
Index of /ds/GB/

	Name	Last modif	ied	Size	Description
t	Parent Directory				
Ŀì_	GBPC12.pdf	18-Mar-99	09:38	41K	
<u>[</u>]_	GBPC12005.pdf	22-Dec-99	00:08	41K	
<u>[</u>]_	GBPC1201.pdf	22-Dec-99	00:08	41K	
<u>[</u>]_	GBPC1202.pdf	22-Dec-99	00:08	41K	
<u>[</u>]	GBPC1204.pdf	22-Dec-99	00:08	41K	
<u>[</u>]_	GBPC1206.pdf	22-Dec-99	00:08	41K	
<u>[</u>]_	GBPC1208.pdf	22-Dec-99	00:08	41K	
Ŀì_	GBPC1210.pdf	22-Dec-99	00:08	41K	
<u>[</u>]_	GBPC15.pdf	18-Mar-99	09:38	41K	
<u>[</u>]_	GBPC15005.pdf	22-Dec-99	00:08	41K	
Ŀì_	GBPC1501.pdf	22-Dec-99	00:08	41K	
Ŀì_	GBPC1502.pdf	22-Dec-99	00:08	41K	
<u>[</u>]_	GBPC1504.pdf	22-Dec-99	00:08	41K	
<u>[</u>]	GBPC1506.pdf	22-Dec-99	00:08	41K	
Ľì_	GBPC1508.pdf	22-Dec-99	00:08	41K	
Ľì_	GBPC1510.pdf	22-Dec-99	00:08	41K	
Ľì_	GBPC25.pdf	18-Mar-99	09:38	41K	
Ŀì_	GBPC25005.pdf	22-Dec-99	00:08	41K	
Ŀì_	GBPC2501.pdf	22-Dec-99	00:08	41K	
Ŀì_	GBPC2502.pdf	22-Dec-99	00:08	41K	
<u>[</u>]_	GBPC2504.pdf	22-Dec-99	00:08	41K	
<u>[</u>]_	GBPC2506.pdf	22-Dec-99	00:08	41K	
Lì_	GBPC2508.pdf	22-Dec-99	00:08	41K	

<u> </u>				
<u> </u>	GBPC2510.pdf	22-Dec-99	00:08	41K
Ŀì_	GBPC35.pdf	18-Mar-99	09:38	41K
Ŀ	GBPC35005.pdf	22-Dec-99	00:08	41K
Ē	GBPC3501.pdf	22-Dec-99	00:08	41K
Ē	GBPC3502.pdf	22-Dec-99	00:08	41K
D_	GBPC3504.pdf	22-Dec-99	00:08	41K
\Box	GBPC3506.pdf	22-Dec-99	00:08	41K
\Box	GBPC3508.pdf	22-Dec-99	00:08	41K
\Box	GBPC3510.pdf	22-Dec-99	00:08	41K
\Box	GBU4A.pdf	22-Dec-99	00:08	56K
\Box	GBU4B.pdf	22-Dec-99	00:08	56K
\Box	GBU4D.pdf	22-Dec-99	00:08	56K
D_	GBU4G.pdf	22-Dec-99	00:08	56K
Ē	GBU4J.pdf	22-Dec-99	00:08	56K
Ē	GBU4K.pdf	22-Dec-99	00:08	56K
Ē.	GBU4M.pdf	22-Dec-99	00:08	56K
D_	GBU6A.pdf	22-Dec-99	00:08	54K
D_	GBU6B.pdf	22-Dec-99	00:08	54K
D_	GBU6D.pdf	22-Dec-99	00:08	54K
Ē.	GBU6G.pdf	22-Dec-99	00:08	54K
Ē.	<u>GBU6J.pdf</u>	22-Dec-99	00:08	54K
Ē.	GBU6K.pdf	22-Dec-99	00:08	54K
Ē.	<u>GBU6M.pdf</u>	22-Dec-99	00:08	54K
Ē	GBU8A.pdf	22-Dec-99	00:09	52K
Ēì_	GBU8B.pdf	22-Dec-99	00:09	52K
	GBU8D.pdf	22-Dec-99	00:09	52K
Ēì_	GBU8G.pdf	22-Dec-99	00:09	52K

