Preliminary Technical Data

FEATURES

Ultra-Low Noise
$0.95 \mathrm{nV} / \mathrm{rt} \mathrm{Hz}$
2.6pA/rt Hz

Ultra-Low Distortion
$2^{\text {nd }}$ Harmonic
-100dB @ 1MHz
$-92 \mathrm{~dB} @ 10 \mathrm{MHz}$
$3^{\text {rd }}$ Harmonic
-100dB @ 1 MHz
-92dB @ 10MHz
High Speed
$500 \mathrm{MHz},(\mathrm{G}=+2)$
$500 \mathrm{MHz}(\mathrm{G}=+10)$
$1600 \mathrm{~V} / \mathrm{s}(\mathrm{G}=+10)$
External Compensation
Low Power $15 \mathrm{~mA} \mathrm{I}_{\mathrm{s}}$
Offset Voltage 1 mV Max
Wide Supply Voltage Range
5V to 12 V
APPLICATIONS

Pre-amp

Receiver
Instrumentation
IF and Baseband Amplifier
Filters
A-to-D Driver
DAC Buffer

GENERAL DESCRIPTION

The AD8099 is a ultra low noise $(0.95 \mathrm{nV} / \mathrm{vHz})$ and distortion ($92 \mathrm{dBc} @ 10 \mathrm{MHz}$) voltage feedback op-amp. Few op amps have noise or distortion as good as the AD8099, none have the combination making it ideal for 16 and 18 bit systems. Incredibly, this highest performance high-speed op amp uses only 15 mA of supply current and contains a disable pin that lowers the power and puts the amplifier output into high impedance. ADI's proprietary 2nd generation XFCB process enables such high performance amplifiers with relatively low power.

Featuring external compensation the AD8099 allows the user to chose the gain bandwidth product that best suites the application. The AD8099 is externally compensated enabling gains from +2 to +10 with minimal trade-off in bandwidth. The AD8099 also features extremely high slew rate of $1600 \mathrm{~V} / \mathrm{us}$ giving the designer the flexibility to use the entire dynamic range without trading off bandwidth and distortion. The AD8099 is a very well behaved amp that settles to 0.002% in

Rev. A

9/25/03
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

Figure 1.0 SOIC and CSP Pinouts

35 ns and has fast overload recovery of 50 ns .
The AD8099 amplifier offers low power of 15 mA , and is capable of driving 100 ohm loads at break through performance levels. With the wide supply voltage range (5 V to 12 V), low offset voltage (1 mV max), wide bandwidth $(500 \mathrm{MHz}$ for low gains) and a GBWP up to 3 GHz ; the AD8099 is designed to work in a wide variety of applications.

The AD8099 amplifier is available in tiny lead frame chip-scale packaging (LFCSP) with new standard pin out that is specifically optimized for high performance high-speed amplifiers. The new package and pin out enables the breakthrough performance that previously was not achievable with amplifiers.

The AD8099 is also offered in the industry standard package (8-lead SOIC) with the industry standard pin out. The AD8099 is rated to work over the extended industrial temperature range, -40 C to +125 C

TABLE OF CONTENTS

Specifications.. 3
Specifications with ± 5 V Supply .. 3
Specifications with +5 V Supply .. 4
Typical Performance Characteristics .. 5

Design_Tools.. 8
Outline Dimensions ... 8
Ordering Guide... 9

REVISION HISTORY

SPECIFICATIONS

SPECIFICATIONS WITH ± 5 V SUPPLY

Table 1. $V_{s}= \pm 5 \mathrm{~V} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{G}=+2, \mathrm{C}_{\mathrm{C}}=6.8 \mathrm{pF}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ to ground, unless otherwise noted

