC} = 2.0V			0.6		0.6]
۷IL	voltage	V _{CC} = 2.7 to 3.6V			0.8		0.8]
		$V_{CC} = 4.5 \text{ to } 5.5$			0.3*V _{CC}		0.3*V _{CC}]
		$V_{CC} = 1.2V; V_I = V_{IH} \text{ or } V_{IL;} -I_O = 100 \mu A$		1.2				
	LUGULIII	$V_{CC} = 2.0V$; $V_I = V_{IH}$ or V_{IL} ; $-I_O = 100\mu A$	1.8	2.0		1.8]
V _{OH}	HIGH level output voltage; all outputs	$V_{CC} = 2.7V; V_I = V_{IH} \text{ or } V_{IL;} -I_O = 100 \mu A$	2.5	2.7		2.5		V
	l voltage, all earpaid	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL;} -I_O = 100 \mu A$	2.8	3.0		2.8]
		$V_{CC} = 4.5V$; $V_I = V_{IH}$ or V_{IL} ; $-I_O = 100\mu A$	4.3	4.5		4.3]
V _{OH}	HIGH level output voltage;	$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $-I_O = 6mA$	2.40	2.82		2.20		V
▼OH	STANDARD outputs	$V_{CC} = 4.5V$; $V_{I} = V_{IH}$ or V_{IL} ; $-I_{O} = 12mA$	3.60	4.20		3.50		
		$V_{CC} = 1.2V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 100\mu A$		0				
	LOW level output	$V_{CC} = 2.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 100\mu A$		0	0.2		0.2]
V_{OL}	voltage; all outputs	$V_{CC} = 2.7V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu A$		0	0.2		0.2	V
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu A$		0	0.2		0.2]
		$V_{CC} = 4.5V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 100\mu A$		0	0.2		0.2	
V _{OL}	LOW level output voltage;	$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 6mA$		0.25	0.40		0.50	V
VOL	STANDARD outputs	$V_{CC} = 4.5V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 12mA$		0.35	0.55		0.65]
II	Input leakage current	$V_{CC} = 5.5V$; $V_I = V_{CC}$ or GND			1.0		1.0	μА
I _{CC}	Quiescent supply current; MSI	$V_{CC} = 5.5V; V_I = V_{CC} \text{ or GND}; I_O = 0$			20.0		160	μА
Δl _{CC}	Additional quiescent supply current per input	$V_{CC} = 2.7V$ to 3.6V; $V_I = V_{CC} - 0.6V$			500		850	μА

NOTE:

^{1.} All typical values are measured at $T_{amb} = 25$ °C.

12-stage binary ripple counter

74LV4040

AC CHARACTERISTICS

 $GND = 0V; \, t_r = t_f \leq 2.5 ns; \, C_L = 50 pF; \, R_L = 500 \Omega$

SYMBOL	PARAMETER	WAVEFORM	CONDITION		LIMITS 40 to +85 °	°C		⁄IITS +125 °C	UNIT	
			V _{CC} (V)	MIN	TYP ¹	MAX	MIN	MAX	1	
			1.2	-	60	i -	-	-		
			2.0	_	27	43	_	54		
t _{PHL} /t _{PLH}	Propagation delay CP to Q ₀	Figure 7, 9	2.7	-	19	31	-	38	ns	
	0. 10 40		3.0 to 3.6	_	16 ²	26	_	32		
			4.5 to 5.5	_	1 ³	17	_	22		
			1.2	-	40	-	_	-		
			2.0	-	18	29	_	54		
t _{PHL} /t _{PLH}	Propagation delay Q _n to Q _{n+1}	Figure 7, 9	2.7	_	13	21	_	38	ns	
	α _n το α _{n+1}		3.0 to 3.6	_	11 ²	18	_	32		
			4.5 to 5.5	-	7 ³	12	_	22		
			1.2	_	55	-	_	-		
			2.0	_	27	44	-	54		
t _{PHL}	Propagation delay MR to Q _n	Figure 8, 9	2.7	-	19	31	_	38	ns	
	i i i i i i i i i i i i i i i i i i i		3.0 to 3.6	-	16 ²	26	_	32		
			4.5 to 5.5	_	11 ³	17	_	22		
			2.0	35	7	-	41	54		
ŧ	Clock pulse width	Figure 7	2.7	25	5	-	30	-	ns	
t _W	HIGH to LOW	Figure /	3.0 to 3.6	20	42	-	24	-	115	
			4.5 to 5.5	15	3 ³	-	18	-		
			2.0	35	11	-	41	-		
4	Master reset pulse	Figure 8	2.7	25	9	-	30	-	ns	
t _W	width HIGH	rigule 8	3.0 to 3.6	20	8 ²	-	24	-	115	
			4.5 to 5.5	15	7 ³	-	18	-		
			1.2	_	10	-	_	-		
			2.0	22	5	-	26	-		
t _{rem}	Removal time MR to CP	Figure 8	2.7	16	4	T -	19	-	ns	
			3.0 to 3.6	13	3 ²	_	15	_		
		<u> </u>	4.5 to 5.5	10	2 ³	-	12	-		
			2.0	14	60	_	12	_		
f _{max}	Maximum clock	Figure 7	2.7	19	76	-	16	-	MHz	
'max	pulse frequency	rigule /	3.0 to 3.6	24	942	-	20	-	MHz	
			4.5 to 5.5	36	112 ³	-	30	-		

