Low-Noise Synchronous PWM Step-Down

 DC/DC Converter
FEATURES

- 95\% Efficiency or up
- 800mA Guaranteed Output Current.
- Adjustable Output Voltage from 0.75 V to VIN of a range from +2.5 V to 6.5 V .
- Very Low Quiescent Current: $35 \mu \mathrm{~A}$ (Typ.).
- Fixed- 500 KHz or Adjustable Frequency Synchronous PWM Operation.
- Synchronizable external Switching Frequency up to 1 MHz .
- Accurate Reference: 0.75 V ($\pm 2 \%$).
- 100\% Duty Cycle in Dropout.
- Low Profile 8-Pin MSOP Package.

APPLICATIONS

- PDAs.
- Digital Still Cameras.
- Handy-Terminals.
- Cellular Phones.
- CPU I/O Supplies.
- Cordless Phones.
- Notebook Chipset Supplies.
- Battery-Operated Devices (4 NiMH/ NiCd or 1 Li-ion Cells).

DESCRIPTION

The AIC1550 is a low-noise pulse-widthmodulated (PWM) DC-DC step-down converter. It powers logic circuits in PDAs and small wireless systems such as cellular phones, handy-terminals.

The device features an internal synchronous rectifier for high conversion efficiency. Excellent noise characteristics and fixed-frequency operation provide easy post-filtering. The AIC1550 is ideally suited for Li-ion battery applications. It is also suitable for +3 V or +5 V fixed input applications. The device can operate in either one of the following four modes.
(1) Forced PWM mode operates at a fixed frequency regardless of the load.
(2) Synchronizable PWM mode allows the synchronization by using an external switching frequency with a minimum harmonics.
(3) PWM/PFM Mode extends battery life by switching to a PFM pulseskipping mode under light loads.
(4) Shutdown mode sets device to standby, reducing supply current to $0.1 \mu \mathrm{~A}$ or under.

The AIC1550 can deliver over 800 mA output current. The output voltage can be adjusted from 0.75 V to VIN ranging from +2.5 V to +6.5 V . Other features of the AIC1550 include low quiescent current, low dropout voltage, and a 0.75 V reference of $\pm 2 \%$ accuracy. It is available in a space-saving 8-pin MSOP package.

TYPICAL APPLICATION CIRCUIT

C_{IN} : TAIYO YUDEN LMK316F226ZL-T Ceramic capacitor
C_{01} : TAIYO YUDEN LMK316F226ZL-T Ceramic capacitor
L1: TDK SLF6025-6R8M1R3
D1: GS SS12 * Note: Efficiency can boost 2% to 4% if D1 is connected.

ORDERING INFORMATION

AIC1550XXXX

TR: TAPE \& REEL
TB: TUBE
PACKAGING TYPE O:MSOP8

C: Commercial Degree
P: Lead Free

Example: AIC1550COTR
\rightarrow In MSOP Package \& Taping \&
Reel Packing Type
AIC1550POTR
\rightarrow In MSOP Lead Free Package \& Taping \& Reel Packing Type

- ABSOLUTE MAXIMUM RATINGS

VIN, BP, SHDN, SYNC/MODE, RT to GND -0.3 to +7 V
BP to VIN -0.3 to 0.3 V
LX to GND $-0.3 \sim\left(\mathrm{~V}_{\mathrm{IN}}+0.3 \mathrm{~V}\right)$
FB to GND $-0.3 \sim\left(V_{B P}+0.3 V\right)$
Operating Temperature Range $-40^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$
Junction Temperatrue $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C} \sim 150^{\circ} \mathrm{C}$
Lead Temperature (Soldering. 10 sec) $260^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which the life of a device may be Impaired.