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE -3 dB Bandwidth Bandwidth for 0.1 dB Flatness Slew Rate Settling Time to 0.1% Overload recovery Input/Output	$\begin{aligned} & \mathrm{G}=+2, \mathrm{~V}_{\mathrm{o}}=0.2 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{G}=+2, \mathrm{~V}_{\mathrm{o}}=2 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{G}=+10, \mathrm{~V}_{\mathrm{o}}=0.2 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{G}=+10, \mathrm{~V}_{\mathrm{o}}=2 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{G}=+2, \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=+2, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V} \text { Step } \\ & \mathrm{G}=+2, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V} \text { Step } \end{aligned}$		500 70 500 70 150 500 12 $50 / 20$		MHz MHz MHz MHz MHz $\mathrm{V} / \mu \mathrm{s}$ ns ns
NOISE/DISTORTION PERFORMANCE $2^{\text {nd }} / 3^{\text {rd }}$ harmonic) $2^{\text {nd }} / 3^{\text {rd }}$ harmonic $2^{\text {nd }} / 3^{\text {rd }}$ harmonic) $2^{\text {nd }} / 3^{\text {rd }}$ harmonic Input Voltage Noise Input Current Noise Differential Gain Error Differential Phase Error	$\begin{aligned} & \mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{o}}=2 \mathrm{~V} p-\mathrm{p} \\ & \mathrm{f}_{\mathrm{C}}=10 \mathrm{MHz}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{Vp}-\mathrm{p} \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \mathrm{f}_{\mathrm{C}}=10 \mathrm{MHz}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{Vp}-\mathrm{p} \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{NTSC}, \mathrm{G}=+2, \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & \text { NTSC, } \mathrm{G}=+2, \mathrm{R}_{\mathrm{L}}=150 \Omega \end{aligned}$		$\begin{aligned} & -100 / 100 \\ & -85 / 87 \\ & -100 / 100 \\ & -92 / 92 \\ & 1 \\ & 2.6 \\ & 0.01 \\ & 0.01 \end{aligned}$		dBc dBc dBc dBc $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{pA} / \sqrt{\mathrm{Hz}}$ \% Degree
DC PERFORMANCE Input Offset Voltage Input Offset Voltage Drift Input Bias Current ${ }^{1}$ Input Offset Current Open-Loop Gain	$T_{\text {min }}-T_{\text {max }}$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ $V_{0}=+/-2.5$		$\begin{aligned} & 0.2 \\ & 3 \\ & 3 \\ & 8 \\ & 86 \end{aligned}$	$\begin{aligned} & 1 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mathrm{~dB} \end{aligned}$
INPUT CHARACTERISTICS Common-Mode Input Impedance Differential Input Impedance Input Common-Mode Voltage Range Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=+/-2.5$		$\begin{aligned} & 1 / 1.8 \\ & 4 / 2.0 \\ & -3.6 \text { to } 3.6 \\ & 90 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{M} \Omega / \mathrm{pF} \\ & \mathrm{M} \Omega / \mathrm{pF} \\ & \mathrm{~V} \\ & \mathrm{~dB} \end{aligned}$
OUTPUT CHARACTERISTICS Output Voltage Swing Short-Circuit Current Capacitive Load Drive	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \mathrm{~V}_{\mathrm{o}}=+/-3.0 \mathrm{~V} \\ & 30 \% \text { Overshoot } \end{aligned}$		$\begin{aligned} & -3.5 \text { to } 3.5 \\ & 100 \\ & 35 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \\ & \mathrm{pF} \end{aligned}$
POWER SUPPLY Operating Range Quiescent Current/Amplifier Power Supply Rejection Ratio	$\mathrm{V}_{s} \pm 1 \mathrm{~V}$	$\begin{aligned} & 5 \\ & 12 \end{aligned}$	$\begin{aligned} & 15 \\ & -80 \end{aligned}$	$\begin{aligned} & 12 \\ & 18 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \\ & \mathrm{~dB} \end{aligned}$

[^0]
SPECIFICATIONS WITH +5 V SUPPLY

Table 2. $\mathrm{V}_{\mathrm{s}}=+5 \mathrm{~V} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{G}=+2, \mathrm{C}_{\mathrm{c}}=6.8 \mathrm{pF}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ to ground, unless otherwise noted

