Optical disc ICs

Preservo amplifiers for CD players BA6376K

The BA6376K is a preservo amplifier that generates RF, focus error and tracking error signals from the signals output by voltage output optical pickups. Using this IC in combination with ROHM's DSP can significantly reduce the number of attached components for CD player servos and signal processing circuits.

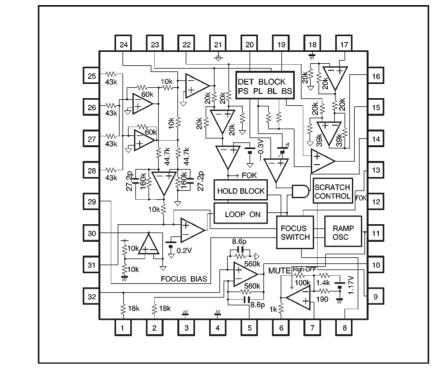
ApplicationsCD players

Features

- 1) Internal focus search sequence, for better playability.
- 2) Internal disk defect detector.
- 3) Internal auto asymmetry circuit.

- 4) Internal APC circuit.
- 5) Internal focus protection against disk defects.

•Absolute maximum ratings (Ta = 25° C)


Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	9	V
Power dissipation	Pd	400*	mW
Operating temperature	Topr	-25~+75	Ĵ
Storage temperature	Tstg	-55~+125	C

* Reduced by 4.0 mW for each increase in Ta of 1 $^\circ C$ over 25 $^\circ C.$

•Recommended operating conditions (Ta = 25° C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	3.1	3.4	3.8	V

Block diagram

Pin descriptions

Pin No.	Pin name	Function
1	E	E input
2	F	F input
3	AGND	Analog ground
4	DGND	Digital ground
5	FI	Feedback for adjusting F gain
6	LD	APC amplifier output
7	PD	APC amplifier input
8	R/H	Attach capacitor for ramp wave/loop-off
9	SC	Attach resistor for scratch depth adjustment
10	TE	Tracking error output
11	FON	Focus-on control
12	FOK	Focus-OK comparator output
13	FE	Focus error output 1
14	DEFECT	Defect signal output
15	MIRR	Mirror signal output
16	EFM	EFM signal output

Pin No.	Pin name	Function
17	ASY	Auto asymmetry control input
18	DETGND	Detector ground
19	BLH	Attach bottom-long capacitor
20	PLH	Attach peak-long capacitor
21	VCC	Power supply
22	RFI	Re-input of RF output capacitor coupling
23	RFO	RF summing amplifier output
24	RF-	Input of RF summing amplifier feedback
25	А	A input
26	В	B input
27	D	D input
28	С	C input
29	FEB	Input of focus error bias
30	VB	Bias amplifier output
31	FE'	Focus error output 2
32	EI	Feedback for E gain adjustment