D)	GBU8J.pdf	22-Dec-99 00:09 52K	
D)	GBU8K.pdf	22-Dec-99 00:09 52K	

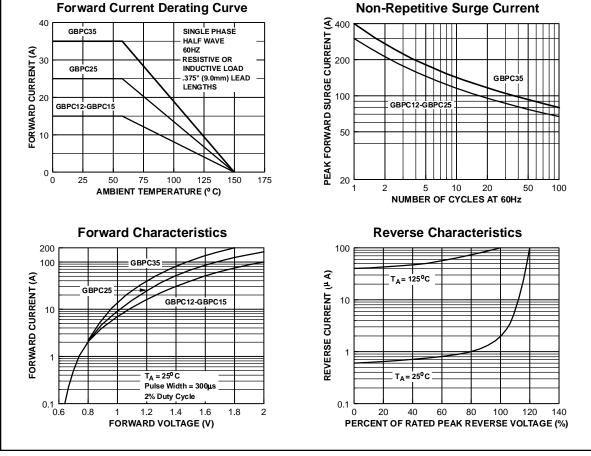
12, 15, 25, 35 Ampere Glass Passivated Bridge Rectifiers

Symbol	Parameter	Value	Units
0	Averag e Rectified Curr en t GBPC12	12	А
	$@T_A = 55^{\circ}C$ GBPCI5	15	А
	GBPC25	25	А
	GBPC35	35	А
f(surge)	Peak F or ward Surge C urrent		
(3-)	8.3 ms single half- sine-wave GBPC12, 15, 25	300	А
	Superimposed on rate d load (JEDEC method GBPC35	400	А
PD	Total D evice Dissipati on	83.3	W
	Derate above 23C	666	mW/⁰C
$R_{\theta JL}$	Ther mal Resistance, J unction to Lead	1.5	°C/W
Tstg	Storag e Temperature Range	-55 to +150	°C
TJ	Operati ng Junction Temperature	-55 to +1	50 °C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Absolute Maximum Ratings*

Glass Passivated Bridge Rectifiers


(continued)

Electrical Characteristics T_A = 25°C unless otherwise noted

Parameter		Device				Device				Units
	005	01	02	04	06	08	10			
Peak Repetitive Reverse Voltage	50	100	200	400	600	800	1000	V		
Maximum RMS Bridge Input Voltage	35	70	140	280	420	560	700	V		
DC Reverse Voltage (Rated V _R)	50	100	200	400	600	800	1000	V		
Maximum Reverse Leakage, total bridge @ rated $V_R T_A = 25^{\circ}C$ $T_A = 125^{\circ}C$				5.0 500				μA μA		
Maximum Forward Voltage Drop, per bridge @ 6.0 A GBPC12 @ 7.5 A GBPC15 @ 12.5 A GBPC25 @ 17.5 A GBPC35				1.1				V		
I ² t rating for fusing GBPC12,15,25 t < 8.3 ms				375 660				A ² Sec A ² Sec		
$\label{eq:VR} \begin{array}{l} \mbox{Typical Junction Capacitance, per leg} \\ V_R = 4.0V, & \mbox{GBPC12,15,25} \\ f = 1.0 \mbox{ MHz} & \mbox{GBPC35} \end{array}$				180 200				pF pF		

GBPC 12, 15, 25, 35 SERIES

Typical Characteristics

GBPC 12, 15, 25, 35 SERIES , Rev. A

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 TinyLogic[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

