IS61SF6432

64K x 32 SYNCHRONOUS FLOW-THROUGH STATIC RAM

FEATURES

- Fast access time: 9 ns, 10 ns
- Internal self-timed write cycle
- Individual Byte Write Control and Global Write
- Clock controlled, registered address, data and control
- Pentium[™] or linear burst sequence control using MODE input
- Three chip enables for simple depth expansion and address pipelining
- · Common data inputs and data outputs
- Power-down control by ZZ input
- JEDEC 100-Pin TQFP and PQFP package
- Single +3.3V power supply
- Two Clock enables and one Clock disable to eliminate multiple bank bus contention.
- Control pins mode upon power-up:
 - FT in pipeline mode
 - MODE in interleave burst mode
 - ZZ in normal operation mode
 - These control pins can be connected to GNDQ or VCCQ to alter their power-up state
- Industrial temperature available

DESCRIPTION

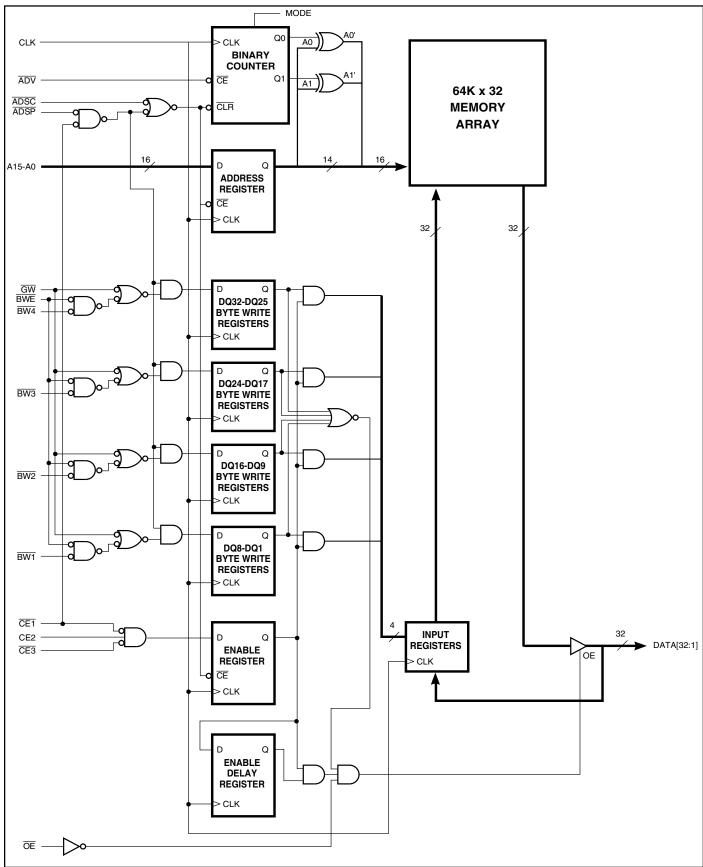
The *ISSI* IS61SF6432 is a high-speed, low-power synchronous static RAM designed to provide a burstable, highperformance, secondary cache for the Pentium[™], 680X0[™], and PowerPC[™] microprocessors. It is organized as 65,536 words by 32 bits, fabricated with *ISSI*'s advanced CMOS technology. The device integrates a 2-bit burst counter, highspeed SRAM core, and high-drive capability outputs into a single monolithic circuit. All synchronous inputs pass through registers controlled by a positive-edge-triggered single clock input.

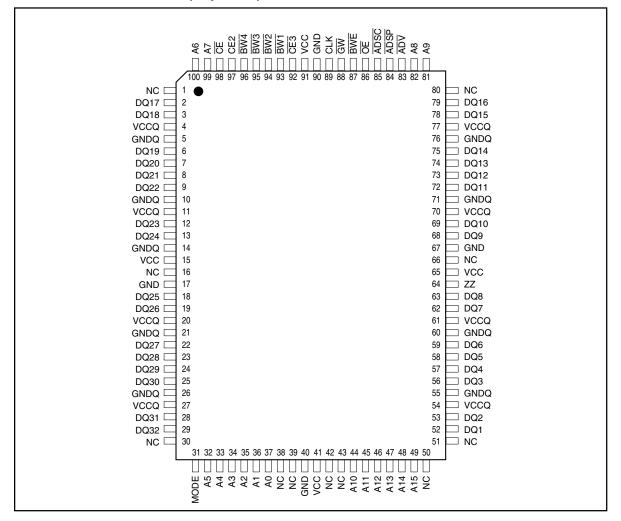
Write cycles are internally self-timed and are initiated by the rising edge of the clock input. Write cycles can be from one to four bytes wide as controlled by the write control inputs.

