DESGRIPTION

The LX1995 is a small sized step-up supply current $<70 \mu \mathrm{~A}$ (typical) and a boost converter available in a Tiny TSOT-5 package suitable for driving adjustable boost topologies, which include drivers for white or color LEDs in portable devices. The LX1995 switches at rates up to 2 MHz to allow the use of extremely small inductor and filter capacitor. The LX1995 is available in two versions, 1 and 2, capable of driving 6 or 10 white LEDs, respectively.

Designed for maximum efficiency over a wide output power range, the LX1995 is ideal for displays with day and night usage. The LX1995 features a pseudo-hysteretic pulse frequency modulation that promotes improved performance in battery-operated systems by operating with a quiescent
shutdown current of less than $1 \mu \mathrm{~A}$.
The input voltage range is from 1.6 V to 5.5 V thus allowing for a broad selection of battery voltage applications and start-up is guaranteed at 1.6 V input.

The output current is readily programmed using one external current sense resistor in series with the LEDs. This configuration provides a feedback signal to the FB pin thus maintaining constant output current regardless of varying input voltage and LED forward voltage (VF). Dimming may be accomplished by PWM modulating the shutdown input; the fast response time and stability of the PFM modulation circuit allows PWM dimming to low duty cycles.

The LX1995 is available in the 5-Pin TSOT and thus requires a very small PCB area.

KEY FEATURES

- Tiny 5-Pin TSOT Package
- Smallest External Components
- Efficient even at low current levels
- Logic Controlled Shutdown
- < $1 \mu \mathrm{~A}$ Shutdown Current
- >85\% Maximum Efficiency
- 70رA Typical Quiescent Supply Current

APPLICATIONS

- Pagers
- Wireless Phones
- PDAs
- Handheld Computers
- LED Driver
- Digital Camera Displays
- GPS Receivers

IMPORTANT: For the most current data, consult MICROSEMP's website: http://www.microsemi.com

Note: Available in Tape \& Reel.
Append the letter "T" to the part number. (i.e. LX1995-CSGT)

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, the following specifications apply over the operating ambient ${ }^{1}$ temperature $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ except where otherwise noted and the following test conditions: $\mathrm{V}_{\mathbb{I N}}=3 \mathrm{~V}, \mathrm{~V}_{\overline{\mathrm{SHDN}}}=\mathrm{V}_{\mathbb{I N}}$. Unless where indicated, these parameters apply to both the LX1995-1 and LX1995-2 part versions.

Parameter	Symbol	Test Conditions	LX1995			Units
			Min	Typ	Max	
Operating Voltage	VIN		1.6		5.5	V
Minimum Start-up Voltage	$\mathrm{V}_{\text {SU }}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			1.6	V
Start-up Voltage Temperature Coefficient	kvst	Guaranteed; not tested		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Quiescent Current	lQ	Not switching		70	100	$\mu \mathrm{A}$
		$\mathrm{V}_{\overline{\text { SHDN }}}<0.4 \mathrm{~V}$		0.2	0.5	
FB Threshold Voltage	$\mathrm{V}_{\mathrm{FB} \text { (TH) }}$		288	320	352	mV
FB Input Bias Current	$\mathrm{I}_{\text {FB }}$	Not Switching, $\mathrm{V}_{\mathrm{FB}}=400 \mathrm{mV}$	-10		10	nA
Shutdown Input Bias Current	$1 \overline{\text { SHDN }}$	$\mathrm{V}_{\overline{\text { SHDN }}}=0 \mathrm{~V}$	-100		100	nA
Shutdown Low Input Voltage	$\mathrm{V}_{\overline{\text { SHDN }}}$				0.6	V
Shutdown High Input Voltage			1.4			
Switch Peak Current	Ipeak	L= 47 $\mu \mathrm{H} ; \mathrm{LX1995-1}$	250	325	400	mA
Switch Peak Current	Ipeak	$\mathrm{L}=47 \mu \mathrm{H} ; \mathrm{LX1995-2}$	400	500	600	mA
Minimum Switch Off-Time	toff	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{FB}}<\mathrm{V}_{\mathrm{FB}(\mathrm{TH})}$		300		ns
Switch Pin Leakage Current	l LEAK	$\mathrm{V}_{\mathrm{SW}}=28 \mathrm{~V}$		0.23		$\mu \mathrm{A}$

Note:

1. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.
2. Functionality over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range is assured by design, characterization, and correlation.