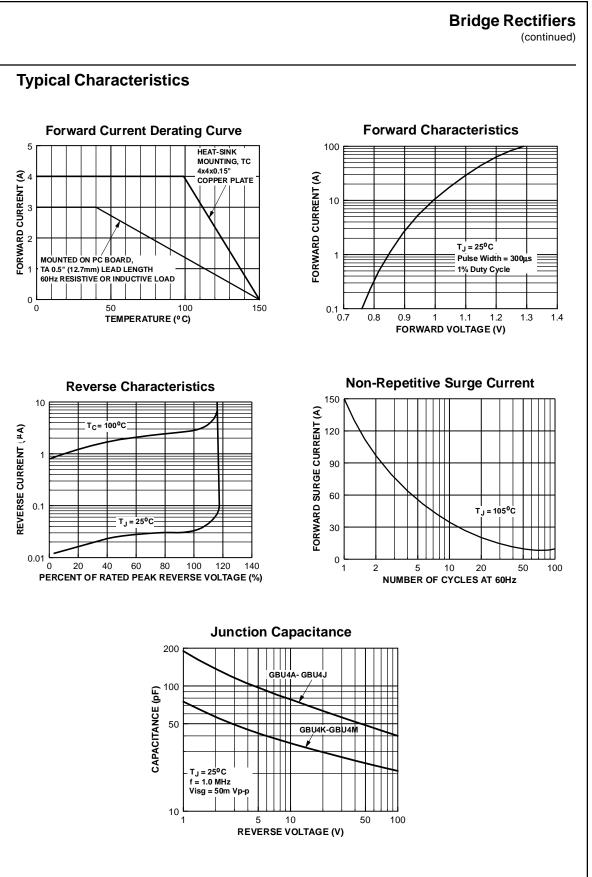
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Discrete POWER & Signal AIRCHILD **Technologies** SEMICONDUCTOR IM **GBU4A - GBU4M** 0.125 X 4 (3.2) Typ 0.020 R Features **4**0.160 0.140 0.740 (18.8) 0.720 (18.3) • Surge overload rating: 150 amperes peak. • Reliable low cost construction utilizing molded plastic technique. $\frac{0.080}{0.060}$ (2.03) 0.060 (1.52) 0.710 (18.0) 0.690 (17.5) • Ideal for printed circuit board. 0.100 (2.54) 0.085 (2.16) GBU 0.080 (2.03 0.050 (1.27)0.040 (1.02)(1.65 0.050 (1.3) Dimensions are in: 4.0 Ampere Bridge Rectifiers inches (mm) 0.210 (5 **Absolute Maximum Ratings*** $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Value	Units
I _O	Average Rectified Current $@ T_A = 100^{\circ}C$ $@ T_A = 40^{\circ}C$	4.0 3.0	A A
İf(surge)	Peak Forward Surge Current 8.3 ms single half-sine-wave Superimposed on rated load (JEDEC method)	150	A
PD	Total Device Dissipation Derate above 25°C	6.9 55	W mW/°C
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient,** per leg	19	°C/W
T _{stg}	Storage Temperature Range	-55 to +150	°C
TJ	Operating Junction Temperature	-55 to +150	°C


*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

** Device mounted on PCB with 0.5 x 0.5" (12 x 12 mm).

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Parameter		Device							
	4A	4B	4D	4G	4J	4K	4M		
Peak Repetitive Reverse Voltage	50	100	200	400	600	800	1000	V	
Maximum RMS Input Voltage		70	140	280	420	560	700	V	
DC Reverse Voltage (Rated V _R)		100	200	400	600	800	1000	V	
Maximum Reverse Leakage, per element @ rated V_R $T_A = 25^{\circ}C$ $T_A = 125^{\circ}C$				5.0 500				μΑ μΑ	
Maximum Forward Voltage Drop, per element @ 4.0 A l^2 t rating for fusing t < 8.35 ms		1.0 93						V A ² Sec	

©1999 Fairchild Semiconductor Corporation

GBU4A - GBU4M

GBU4A-GBU4M, Rev. A

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 TinyLogic[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

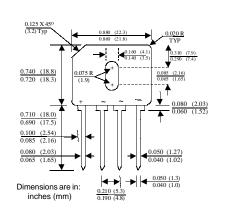
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Discrete POWER & Signal Technologies **GBU6A - GBU6M**


GBU6A - GBU6M

Features

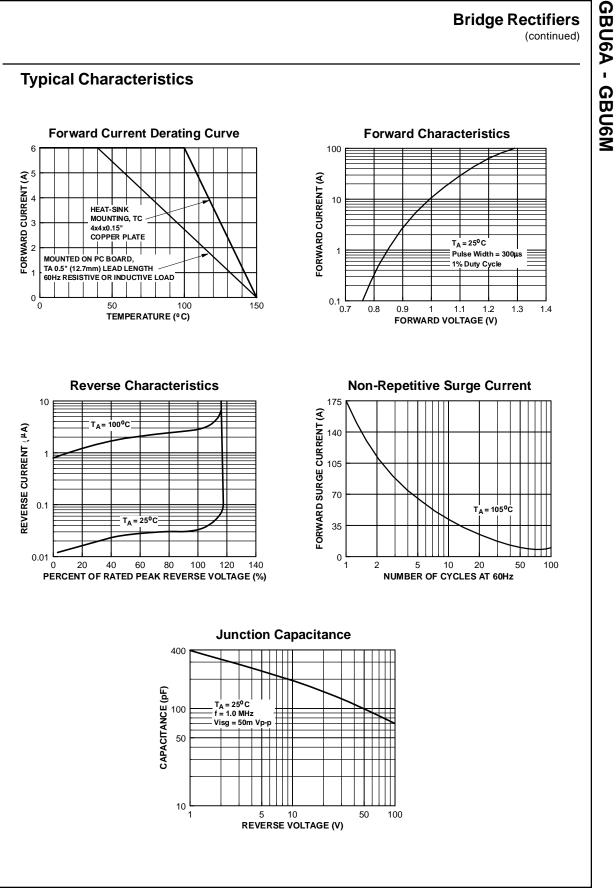
- Surge overload rating: 175 amperes peak.
- Reliable low cost construction utilizing molded plastic technique.
- Ideal for printed circuit board.