NOTES:

^{1.} Unless otherwise stated, all typical values are at T_{amb} = 25°C.

^{2.} Typical value measured at V_{CC} = 3.3V.

^{3.} Typical value measured at $V_{CC} = 5.0V$.

12-stage binary ripple counter

74LV4040

AC WAVEFORMS

 V_M = 1.5V at $V_{CC} \ge 2.7V \le 3.6V$ V_M = 0.5V * V_{CC} at $V_{CC} < 2.7V$ and $\ge 4.5V$

 $\rm V_{OL}^{}$ and $\rm V_{OH}^{}$ are the typical output voltage drop that occur with the output load.

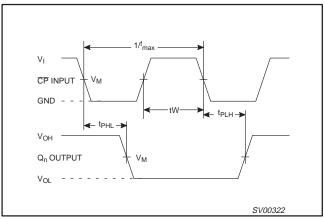


Figure 7. Clock ($\overline{\text{CP}}$) to output (\mathbf{Q}_{n}) propagation delays, the clock pulse width and the maximum clock pulse frequency

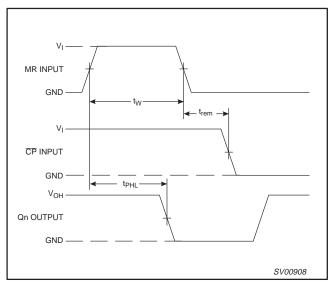
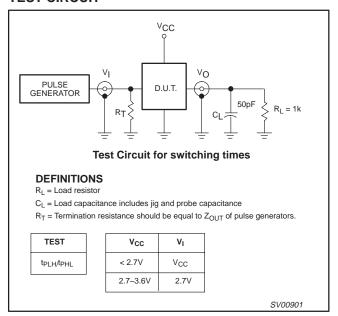
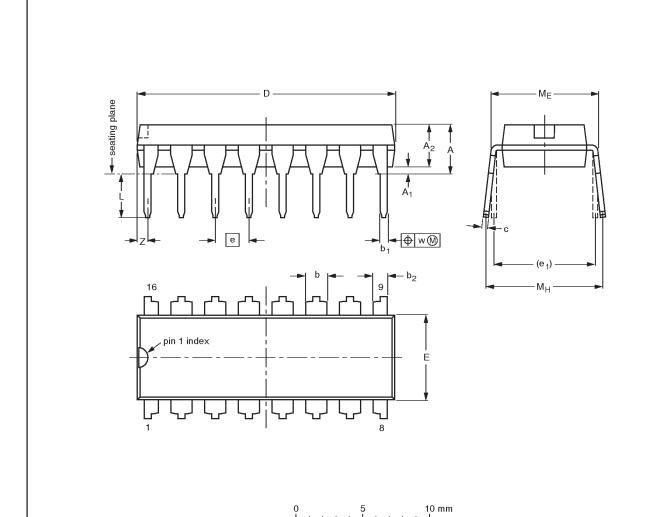


Figure 8. Master reset (MR) pulse width, the master reset to output (Q_n) propagation delays and the master reset to clock (\overline{CP}) removal time

TEST CIRCUIT




Figure 9.Load circuitry for switching times

12-stage binary ripple counter

74LV4040

DIP16: plastic dual in-line package; 16 leads (300 mil)