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE -3 dB Bandwidth Bandwidth for 0.1 dB Flatness Slew Rate Settling Time to 0.1\% Overload recovery Input/Output	$\begin{aligned} & \mathrm{G}=+2, \mathrm{~V}_{\mathrm{o}}=0.2 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{G}=+2, \mathrm{~V}_{\mathrm{o}}=2 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{G}=+10, \mathrm{~V}_{0}=0.2 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{G}=+10, \mathrm{~V}_{0}=2 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{G}=+2, \mathrm{~V}_{0}=0.2 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{G}=+2, \mathrm{~V}_{0}=2 \mathrm{~V} \text { Step } \\ & \mathrm{G}=+2, \mathrm{~V}_{0}=2 \mathrm{~V} \text { Step } \end{aligned}$		500 70 500 70 150 500 12 $50 / 20$		MHz MHz MHz MHz MHz V/ $\mu \mathrm{s}$ ns ns
NOISE/DISTORTION PERFORMANCE $2^{\text {nd }} / 3^{\text {rd }}$ harmonic) $2^{\text {nd }} / 3^{\text {rd }}$ harmonic $2^{\text {nd }} / 3^{\text {rd }}$ harmonic) $2^{\text {nd }} / 3^{\text {rd }}$ harmonic Input Voltage Noise Input Current Noise Differential Gain Error Differential Phase Error	$\begin{aligned} & \mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{o}}=2 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{f}_{\mathrm{C}}=10 \mathrm{MHz}, \mathrm{~V}_{\mathrm{o}}=2 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{o}}=2 \mathrm{Vp-p} \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \mathrm{f}_{\mathrm{c}}=10 \mathrm{MHz}, \mathrm{~V}_{\mathrm{o}}=2 \mathrm{Vp}-\mathrm{p} \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \text { NTSC, } \mathrm{G}=+2, \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & \text { NTSC, G }=+2, \mathrm{R}_{\mathrm{L}}=150 \Omega \end{aligned}$		$\begin{aligned} & -100 / 100 \\ & -85 / 87 \\ & -100 / 100 \\ & -92 / 92 \\ & 1 \\ & 2.6 \\ & 0.01 \\ & 0.01 \end{aligned}$		dBc dBc dBc dBc $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{pA} / \sqrt{\mathrm{Hz}}$ \% Degree
DC PERFORMANCE Input Offset Voltage Input Offset Voltage Drift Input Bias Current ${ }^{1}$ Input Offset Current Open-Loop Gain	$\mathrm{T}_{\text {min }}-\mathrm{T}_{\text {max }}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ $V_{0}=+/-2.5$		0.2 3 3 8 86	$\begin{aligned} & 1 \\ & 1.5 \end{aligned}$	mV mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ dB
INPUT CHARACTERISTICS Common-Mode Input Impedance Differential Input Impedance Input Common-Mode Voltage Range Common-Mode Rejection Ratio	$V_{C M}=+/-2.5$		$\begin{aligned} & 1 / 1.8 \\ & 4 / 2.0 \\ & -3.6 \text { to } 3.6 \\ & 90 \end{aligned}$		$\mathrm{M} \Omega / \mathrm{pF}$ $\mathrm{M} \Omega / \mathrm{pF}$ V dB
OUTPUT CHARACTERISTICS Output Voltage Swing Short-Circuit Current Capacitive Load Drive	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \mathrm{~V}_{\mathrm{o}}=+/-3.0 \mathrm{~V} \\ & 30 \% \text { Overshoot } \end{aligned}$		$\begin{aligned} & -3.5 \text { to } 3.5 \\ & 100 \\ & 35 \end{aligned}$		V mA pF
POWER SUPPLY Operating Range Quiescent Current/Amplifier Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{s}} \pm 1 \mathrm{~V}$	$\begin{aligned} & 5 \\ & 12 \end{aligned}$	$\begin{aligned} & 15 \\ & -80 \end{aligned}$	$\begin{aligned} & 12 \\ & 18 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \\ & \mathrm{~dB} \end{aligned}$

${ }^{1}$ Plus (or no sign) indicates current into pin; minus indicates current out of pin.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 2. Small Signal Gains vs. Frequency (SOIC)

Figure 3. Small Signal Gains vs. Frequency (CSP)

Figure 4. Large Signal Gain vs. Various Loads and Supplies SOIC

Figure 5. Large Signal Gain vs. Various Loads and Supplies CSP

Figure 6. Various Large Signal Gains vs. Frequency SOIC

Figure 7 . Input Current Noise vs. Frequency Disable Pin $=+$ Vs

Figure 8. Input Current Noise vs. Frequency, Disable Pin =Open

Figure 9. Output Overdrive (SOIC)

Figure 10. Voltage Noise vs. Frequency

Figure 11. Output Overdrive (CSP)

Figure 12 Small Signal Pulse Response vs. Rload

Figure 23. . 0.1dB Flatness (SOIC)

Figure 14. 0.1 dB Flatness (CSP)

Figure 15. Switching Speed

Figure 16. Input Offset Voltage vs. Output Voltage vs. Open Loop Gain

Figure 17 Input Offset Voltage vs. Output Voltage vs. Open Loop Gain

DESIGN TOOLS AND TECHNICAL SUPPORT

Analog Devices is committed to its customers by providing technical support and online design tools. ADI offers technical
support through free evaluation boards, sample ICs, spice models, interactive evaluation tools, application notes, and phone and email support-all available at www.analog.com

OUTLINE DIMENSIONS

Figure 3.

Figure 4.

ORDERING GUIDE

Model	Minimum Ordering Quantity	Temperature Range	Package Description	Package Option
AD8099AR *	1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 -Lead SOIC	R-8
AD8099AR-REEL*	2,500	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 -Lead SOIC	R-8
AD8099AR-REEL7 $*$	1,000	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 -Lead SOIC	R-8
AD8099CP-R2	250	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 -Lead CSP	$\mathrm{CP}-8$
AD8099CP-REEL	5,000	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 -Lead CSP	$\mathrm{CP}-8$
AD8099CP-REEL7	1,500	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 -Lead CSP	$\mathrm{CP}-8$

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

[^0]: ${ }^{1}$ Plus (or no sign) indicates current into pin; minus indicates current out of pin.