Separate byte enables allow individual bytes to be written. BW1 controls DQ1-DQ8, BW2 controls DQ9-DQ16, BW3 controls DQ17-DQ24, BW4 controls DQ25-DQ32, conditioned by BWE being LOW. A LOW on GW input would cause all bytes to be written.

Bursts can be initiated with either ADSP (Address Status Processor) or ADSC (Address Status Cache Controller) input pins. Subsequent burst addresses can be generated internally by the IS61SF6432 and controlled by the ADV (burst address advance) input pin.

Asynchronous signals include output enable (\overline{OE}), sleep mode input (ZZ), clock (CLK) and burst mode input (MODE). A HIGH input on the ZZ pin puts the SRAM in the power-down state. When ZZ is pulled LOW (or no connect), the SRAM normally operates after three cycles of the wake-up period. A LOW input, i.e., GNDQ, on MODE pin selects LINEAR Burst. A Vccq (or no connect) on MODE pin selects INTERLEAVED Burst.


ISSI reserves the right to make changes to its products at any time without notice in order to improve design and supply the best possible product. We assume no responsibility for any errors which may appear in this publication. © Copyright 2001, Integrated Silicon Solution, Inc.


APRIL 2001

BLOCK DIAGRAM

PIN CONFIGURATION 100-Pin TQFP and PQFP (Top View)

PIN DESCRIPTIONS

A0-A15	Address Inputs
CLK	Clock
ADSP	Processor Address Status
ADSC	Controller Address Status
ADV	Burst Address Advance
BW1-BW4	Synchronous Byte Write Enable
BWE	Byte Write Enable
GW	Global Write Enable
$\overline{CE1}$, CE2, $\overline{CE3}$	Synchronous Chip Enable
ŌĒ	Output Enable

DQ1-DQ32	Data Input/Output
ZZ	Sleep Mode
MODE	Burst Sequence Mode
Vcc	+3.3V Power Supply
GND	Ground
Vccq	Isolated Output Buffer Supply: +3.3V
GNDa	Isolated Output Buffer Ground
NC	No Connect

TRUTH TABLE

OPERATION	ADDRESS USED	CE1	CE2	CE3	ADSP	ADSC	ADV	WRITE	ŌĒ	DQ
Deselected, Power-down	None	Н	Х	Х	Х	L	Х	Х	Х	High-Z
Deselected, Power-down	None	L	L	Х	L	Х	Х	Х	Х	High-Z
Deselected, Power-down	None	L	Х	Н	L	Х	Х	Х	Х	High-Z
Deselected, Power-down	None	L	L	Х	Н	L	Х	Х	Х	High-Z
Deselected, Power-down	None	L	Х	Н	Н	L	Х	Х	Х	High-Z
Read Cycle, Begin Burst	External	L	Н	L	L	Х	Х	Х	L	Q
Read Cycle, Begin Burst	External	L	Н	L	L	Х	Х	Х	Н	High-Z
Write Cycle, Begin Burst	External	L	Н	L	Н	L	Х	L	Х	D
Read Cycle, Begin Burst	External	L	Н	L	Н	L	Х	Н	L	Q
Read Cycle, Begin Burst	External	L	Н	L	Н	L	Х	Н	Н	High-Z
Read Cycle, Continue Burst	Next	Х	Х	Х	Н	Н	L	Н	L	Q
Read Cycle, Continue Burst	Next	Х	Х	Х	Н	Н	L	Н	Н	High-Z
Read Cycle, Continue Burst	Next	Н	Х	Х	Х	Н	L	Н	L	Q
Read Cycle, Continue Burst	Next	Н	Х	Х	Х	Н	L	Н	Н	High-Z
Write Cycle, Continue Burst	Next	Х	Х	Х	Н	Н	L	L	Х	D
Write Cycle, Continue Burst	Next	Н	Х	Х	Х	Н	L	L	Х	D
Read Cycle, Suspend Burst	Current	Х	Х	Х	Н	Н	Н	Н	L	Q
Read Cycle, Suspend Burst	Current	Х	Х	Х	Н	Н	Н	Н	Н	High-Z
Read Cycle, Suspend Burst	Current	Н	Х	Х	Х	Н	Н	Н	L	Q
Read Cycle, Suspend Burst	Current	Н	Х	Х	Х	Н	Н	Н	Н	High-Z
Write Cycle, Suspend Burst	Current	Х	Х	Х	Н	Н	Н	L	Х	D
Write Cycle, Suspend Burst	Current	Н	Х	Х	Х	Н	Н	L	Х	D

Notes:

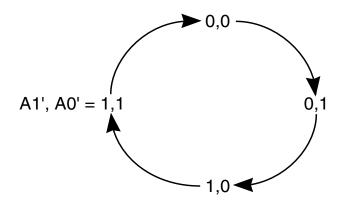
1. All inputs except OE must meet setup and hold times for the Low-to-High transition of clock (CLK).