6.0 Ampere Bridge Rectifiers

Absolute Maximum Ratings* T_A = 25°C unless otherwise noted

Symbol	Parameter	Value	Units		
lo	Average Rectified Current @ $T_A = 100^{\circ}C$	6.0	А		
İf(surge)	Peak Forward Surge Current 8.3 ms single half-sine-wave Superimposed on rated load (JEDEC method)	175	А		
PD	Total Device Dissipation Derate above 25°C	14.5	W mW/°C		
R _{0JA}	Thermal Resistance, Junction to Ambient,** per leg	8.6	°C/W		
R _{0JC}	Thermal Resistance, Junction to Case,*** per leg	3.1	°C/W		
T _{stg}	Storage Temperature Range	-55 to +150	°C		
TJ	Operating Junction Temperature	-55 to +150	°C		

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.


** Device mounted on PCB with 0.5 x 0.5" (12 x 12 mm).

*** Device mounted on Al plate with 2.6 x 1.4" x 0.06" (6,5 x 3.5 x 0.15 cm).

Electrical Characteristics

Parameter	Device							Units
	6A	6B	6D	6G	6J	6K	6M	
Peak Repetitive Reverse Voltage	50	100	200	400	600	800	1000	V
Maximum RMS Input Voltage		70	140	280	420	560	700	V
DC Reverse Voltage (Rated V _R)		100	200	400	600	800	1000	V
Maximum Reverse Leakage, per element @ rated V_R $T_A = 25^{\circ}C$ $T_A = 125^{\circ}C$	5.0 500						•	μΑ μΑ
Maximum Forward Voltage Drop, per element @ 6.0 A l^2 t rating for fusing t < 8.35 ms		1.0						V A ² Sec

 $T_A = 25^{\circ}C$ unless otherwise noted

GBU6A-GBU6M, Rev. A

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 TinyLogic[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

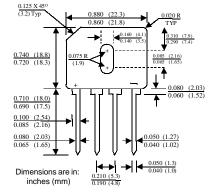
LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.


Discrete POWER & Signal Technologies

GBU8A - GBU8K

Features

- Surge overload rating: 200 amperes peak.
- Reliable low cost construction utilizing molded plastic technique.
- Ideal for printed circuit board.

8.0 Ampere Bridge Rectifiers

Absolute Maximum Ratings* $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Value	Units	
lo	Average Rectified Current @ $T_A = 100^{\circ}C$ @ $T_A = 45^{\circ}C$	8.0 6.0	A A	
İf(surge)	Peak Forward Surge Current 8.3 ms single half-sine-wave Superimposed on rated load (JEDEC method)	200	А	
P _D	Total Device Dissipation Derate above 25°C	6.9 55	W mW/°C	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient,** per leg	18	°C/W	
T _{stg}	Storage Temperature Range	-55 to +150	°C	
TJ	Operating Junction Temperature	-55 to +150	°C	

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

** Device mounted on PCB with 0.5 x 0.5" (12 x 12 mm).

Electrical Characteristics T_A = 25°C unless otherwise noted

Parameter	Device					Units	
	8A	8B	8D	8G	8J	8K	-
Peak Repetitive Reverse Voltage	50	100	200	400	600	800	V
Maximum RMS Input Voltage	35	70	140	280	420	560	V
DC Reverse Voltage (Rated V _R)	50	100	200	400	600	800	V
	5.0 500						μΑ μΑ
Maximum Forward Voltage Drop, per element @ 8.0 A	1.0					V	
I^2 t rating for fusing t < 8.35 ms	166					A ² Sec	

GBU8A - GBU8K

GBU8A-GBU8M, Rev. A

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 TinyLogic[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.