TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

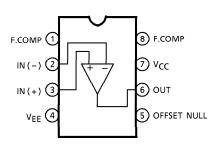
TA75060P

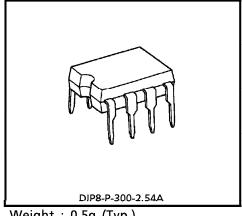
SINGLE OPERATIONAL AMPLIFIER

The TA75060P is a J-FET input low-power operational amplifier with low input bias and offset current, fast slew rate. The TA75060P is pin compatible with the TA7506P. The TA75060P is an excellent choice for active filters, integrators, buffers and sample-and-hold circuits.

FEATURES

Low Supply Current : 250μA MAX. Low Input Bias Current : 400pA MAX. Low Input Offset Current : 200pA MAX.

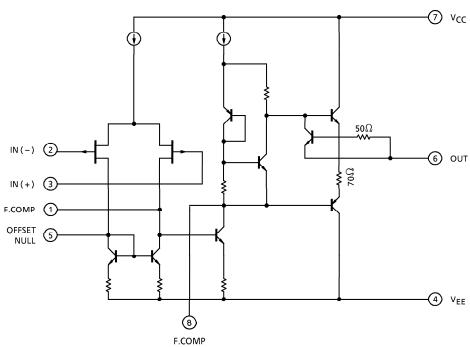

High Slew Rate : $3.5V / \mu s (A_V = 1)$


Wide Supply Voltage Range : $\pm 2 \sim \pm 18V$

Output Short Circuit Protection

Offset Null Capability

PIN CONNECTION (TOP VIEW)


Weight: 0.5g (Typ.)

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions
- operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

 The products described in this document are subject to foreign exchange and foreign trade control laws.

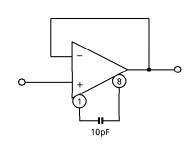
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

EQUIVALENT CIRCUIT

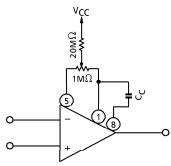
MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	V _C C	18	V
Supply Voltage	VEE	– 18	V
Differential Input Voltage	DVIN	± 30	V
Input Voltage	VIN	± 15	V
Power Dissipation	PD	500	mW
Operating Temperature	T _{opr}	- 40∼85	°C
Storage Temperature	T _{stg}	- 55∼125	°C

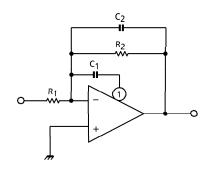
ELECTRICAL CHARACTERISTICS ($V_{CC} = 15V$, $V_{EE} = -15V$, Ta = 25°C)


	, ,,						
CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	МАХ.	UNIT
Input Offset Voltage	V _{IO}	_	$R_g \le 10 k\Omega$	_	3	15	mV
TC Of Input Offset Voltage	TCV _{IO}	_	_	_	10	_	μ V / °C
Input Offset Current	lο	_	_	_	5	200	pА
Input Bias Current	lj .	_	_	_	30	400	pА
Common Mode Input Voltage	CMVIN	_	_	± 11.5	± 12	_	V
Maximum Output Voltage	Vом	_	$R_L = 10k\Omega$	20	27	_	V _{p-p}
Voltage Gain (Open Loop)	GV	_	$V_{OUT} = \pm 10V$, $R_L = 10k\Omega$	3	6	_	V/mV
Unity Gain Cross Frequency	fT	_	Open Loop, $R_L = 10k\Omega$	_	1	_	MHz
Input Resistance	R _{IN}	_	_	_	10 ¹²	_	Ω
Common Mode Input Signal Rejection Ratio	CMRR	_	$R_g \le 10 k\Omega$	70	76	_	dB
Supply Voltage Rejection Ratio	SVRR		$R_g \le 10 k\Omega$	70	76		dB
Supply Current	ICC, IEE	_	Non load		200	250	μA

OPERATING CHARACTERISTICS ($V_{CC} = 15V$, $V_{EE} = -15V$, Ta = 25°C)

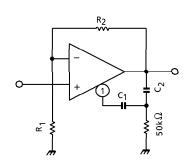

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Slew Rate	SR	_	$V_{IN} = 10V_{p-p}, R_L = 10k\Omega,$ $C_L = 100pF, A_V = 1$	-	3.5	_	V / μ s
Equivalent Input Noise Voltage	V _{NI}	_	$R_S = 100\Omega$, $f = 1kHz$		42	_	nV ⁄√Hz

TYPICAL APPLICATION


(1) UNITY-GAIN BUFFER

(2) OFFSET NULL CIRCUIT

(3) FEED FORWARD COMPENSATION

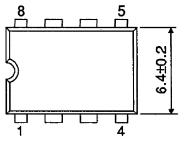


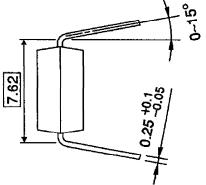
$$C_1 = 500pF$$

$$C_2 = \frac{1}{2\pi f_0 R_2}$$

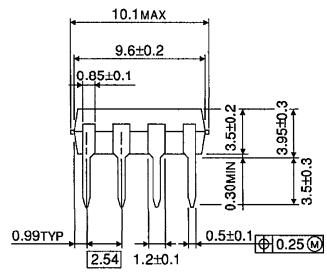
$$f_0 \approx 1MHz$$

(4) TOW POLE COMPENSATION




$$C_1 > \frac{R_1}{R_1 + R_2} C_S$$

 $C_S = 10pF$
 $C_2 = 10C_1$


OUTLINE DRAWING

Unit: mm

DIP8-P-300-2.54A

Weight: 0.5g (Typ.)