Optical disc ICs

•Electrical characteristics (unless otherwise noted, $Ta = 25^{\circ}C$, Vcc = 3.4V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Quiescent current	la	5.0	9.0	13.0	mA	_	
$\langle Bias \ amplifier angle$							
Bias voltage	Vв	1.57	1.70	1.83	V	-	
Maximum output (H)	Іон	5.0	_	_	mA	Maximum bias differential = 200 mV	
Maximum output (L)	lol	5.0	_	-	mA	Maximum bias differential = 200 mV	
<pre></pre>							
Output voltage, offset	VOFRF	-80	_	120	mV	-	
Voltage gain	Grf	20.5	23.5	26.5	dB	V7=1.5V,SG4=30mV _{P-P} , 1kHz	
Maximum output amplitude (H)	VOHRF	1.35	1.50	_	v	Simultaneous input of AC and BD	
Maximum output amplitude (L)	Volrf	_	-0.6	-0.3	V	V8=V _B ±3V	
<pre> </pre> <pre> </pre>		1		1	1	1	
Output voltage, offset	Voffe	-100	-	100	mV	_	
Voltage gain (AC)	GFEAC	23	26	29	dB	SG4=30mV _{P-P} , 1kHz	
Voltage gain (BD)	GFEBD	23	26	29	dB	SG4=30mV _{P-P} , 1kHz	
Voltage gain differential	ΔGFE	-3	0	3	dB	_	
Maximum output amplitude (H)	VOHTE	1.35	1.50	-	v	Separate measurement of inputs AC and BI	
Maximum output amplitude (L)	VOLTE	_	-1.50	-1.35	v	$V8 = V_B \pm 0.2V$	
(TE amplifier)				1			
Output voltage, offset	VOFTE	-80	_	80	mV	_	
Voltage gain (E)	GTEE	27	30	33	dB	SG1=30mV _{P-P} , 1kHz	
Voltage gain (F)	GTEF	27	30	33	dB	SG1=30mV _{P-P} , 1kHz	
Voltage gain differential	ΔGTE	-3	0	3	dB	_	
Maximum output amplitude (H)	VOHTE	1.35	1.50	_	v	Separate measurement of inputs E and F	
Maximum output amplitude (L)	Volte	_	-1.50	-1.35	v	$V1 = V_B \pm 0.3V$	
(FOK comparator)				1	1	1	
Threshold voltage	VTHFK	0.2	0.3	0.4	v	Pin 22 input	
Output high level voltage	Vohek	2.8	_	_	v	V6=V _B -0.4V	
Output low level voltage	Volfk	_	_	0.6	V	V6=V _B -0.2V	
Maximum operating frequency	Fмxfk	45	_	_	kHz	_	
(Asymmetrical amplifier)							
Output voltage, offset	Vofas	-60	_	60	mV	_	
Voltage gain (1)	Gias	3	6	9	dB	Pin 22 input, 80mVP-P, 1kHz	
Voltage gain (2)	G2AS	8.5	11.5	14.5	dB	Pin 17 input, 80mVP-P, 1kHz	
Maximum output amplitude (H)	Vohas	0.70	0.90	_	V	• • •	
Maximum output amplitude (L)	Volas	_	-1.4	-1.0	v	_ Pin 22 or 17 input V6=V₅±1.0	
(APC amplifier)						1	
Output voltage (1)	V01AP	2.5	3.0	_	v	Pin 7 input 180 mV	
Output voltage (2)	VOIAP		0.9	1.5	v	Pin 7 input 120 mV	
Maximum output amplitude (H)	VOLAP	2.7	3.0	_	v	Pin 7 input 220 mV	
	VOLAP		0.0	2.2	v	Pin 7 input 0V with 0.8mA flowing through Pin 6	

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
(Mirror detector)						
Output high level voltage	VOHMR	3.0	_	-	V	_
Output low level voltage	VOLMR	_	-	0.5	V	_
Minimum operating frequency	FMNMB	_	_	600	Hz	—
Maximum operating frequency	Fмхмв	30	_	_	kHz	—
Minimum input voltage	VMNMR	_	_	0.2	V _{P-P}	_
Maximum input voltage	VMXMR	1.2	_	-	V _{P-P}	_
(Defect detector)						
Output high level voltage	VOHDF	3.0	-	-	V	_
Output low level voltage	Voldf	_	_	0.5	V	—
Minimum operating frequency	FMNDF	_	_	1	kHz	—
Maximum operating frequency	FMXDF	2	-	-	kHz	_
Minimum input voltage	VMNDF	-	-	0.5	VP-P	-
Maximum input voltage	VMXDF	1.2	-	-	V _{P-P}	_
Pin 9 voltage	V9	0.95	1.20	1.45	V	_
<pre></pre>						
Capacitance charging current	ISIRA	-2.10	-1.60	-1.10	μA	—
Capacitance discharging current	ISORA	10.0	15.0	20.0	μA	_
High level limit voltage	VLHRA	0.10	0.24	0.38	V	_
Low level limit voltage	Vllra	-0.38	-0.24	-0.10	V	_
〈FON pin〉						
Inrush current	IIFON	10.0	15.0	20.0	μA	_
Input threshold voltage	VTHFO	1.30	1.65	2.00	V	_
〈Loop on〉						
Loop off delay time	t OFLO	4.0	6.5	9.0	msec	_

 $\boldsymbol{*}$ When FON is LOW, pin 8 voltage is VB.

* The ramp wave begins at the bottom.

* The loop will not turn ON when the ramp wave is at the bottom.

* Pin 8 is charged rapidly when the loop turns ON.

