Protection of Lithium-Ion Batteries (for Double-Protect)

Monolithic IC MM1451

Outline

This IC is used for double-protection of lithium-ion batteries with from one to three cells, and has an ultracompact package. Short-circuits between cells accommodate series connections of one to three cells.

Features

1. Consumption current (Vcell=3.8V)

2. Consumption current (Vcell=2.3V)

3. Overcharge detection voltage accuracy (-20°C to 70°C)

4. Pin I/O current between cells (Vcell=3.8V)

5. Delay time on overcharge voltage detection (Ct=0.22µF)

6. Output current (Vcell=Vcc=4.5 V)

3μA typ.

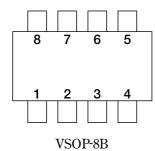
0.3µA typ.

±50 mV/cell.

0.3μA max.

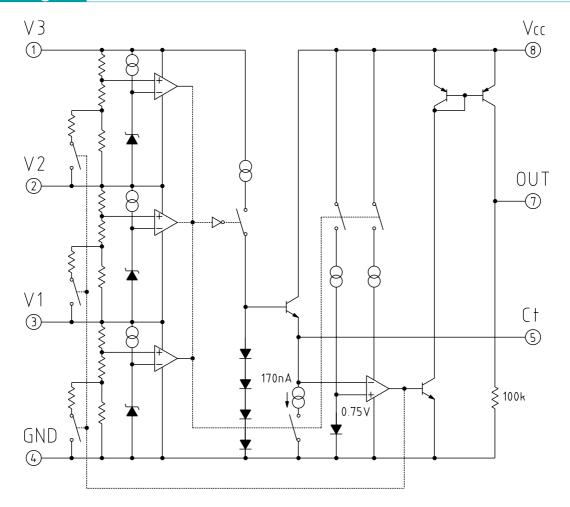
1.5S typ.

500µA typ.


Package

VSOP-8B

Applications


IC for double-protection of lithium-ion batteries with one to three cells.

Pin Assignment

1	V3
2	V2
3	V1
4	GND
5	Ct
6	N.C
7	OUT
8	Vcc

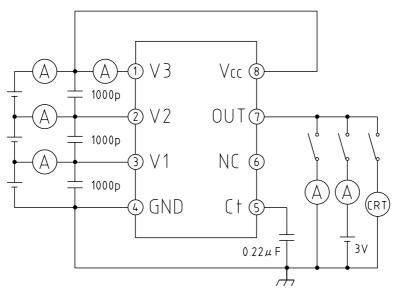
Block Diagram

Pin Description

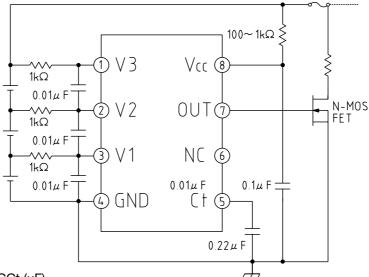
Pin No.	Pin name	Functions	Equivalent circuit diagram
1	V3	3-cell power supply	
2	V2	2-cell power supply	3
3	V1	1-cell power supply	3
5	Ct	Delay capacity pin	5 50kΩ 150nA
7	OUT	OUT pin	0.75V ₹100k

Absolute Maximun Ratings (Ta=25°C)

Item	Symbol	Ratings	Unit	
Operating temparature	Topr	-20~+80	°C	
Storage temparature	Tstg	-40~+125	°C	
Vcc Input voltage	Vcc			
V1 Input voltage *1	V1	-0.3~18	V	
V2 Input voltage *1	V2	-0.5~16	v	
V3 Input voltage *1	V3			
Ct pin voltage *2	VcT	-0.3~18	V	
Vоит pin voltage	Vout	-0.3~18	V	
Allowable loss	Pd	170	mW	