Miniature LED Driver

Figure 1 - Simplified Block Diagram

APPLIGATION GIRGUITS

Figure 2 - Typical Bust Mode Dimming LED Driver Application

APPLICATION CIRCUITS

Figure 3 - Analog Voltage Dimming LED Driver Application

Figure 4 - PWM to Analog Voltage Dimming LED Driver Application

The component values shown are only examples for a working system. Actual values will vary greatly depending on desired parameters, efficiency, and layout constraints.

Figure 5 - Binary Dimming LED Driver Application
The component values shown are only examples for a working system. Actual values will vary greatly depending on desired parameters, efficiency, and layout constraints

THEORY OF OPERATION

Operating Theory

The LX1995 is a PFM boost converter that is optimized for driving a string of series connected LEDs. It operates in a pseudo-hysteretic mode with a fixed switch "off time" of 300ns. Converter switching is enabled as LED current decreases causing the voltage at the FB pin to decrease to a value less than 320 mV ; this causes the feedback comparator (See Simplified Block Diagram) to activate the control logic. The control logic activates the DRV output circuit that connects to the gate of the internal N-Channel MOSFET. The switch output (SW) is switched "on" (and remains "on") until the inductor current ramps up to the peak current level (typically 325mA for LX1995-1).

The LED load is powered from energy stored in the output capacitor during the inductor charging cycle. Once the peak inductor current value is achieved, the output is turned off (off-time is typically 300 ns) allowing a portion of the energy stored in the inductor to be delivered to the load. This causes the voltage to rise across the current setting resistor $\left(\mathrm{R}_{1}\right)$ at the input to the feedback circuit. The LX1995 continues to switch until the voltage at the FB pin exceeds 320 mV . The value of R_{1} is established by dividing 320 mV by the maximum series LED current. A minimum value of 3.3Ω is recommended for $\mathrm{R}_{\text {SET }}$. The voltage at the FB pin is the product of the LED current ($\mathrm{I}_{\mathrm{LED}}$) and R_{1}.

$$
\begin{equation*}
\mathrm{R}_{1}=\frac{320 \mathrm{mV}}{\mathrm{I}_{\mathrm{LED}(\mathrm{MAX})}} \tag{eq. 1}
\end{equation*}
$$

Dimming Methods

The designer can select one of two possible dimming methods. The first option is to connect a PWM logic signal to the SHDN pin (See Figure 1). This turns the LX1995 on and off which pulses the LED current between zero and the setting determined by R_{1}; the human eye averages the pulsed current if the PWM frequency is greater than 60 Hz . This option may not be ideal as short wavelength LEDs become less efficient when the forward current is pulsed.

The second option is to apply a varying DC voltage to a voltage divider at the FB pin such that as the DC voltage increases, the LED current decreases. The equation (see Figure 3) is:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{LED}}=\frac{1}{\mathrm{R}_{1}}\left[320 \mathrm{mV} \cdot\left(\frac{\mathrm{R}_{2}+\mathrm{R}_{3}}{\mathrm{R}_{3}}\right)-\mathrm{V}_{\mathrm{ADJ}} \cdot\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{3}}\right)\right] \tag{eq. 2}
\end{equation*}
$$

Inductor Selection and Output Current Limit Programming

The designer is encouraged to use inductors (for LX1995-1) that will not saturate at the peak inductor current level of 400 mA . Larger inductor values will extend the power range of the converter slightly by increasing the average inductor current. Smaller inductor values will reduce output voltage ripple and are smaller in size. A range of 10 uH to 47 uH is recommended.