TEST CIRCUIT

Refer to Typical Application Circuit.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\text {IN }}=+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, SYNC/MODE =GND, $\overline{\mathrm{SHDN}}=\mathrm{IN}$, unless otherwise specified.) (Note1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Voltage Range	$\mathrm{V}_{\text {IN }}$			2.5		6.5	V
Output Adjustment Range	VOUT			$\mathrm{V}_{\text {REF }}$		VIN	V
Feedback Voltage	$V_{\text {FB }}$			0.735	0.75	0.765	V
Line Regulation		Duty Cycle $=100 \%$ to 23\%			+1		\%
Load Regulation		lout $=0$ to 800 mA			-1.3		\%
FB Input Current	$\mathrm{I}_{\text {FB }}$	$\mathrm{V}_{\mathrm{FB}}=1.4 \mathrm{~V}$,		-50	0.01	50	nA
P-Channel On-Resistance	PRDS(ON)	$\mathrm{llx}=100 \mathrm{~mA}$	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$		0.32	0.65	Ω
			$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$		0.38		
N-Channel On-Resistance	NRDS(ON)	l LX $=100 \mathrm{~mA}$	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$		0.32	0.65	Ω
			$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$		0.38		
P-Channel Current-Limit Threshold		(Note 2)		1	1.5	2.1	A
Quiescent Current		$\begin{aligned} & \text { SYNC/MODE }=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{FB}}=1.4 \mathrm{~V}, \mathrm{LX} \text { unconnected } \end{aligned}$			35	70	$\mu \mathrm{A}$
Shutdown Supply Current		$\overline{\text { SHDN }}=\mathrm{LX}=$ GND, includes LX leakage current			0.1	1	$\mu \mathrm{A}$
LX Leakage Current		$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{LX}}=0$ or 5.5 V		-20	0.1	20	$\mu \mathrm{A}$
Oscillator Frequency	fosc			400	500	600	KHz
SYNC Capture Range				500		1000	KHz
Maximum Duty Cycle	duty $_{\text {max }}$			100			\%
Undervoltage Lockout Threshold	UVLO	$V_{\text {IN }}$ rising, typ 85 mV	hysteresis is	1.9	2.0	2.1	V
Logic Input High	$\mathrm{V}_{\text {IH }}$	$\overline{\text { SHDN }}$, SYNC	OODE, LIM	2			V
Logic Input Low	$\mathrm{V}_{\text {IL }}$	$\overline{\text { SHDN }}$, SYNC	MODE, LIM			0.4	V
Logic Input Current		SHDN , SYNC	IODE, LIM	-1	0.1	1	$\mu \mathrm{A}$
SYNC/MODE Minimum Pulse Width		High or low		500			nS

Note 1: Specifications are production tested at $\mathrm{TA}=25^{\circ} \mathrm{C}$. Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating temperature range are assured by design, characterization and correlation with Statistical Quality Controls (SQC).
Note 2: Maximum specification is guaranteed by design, not production tested.

TYPICAL PERFORMANCE CHARACTERISTICS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{SYNC} / \mathrm{MODE}=\mathrm{GND}$, with Schottky diode D1, unless otherwise noted.)

Fig. 1 Load Current vs. Efficiency (Vout=1.2V) (Refer to typical application circuit)

Fig. 3 Load Current vs. Efficiency (VOUT=1.8V) (Refer to typical application circuit)

Fig. 5 Load Current vs. Efficiency (Vout=3.0V)
(Refer to typical application circuit)

Fig. 2 Load Current vs. Efficiency (Vout=1.5V) (Refer to typical application circuit)

- -

Fig. 4 Load Current vs. Efficiency (Vout=2.5V) (Refer to typical application circuit)

Fig. 6 Load Current vs. Efficiency (Vout=3.3V)
(Refer to typical application circuit)

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Fig. 7 Load Current vs. Efficiency (W/ or W/O Schottky Diode)

Fig. 9 Oscillator Frequency vs. Temperature

Fig. 11 RDSON vs. Supply Voltage

Fig. 8 Reference Voltage vs. Temperature

Fig. 10 Frequency vs. Input Voltage

Fig. 12 Output Voltage vs. Load Current

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Fig. 13 DC Supply Current vs. Supply Voltage

Fig. 15 Operation Frequency vs. Tuning Resistor

Fig. 17 Load Transient Response

Fig. 14 Efficiency vs. Load current

Fig. 16 Start-up from Shutdown, $\mathrm{R}_{\mathrm{LOAD}}=3 \Omega$

Fig. 18 Load Transient Response

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Fig. 19 Line Transient Response

Fig. 21 Switching Waveform

Fig. 20 Short Circuits Protection

Fig. 22 Output Ripple voltage

BLOCK DIAGRAM

PIN DESCRIPTIONS

PIN 1: VIN- Supply Voltage Input ranging from +2.5 V to +6.5 V . Bypass with a $22 \mu \mathrm{~F}$ capacitor.
PIN 2: BP- Supply Bypass Pin internally connecting to VIN. Bypass with a $0.1 \mu \mathrm{~F}$ capacitor.
PIN 3: $\overline{\text { SHDN }}$ - Active-Low, Shutdown-Control Input reducing supply current to $0.1 \mu \mathrm{~A}$ in shutdown mode.
PIN 4: FB- Feedback Input.
PIN 5: RT- Frequency Adjustable Pin connecting to GND through a resistor to increase frequency. (Refer to Fig. 15)

PIN 6: SYNC/MODE-
Oscillator Sync and Low-Noise, Mode-Control Input.
SYNC/MODE $=$ VIN (Forced PWM Mode)
SYNC/MODE = GND (PWM/PFM Mode)
An external clock signal connecting to this pin allows LX switching synchronization.
PIN 7: GND- Ground.