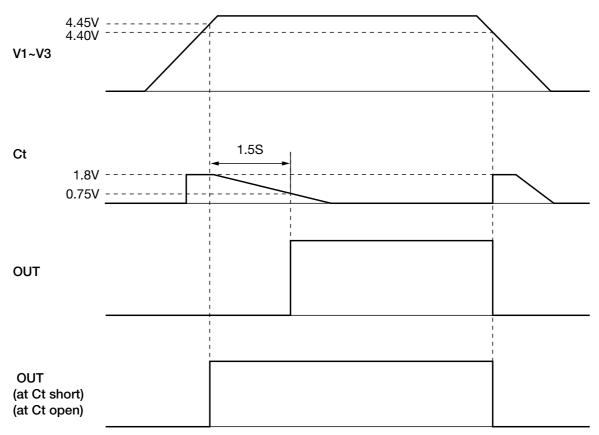

Note 1: *1 18V \ge V3 \ge V2 \ge V1 \ge -0.3

Note 2: *2 Do not impress current of $300\mu A$ or more on the Ct pin.


Electrical Characteristics (Except where noted otherwise, Ta=25°C, Vcel=V3-V2=V2-V1=V1-GND, Vcc=3×Vcel)

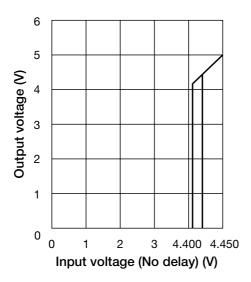
Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
Current consumption 1	I 1	$V_{CEL}=3.8V$, $V_{CC}=V_{CEL}\times 3$		2.5	3.5	μA
Current consumption 2	I_2	$V_{CEL}=3.8V, V_{CC}=V_{CEL}\times 3$		1.5	2.5	μA
Current consumption 3	Із	$V_{\text{CEL}}=2.3V$, $V_{\text{CC}}=V_{\text{CEL}}\times 3$		0.15	0.3	μA
Current consumption 4	I_4	$V_{\text{CEL}}=2.3V$, $V_{\text{CC}}=V_{\text{CEL}}\times 3$		0.1	0.2	μA
Pin I/O current between cells	Із	Vcel=3.8V (between V3, V2, V1)		±0.0	±0.3	μA
Overcharge detection voltage	Vs	Vcel=L→H Ta=-20~+70°C	4.400	4.450	4.500	V
Hysterisis voltage	Hys	$V_{CEL}=L \rightarrow H \rightarrow L$	35	50	65	mV
Overcharge detection delay time	Трін	Ct=0.22μF	1.0	1.5	2.0	s
Output current	Іон	Vcel=Vcc=4.6V Vo=3V	100	500		μA
Output leakage current	ILEAK	Vcel=3.8V, Vcc=18V			0.1	μA

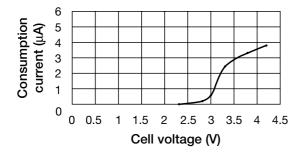
Measuring Circuit


Application Circuit

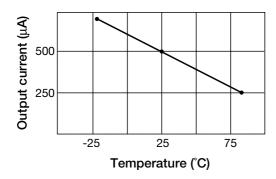
Delay time $Td(S) = 7 \times CCt (\mu F)$

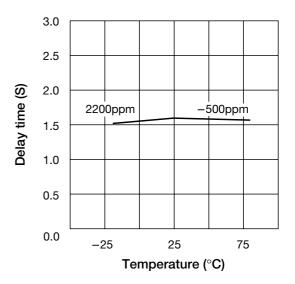
- Note 1: Can support 1, 2 or 3 cells by shorting each cell. However, be sure to connect a battery for V3 cell. V3 cell may not operate correctly when shorted.
- Note 2: When connecting batteries, be sure to connect in the following order: $GND \rightarrow V3$, and $Vcc \rightarrow V1OR$
- Note 3: Output may go ON momentarily when starting up power supply. If this error output during startup becomes a problem, connect the Vcc pin last.
- Note 4: Operation can not be guaranteed for connections other than the above.
- Note 5: The input resistance for each cell should be $1k\Omega$ or lower. Also, please select the appropriate value for the external capacitor according to the usage environment.

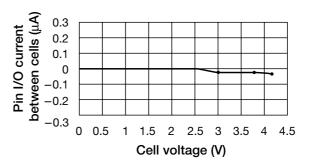

Timing Chart


Note: Output goes high simultaneously with overcharge detection at Ct pin short and open.

Characteristics


Detection voltage


Consumption current


Output current

Output delay time

■ Pin I/O current between cells