OUTPUT RIPPLE AND CAPACITOR SELECTION

Output voltage ripple is a function of the inductor value (L), output capacitor value ($\mathrm{C}_{\text {OUT }}$), peak switch current ($\mathrm{I}_{\text {PEAK }}$), load current ($\mathrm{I}_{\text {OUT }}$), input voltage ($\mathrm{V}_{\text {IN }}$) and the output voltage ($\mathrm{V}_{\text {OUT }}$). When the switch is first turned on, the peak-to-peak voltage ripple is a function of the output droop (as the inductor current charges to $\mathrm{I}_{\text {PEAK }}$), the feedback transition error (i.e., typically 10 mV), and the output overshoot (when the stored energy in the inductor is delivered to the load at the end of the charging cycle). Therefore the total ripple voltage is:

$$
\begin{equation*}
V_{\text {RIPPLE }}=\Delta \mathrm{V}_{\text {DROOP }}+\Delta \mathrm{V}_{\text {OVERSHOOT }}+10 \mathrm{mV} \tag{eq. 3}
\end{equation*}
$$

The initial droop can be estimated as follows where the 0.5 V value in the denominator is an estimate of the voltage drop across the inductor and the FET RDS_ON:

$$
\begin{equation*}
\Delta \mathrm{V}_{\text {DROOP }}=\frac{\left(\frac{\mathrm{L}}{\mathrm{C}_{\mathrm{OUT}}}\right) \cdot\left(\mathrm{I}_{\mathrm{PK}} \times \mathrm{I}_{\mathrm{LED}}\right)}{\mathrm{V}_{\mathrm{IN}}-0.5} \tag{eq. 4}
\end{equation*}
$$

The output overshoot can be estimated as follows where the 0.5 value in the denominator is an estimate of the voltage drop across the diode:

$$
\begin{equation*}
\Delta \mathrm{V}_{\text {OVERSHOOT }}=\frac{\frac{1}{2} \cdot\left(\frac{\mathrm{~L}}{\mathrm{C}_{\mathrm{OUT}}}\right) \cdot\left(\mathrm{I}_{\text {PK }}-\mathrm{I}_{\mathrm{LED}}\right)^{2}}{\mathrm{~V}_{\text {OUT }}-\mathrm{V}_{\mathrm{IN}}+0.5} \tag{eq. 5}
\end{equation*}
$$

Once the output voltage ripple is determined for the selected components, the output capacitor can then be adjusted to meet the target ripple voltage requirements.

Since the LX1995 is targeted for LED driver applications, output voltage ripple is not a critical application requirement.

LX1995-2 EFFICIENGY

SE \quad 5-Pin Small Outline Package (SOT-23)

Dim	MiLLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	0.90	1.30	0.035	0.051
A1	0.90	1.45	0.035	0.057
B	0.25	0.50	0.010	0.020
C	0.09	0.20	0.004	0.008
D	2.80	3.10	0.110	0.122
E	1.50	1.75	0.059	0.069
F	0.95 BSC		0.038 BSC	
G	1.90 BSC		0.075 BSC	
H	2.60	3.00	0.102	0.118
I	0.35	0.55	0.014	0.022
J	0.00	0.15	0.000	0.006
K		AX		AX

Note: Dimensions do not include mold flash or protrusions; these shall not exceed $0.155 \mathrm{~mm}(.006$ ") on any side. Lead dimension shall not include solder coverage.

NOTES

PRODUCTION DATA - Information contained in this document is proprietary to Microsemi and is current as of publication date. This document may not be modified in any way without the express written consent of Microsemi. Product processing does not necessarily include testing of all parameters. Microsemi reserves the right to change the configuration and performance of the product and to discontinue product at any time.