PIN 8: LX- Inductor connecting to the Drains of the Internal Power MOSFETs

APPLICATION INFORMATIONS

Introduction

AIC1550 is a low-noise, pulse-width-modulated (PWM), DC-DC step-down converter. It features an internal synchronous rectifier, which eliminates external Schottky diode. AIC1550 is suitable for Li-lon battery applications, or can be used at 3 V or 5 V fixed input voltage. It operates in one of following four modes.
(1) Forced PWM mode operates at a fixed frequency regardless of the load.
(2) Synchronizable PWM mode allows the synchronization by using an external switching frequency with a minimum harmonics.
(3) PWM/PFM Mode extends battery life by switching to a PFM pulseskipping mode under light loads.
(4) Shutdown mode sets device to standby, reducing supply current to $0.1 \mu \mathrm{~A}$ or under.

Continuous output current of AIC1550 can be upward to 800 mA and output voltage can be adjusted from 0.75 V to VIN with an input range from 2.5 V to 6.5 V by a voltage divider. AIC1550 also features high efficiency, low dropout voltage, and a 0.75 V reference with $\pm 2 \%$ accuracy. It is available in a space-saving 8-pin MSOP package.

Operation

When power on, control logic block detects SYNC/MODE pin connecting to VIN or GND to determine operation function and gives a signal to PWM/PFM control block to determine the proper comparator (ref. Block Diagram). AIC1550 works with an internal synchronous rectifier - Q3, to

100\% Duty Cycle Operation

When the input voltage approaches the output voltage, the converter continuously turns Q2 on. In this mode, the output voltage is equal to the input voltage minus the voltage, which is the drop across Q2.

If input voltage is very close to output voltage, the switching mode goes from pure PWM mode to 100% duty cycle operation. During this transient state mentioned above, large output ripple voltage will appear on output terminal.

Components Selection

Inductor

The inductor selection depends on the operating frequency of AIC1550. The internal switching frequency is 500 KHz , and the external synchronized frequency ranges from 500 KHz to 1 MHz . A higher frequency allows the uses of smaller inductor and capacitor values. But, higher frequency results lower efficiency due to the internal switching loss.
The ripple current $\Delta \mathrm{I}_{\mathrm{L}}$ interrelates with the inductor value. A lower inductor value gets a higher ripple current. Besides, a higher V_{IN} or Vout can also get the same result. The inductor value can be calculated as the following formula.

$$
\begin{equation*}
\mathrm{L}=\frac{1}{(\mathrm{f})\left(\Delta \mathrm{I}_{\mathrm{L}}\right)} \mathrm{V}_{\text {OUT }}\left(1-\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right) \tag{1}
\end{equation*}
$$

Users can define the acceptable Δl_{L} to gain a suitable inductor value.
Since AIC1550 can be used in ceramic capacitor application, the component selection will be different from the one for the application above. AIC1550 has a built-in slope compensation, which acitvates when duty cycle is larger than 0.45 . The slope $\mathrm{Ma}, 0.27 \mathrm{~V} / \mu \mathrm{s}$, has to be larger than half of M 2 . M2 is equal to output voltage divided by L1. The formula of inductor is shown as below:

$$
\begin{equation*}
\mathrm{L} 1>\frac{\mathrm{V}_{\mathrm{OUT}}}{2 \times \mathrm{Ma}}=\frac{\mathrm{V}_{\mathrm{OUT}}}{2 \times 0.27} \tag{2}
\end{equation*}
$$

Note that output voltage can be defined according to user's requirement to get a suitable inductor value.

Output Capacitor

The selection of output capacitor depends on the suitable ripple voltage. Lower ripple voltage corresponds to lower ESR (Equivalent Series Resistor) of output capacitor. Typically, once the ESR is satisfied with the ripple voltage, the value of capacitor is adequate for filtering. The formula of ripple voltage is as below:

$$
\begin{equation*}
\Delta \mathrm{V}_{\text {OUT }}=\Delta \mathrm{I}_{\mathrm{L}}\left(\mathrm{ESR}+\frac{1}{8 \mathrm{fC}} \mathrm{OUT}^{\text {OT }}\right) \tag{3}
\end{equation*}
$$

Besides, in buck converter architecture frequency stands at $1 / \sqrt{ }$ (LC) when a double pole formed by the inductor and output capcitor occurs. This will reduce phase margin of circuit so that the stability gets weakened. Therefore, a feedforward capacitor that is parallel with R1 can be added to reduce output ripple voltage and increase circuit stability. The output capacitor can be calculated as the following formula.

$$
\begin{equation*}
\frac{1}{\sqrt{\mathrm{~L} 1 \times \mathrm{C}_{\mathrm{O}}}} \cong \frac{1}{\mathrm{R} 1 \times \mathrm{CF}} \tag{4}
\end{equation*}
$$

For more reduction in the ripple voltage, a 12 pF ceramic capacitor, which is parallel with output capacitor, is used.