Measurement circuit

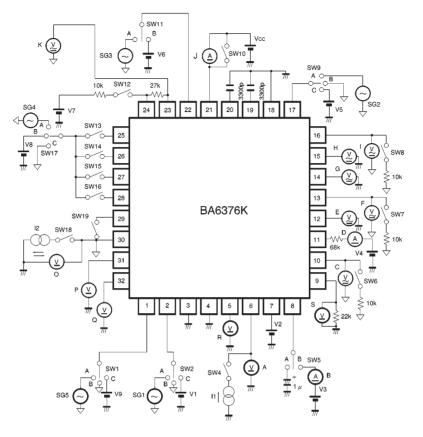
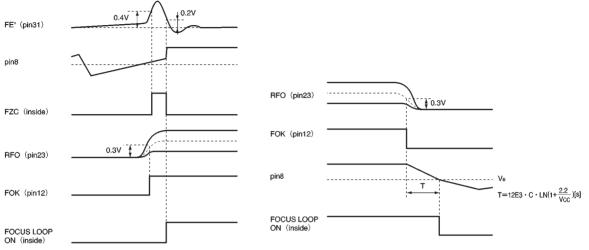


Fig. 1



Circuit operation

Focus search sequence operations

When the loop turns on

The focus loop turns on when the fall of FEC is detected while FOK is at the HIGH level.

When the loop turns off

The focus loop turns off after the elapse of a delay (T[S],

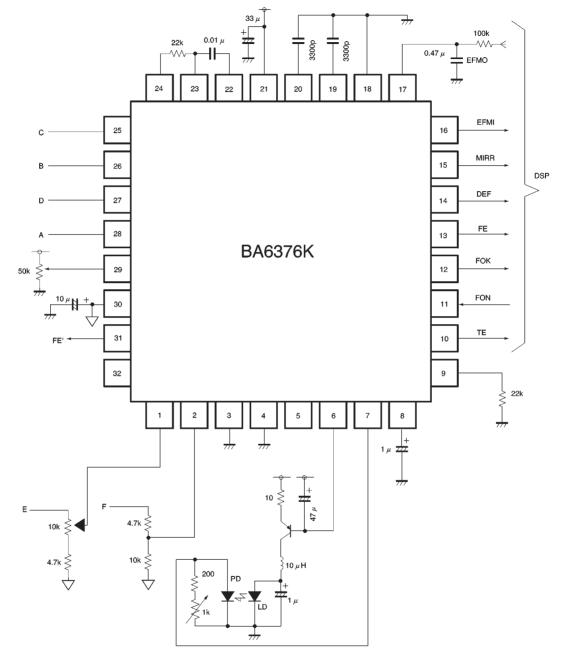

see below) after FOK changes to the LOW state.

Fig. 3

Application example

Note : Attach a resistor (at least 10 k Ω) between pins 23 and 24.

Fig. 4

Electrical characteristic curves

400

50 S 180 Тз OUTPUT VOLTAGE 10 (MA) (dB) GAIN (deg) 90 Vcc=3.4V SUPPLY CURRENT : IQ 8 AMP GAIN : GRF 66 AMP PHASE: £ 6 PHASE 4 ·100 200 300 0 100 냺 脸 INPUT VOLTAGE (mV) 2 -50 L 100k 180 1M 10M n 2 3 4 5 FREQUENCY : f (Hz) POWER SUPPLY VOLTAGE : Vcc (V) Fig. 7 Radio frequency amplifier Fig. 5 Radio frequency amplifier Fig. 6 Power suppy voltage vs. I/O characteristics frequency characteristics suppy current (AC or BD input) S 3 DUTPUT VOLTAGE (V) UTPUT VOLTAGE 2 2 Vcc=3.4V Vcc=3.4V Vcc=3.4V Vcc=3.4V -150 -100 50 100 150 INPUT VOLTAGE (mV) -50

0

-2

-3

characteristics

Fig. 9 TE amplifier I/O

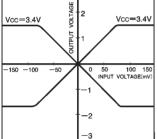
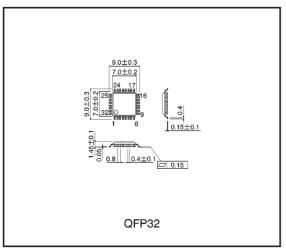



Fig. 8 FE amplifier I/O characteristics

