HVC135

Silicon Epitaxial Trench Pin Diode for Antenna Switching

HITACHI

ADE-208-818A (Z) Rev 1
Feb. 2000

Features

- Adopting the trench structure improves low capacitance. $(\mathrm{C}=0.6 \mathrm{pF}$ max)
- Low forward resistance. (rf=2.0 Ω max)
- Low operation current.
- Ultra small Flat Package (UFP) is suitable for surface mount design and stable rf characteristics in high frequency.

Ordering Information

Type No.	Laser Mark	Package Code
HVC135	P5	UFP

Outline

1. Cathode
2. Anode

Absolute Maximum Ratings $\left(\mathbf{T a}=25^{\circ} \mathrm{C}\right)$

Item	Symbol	Value	Unit
Peak reverse voltage	$\mathrm{V}_{\text {RM }}$	65	V
Reverse voltage	V_{R}	60	V
Forward current	I_{F}	100	mA
Power dissipation	P_{d}	150	mW
Junction temperature	Tj	125	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$

Electrical Characteristics $\left(\mathbf{T a}=25^{\circ} \mathrm{C}\right)$

Item	Symbol	Min	Typ	Max	Unit	Test Condition
Reverse current	I_{R}	-	-	0.1	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{R}}=60 \mathrm{~V}$
Forward voltage	V_{F}	-	-	0.9	V	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
Capacitance	C	-	-	0.6	pF	$\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
Forward resistance	r_{f}	-	-	2.0	Ω	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}, \mathrm{f}=100 \mathrm{MHz}$
ESD-Capability ${ }^{+1}$	-	100	-	-	V	$\mathrm{C}=200 \mathrm{pF}$, Both forward and reverse direction 1 pulse.

Notes 1. Failure criterion ; $I_{R}>100 n A$ at $V_{R}=60 \mathrm{~V}$

Main Characteristic

Fig. 1 Forward current Vs. Forward voltage

Fig. 3 Capacitance Vs. Reverse voltage

Fig. 2 Reverse current Vs. Reverse voltage

Fig. 4 Forward resistance Vs. Forward current

Main Characteristic

Forward voltage VF (V)
Fig. 5 Forward resistance (parallel) Vs. Forward voltage

Package Dimensions

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HITACHI

Hitachi, Ltd.

Semiconductor \& Integrated Circuits
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL NorthAmerica : http:semiconductor.hitachi.com/
Europe : http://www.hitachi-eu.com/hel/ecg
Asia (Singapore)
Asia (Taiwan)
Asia (HongKong)
Japan : http://www.hitachi.co.jp/Sicd/index.htm

For further information write to:

Hitachi Semiconductor
America) Inc.
179 East Tasman Drive, San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223

Hitachi Europe GmbH
Electronic components Group Dornacher Stra§e 3
D-85622 Feldkirchen, Munich Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9293000
Hitachi Europe Ltd
Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322

Hitachi Asia Pte. Ltd.
16 Collyer Quay \#20-00
Hitachi Tower
Singapore 049318
Tel: 535-2100
Fax: 535-1533
Hitachi Asia Ltd.
Taipei Branch Office
3F, Hung Kuo Building. No.167,
Tun-Hwa North Road, Taipei (105)
Tel: <886> (2) 2718-3666
Fax: <886> (2) 2718-8180

Copyright ' Hitachi, Ltd., 2000. All rights reserved. Printed in Japan.