External Schottky Diode

AIC1550 has an internal synchronous rectifier, instead of Schottky diode in buck converter. However, a blank time, which is an interval when both of main switch, Q2, and synchronous rectifier, Q3, are off; occurs at each switching cycle. At the moment, AIC1550 has a decreasing efficiency. Therefore, an external Schottky diode is needed to reinforce the efficiency.

Since the diode conducts during the off time, the peak current and voltage of converter is not allowed to exceed the diode ratings. The ratings of diode can be calculated by the following formulas:

$$
\begin{align*}
\mathrm{V}_{\mathrm{D}, \mathrm{MAX}(\mathrm{OFF})} & =\mathrm{V}_{\mathrm{IN}} \tag{5}\\
\mathrm{I}_{\mathrm{D}, \mathrm{MAX}(\mathrm{ON})} & =\mathrm{I}_{\mathrm{OUT}, \mathrm{MAX}}+\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2} \tag{6}\\
\mathrm{I}_{\mathrm{D}, \mathrm{AVG}(\mathrm{ON})} & =\mathrm{I}_{\mathrm{OUT}}-\mathrm{I}_{\mathrm{IN}}=\mathrm{I}_{\mathrm{OUT}}-\mathrm{D} \times \mathrm{I}_{\mathrm{OUT}} \\
& =(1-\mathrm{D}) \times \mathrm{I}_{\mathrm{OUT}} \tag{7}
\end{align*}
$$

Adjustable Output Voltage

AIC1550 appears a 0.75 V reference voltage at FB pin. Output voltage, ranging from 0.75 V to V_{IN}, can be set by connecting two external resistors, R1 and R2. Vout can be calculated as:

$$
\begin{equation*}
\mathrm{V}_{\text {OUT }}=0.75 \mathrm{~V} \times\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right) \tag{8}
\end{equation*}
$$

Applying a 12 pF capacitor parallel with R1 can prevent stray pickup. They should sit as close to AIC1550 as possible. But load transient response is degraded by this capacitor.

Layout Consideration

To ensure a proper operation of AIC1550, the following points should be given attention to:

1. Input capacitor and Vin should be placed as close as possible to each other to reduce the input ripple voltage.
2. The output loop, which is consisted of inductor, Schottky diode and output capacitor, should be kept as small as possible.
3. The routes with large current should be kept short and wide.
4. Logically the large current on the converter, when AIC1550 is on or off, should flow at the same direction.
5. The FB pin should connect to feedback resistors directly. And the route should be away from the noise source, such as inductor of LX line.
6. Grounding all components at the same point may effectively reduce the occurrence of loop. A stability ground plane is very important for gaining higher efficiency. When a ground plane is cut apart, it may cause disturbed signal and noise. If possible, two or three through-holes can ensure the stability of grounding. Fig. 24 to 27 show the layout diagrams of AIC1550.

Example

Here are two examples to prove the components selector guide above.

1. Tantalum capacitors application:

Assume AIC1550 is used for mobile phone application, which uses 1-cell Li-ion battery with 2.7 V to 4.2 V input voltage for power source. The required load current is 800 mA , and the output voltage is 1.8 V . Substituting $\mathrm{V}_{\mathrm{OUT}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=4.2 \mathrm{~V}$, $\Delta I=250 \mathrm{~mA}$, and $\mathrm{f}=500 \mathrm{KHz}$ to equation (1)

$$
\mathrm{L}=\frac{1.8 \mathrm{~V}}{500 \mathrm{KHz} \times 250 \mathrm{~mA}}\left(1-\frac{1.8 \mathrm{~V}}{4.2 \mathrm{~V}}\right)=8.23 \mu \mathrm{H}
$$

Therefore, $10 \mu \mathrm{H}$ is proper for the inductor. And the inductor of series number SLF6025-100M1R0 from TDK with $57.3 \mathrm{~m} \Omega$ series resistor is recommended for the best efficiency.