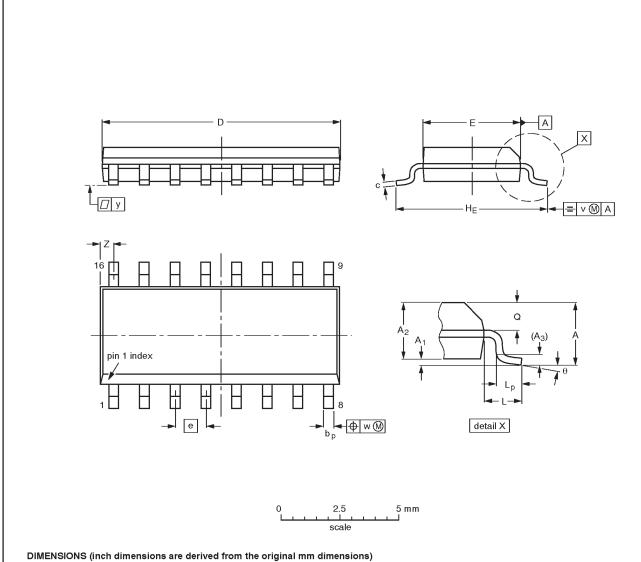
SOT38-4

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	b ₂	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	1.25 0.85	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	0.76
inches	0.17	0.020	0.13	0.068 0.051	0.021 0.015	0.049 0.033	0.014 0.009	0.77 0.73	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.030

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE REFERENCES VERSION JEC JEDEC FIA I	EUROPEAN	ISSUE DATE				
VERSION	IEC JEDEC		EIAJ	PROJECTION	1330E DATE	
SOT38-4				□ •	92-11-17 95-01-14	

12-stage binary ripple counter

74LV4040

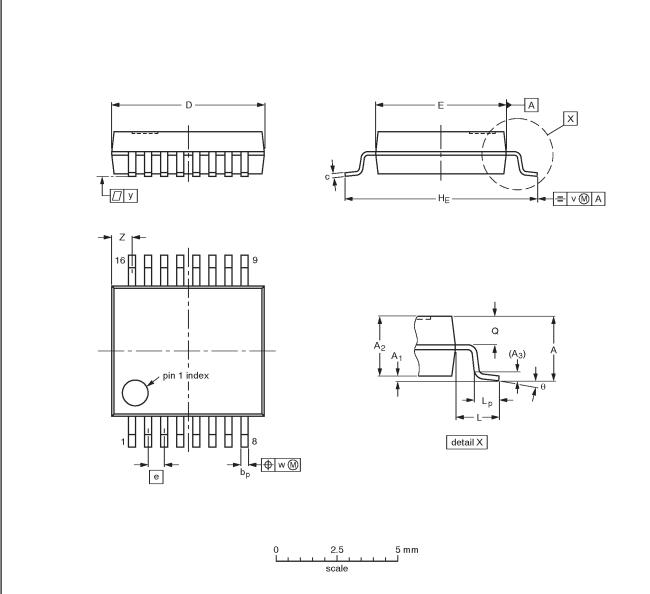
SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

UNIT	A max.	Α1	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	٦	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	10.0 9.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.0098 0.0039		0.01	l	0.0098 0.0075	0.39 0.38	0.16 0.15	0.050	0.24 0.23	0.041	0.039 0.016	0.028 0.020	0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.


OUTLINE	OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE	
	VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE	
	SOT109-1	076E07\$	MS-012AC			91-08-13 95-01-23	

12-stage binary ripple counter

74LV4040

SSOP16: plastic shrink small outline package; 16 leads; body width 5.3 mm

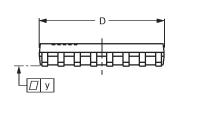
SOT338-1

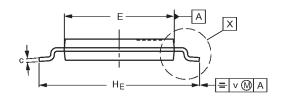
DIMENSIONS (mm are the original dimensions)

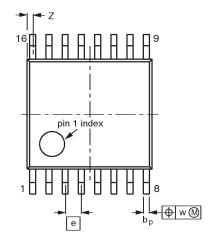
UNIT	A max.	A ₁	A ₂	A ₃	рb	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2.0	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.00 0.55	8° 0°

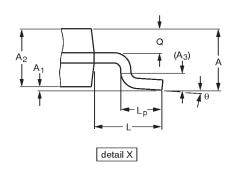
Note

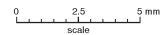
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT338-1		MO-150AC			94-01-14 95-02-04


12-stage binary ripple counter


74LV4040


TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm


SOT403-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	Α1	A ₂	A ₃	bр	c	D ⁽¹⁾	E ⁽²⁾	Φ	HE	L	Lp	ø	v	w	у	Z ⁽¹⁾	θ
mm	1.10	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1.0	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.40 0.06	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT403-1		MO-153			-94-07-12 95-04-04

12-stage binary ripple counter

74LV4040

NOTES

12-stage binary ripple counter

74LV4040

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

^[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Date of release: 05-96

Document order number: 9397-750-04458

Let's make things better.

Philips Semiconductors