For output capacitor, the ESR is more important than its capacity. Assuming ripple voltage $\Delta V=100 \mathrm{mV}$, then the ESR can be calculated as:

$$
\mathrm{ESR}=\frac{\Delta \mathrm{V}}{\Delta \mathrm{l}}=\frac{100 \mathrm{mV}}{250 \mathrm{~mA}}=0.4 \Omega
$$

Therefore, a $33 \mu \mathrm{H} / 10 \mathrm{~V}$ capacitor, MCM series from NIPPON, is recommend.

Schottky selection is calculated as following.
$\mathrm{V}_{\mathrm{D}, \mathrm{MAX}(\mathrm{OFF})}=\mathrm{V}_{\mathrm{IN}}=4.2 \mathrm{~V}$

$$
\begin{aligned}
\mathrm{I}_{\mathrm{D}, \mathrm{MAX}(\mathrm{ON})} & =\mathrm{I}_{\mathrm{OUT}, \mathrm{MAX}}+\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2} \\
& =800 \mathrm{~mA}+\frac{250 \mathrm{~mA}}{2} \\
& =925 \mathrm{~mA} \\
\mathrm{I}_{\mathrm{D}, \mathrm{avg}(\mathrm{ON})}= & (1-\mathrm{D}) \times \mathrm{I}_{\mathrm{OUT}} \\
& =\left(1-\frac{1.8}{4.2}\right) \times 800 \mathrm{~mA} \\
& =457.14 \mathrm{~mA}
\end{aligned}
$$

According the datas above, the Schottky diode, SS12, from GS is recommend.
For feedback resistors, choose R2=390k Ω and R1 can be calculated as follow:
$\mathrm{R} 1=\left(\frac{1.8 \mathrm{~V}}{0.75}-1\right) \times 390 \mathrm{k} \Omega=546 \mathrm{k} \Omega$; use $560 \mathrm{k} \Omega$
Fig. 22 shows the application circuit of AIC1550, and Fig. 23 to 26 show the layout diagrams of it.

2. Ceramic capacitors application:

Of the same AIC1550 application above, except for ceramic capacitor used, Co, R1, and R2 can be calculated as following formulas. And the same values of load current and output voltage at 800 mA and 1.8 V respectively are used.
$\mathrm{V}_{\text {OUT }}$ is substituted by 1.8 V in equation (2) as
$L 1>\frac{V_{\text {OUT }}}{0.54}=\frac{1.8}{0.54}=3.33 \mu \mathrm{H}$
Let $\mathrm{L} 1=6.8 \mu \mathrm{H}$, and choose $\mathrm{CF}=12 \mathrm{pF}, \mathrm{R} 1=$ $820 \mathrm{k} \Omega$.

Co calculated by the following formula can improve circuit stability.
$\frac{1}{\sqrt{L 1 \times C_{O}}} \cong \frac{1}{R 1 \times C F}$
Therefore,

$$
\mathrm{C}_{\mathrm{O}}=\frac{(\mathrm{R} 1 \times \mathrm{CF})^{2}}{\mathrm{~L} 1}=\frac{(820 \mathrm{k} \times 12 \mathrm{pF})^{2}}{6.8 \mu}=12 \mu \mathrm{~F}
$$

Say, C_{o} is $22 \mu \mathrm{~F}$. Then, R 2 can be decided by equation (8) as
$\frac{\mathrm{R} 1}{\mathrm{R} 2}=\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {ref }}}-1=\frac{1.8}{0.75}-1=1.4$
So, R2 $=560 \mathrm{k} \Omega$.
Note: Schottky diode, SS12 from GS, is still required in this application.

Fig. 23 AIC1550 Application Circuit (Tantalum capacitor application)

Fig. 24 Top Layer

Fig. 26 Top Over Layer

Fig. 25 Bottom Layer

Fig. 27 Bottom Over Layer

PHYSICAL DIMENSIONS

- MSOP 8 (CO) (PO) (unit: mm)

SYMBOL	MIN	MAX
A	-	1.10
A1	0.05	0.15
A2	0.75	0.95
b	0.25	0.40
c	0.13	0.23
D	2.90	3.10
E	4.90 BSC	
E1	2.90	3.10
e	0.65 BSC	
L	0.40	0.70
θ	0°	6°

Note:

Information provided by AIC is believed to be accurate and reliable. However, we cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AIC product; nor for any infringement of patents or other rights of third parties that may result from its use. We reserve the right to change the circuitry and specifications without notice.

Life Support Policy: AIC does not authorize any AIC product for use in life support devices and/or systems. Life support devices or systems are devices or systems which, (I) are intended for surgical implant into the body or (ii) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