2. Wait states are inserted by suspending burst.

3. X means don't care. WRITE=L means any one or more byte write enable signals (BW1-BW4) and BWE are LOW or GW is LOW. WRITE=H means all byte write enable signals are HIGH.

4. For a Write operation following a Read operation, OE must be HIGH before the input data required setup time and held HIGH throughout the input data hold time.

5. ADSP LOW always initiates an internal READ at the Low-to-High edge of clock. A WRITE is performed by setting one or more byte write enable signals and BWE LOW or GW LOW for the subsequent L-H edge of clock.


PARTIAL TRUTH TABLE

FUNCTION	GW	BWE	BW1	BW2	BW3	BW4
READ	Н	Н	Х	Х	Х	Х
READ	Н	Х	Н	Н	Н	Н
WRITE Byte 1	Н	L	L	Н	Н	Н
WRITE All Bytes	Х	L	L	L	L	L
WRITE All Bytes	L	Х	Х	Х	Х	Х

External Address A1 A0	1st Burst Address A1 A0	2nd Burst Address A1 A0	3rd Burst Address A1 A0
00	01	10	11
01	00	11	10
10	11	00	01
11	10	01	00

INTERLEAVED BURST ADDRESS TABLE (MODE = Vccq or No Connect)

LINEAR BURST ADDRESS TABLE (MODE = GNDQ)

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
TBIAS	Temperature Under Bias	-10 to +85	°C
Tstg	Storage Temperature	-55 to +150	°C
Pd	Power Dissipation	1.8	W
Ιουτ	Output Current (per I/O)	100	mA
Vin, Vout	Voltage Relative to GND for I/O Pins	-0.5 to Vccq + 0.3	V
Vin	Voltage Relative to GND for for Address and Control Inputs	-0.5 to 5.5	V

Notes:

- 1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. This device contains circuity to protect the inputs against damage due to high static voltages or electric fields; however, precautions may be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.
- 3. This device contains circuitry that will ensure the output devices are in High-Z at power up.

OPERATING RANGE

Range	Ambient Temperature	Vcc
Commercial	0°C to +70°C	3.3V +10%, -5%
Industrial	–40°C to +85°C	3.3V +10%, -5%

DC ELECTRICAL CHARACTERISTICS⁽¹⁾ (Over Operating Range)

Symbol	Parameter	Test Conditions		Min.	Max.	Unit
Vон	Output HIGH Voltage	Iон = -5.0 mA		2.4	—	V
Vol	Output LOW Voltage	loL = 5.0 mA		_	0.4	V
Vін	Input HIGH Voltage			2.0	Vccq + 0.3	V
VIL	Input LOW Voltage			-0.3	0.8	V
ILI	Input Leakage Current	GND - VIN - VCCQ ⁽²⁾	Com. Ind.	5 10	5 10	μA
Ilo	Output Leakage Current	GND - Vout - Vccq, $\overline{OE} = V_{IH}$	Com. Ind.	5 10	5 10	μA

POWER SUPPLY CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions		Min.	-9 Typ.	Max.	Min.	-10 Typ.	Max.	Unit
Icc	AC Operating Supply Current	Device Selected, All Inputs = VIL or VIH \overline{OE} = VIH, Cycle Time • t	Com. Ind. кс min.	_	300	_	_	290 300	_	mA
Isb	Standby Current	Device Deselected, Vcc = Max., All Inputs = VIH or VIL CLK Cycle Time • tkc m	Com. Ind. iin.	_	60 —	_	_	60 70	_	mA
lzz	Power-Down Mode Current	ZZ = Vcca, CLK Running All Inputs - GND + 0.2V or • Vcc - 0.2V	Com. Ind.	_	10 	_	_	10 20	_	mA

Note:

1. MODE pin has an internal pull-up. ZZ pin has an internal pull-down. These pins may be a No Connect, tied to GND, or tied to Vcco.

MODE pin should be tied to Vcc or GND. They exhibit ±30 µA maximum leakage current when tied to - GND + 0.2V or
Vcc - 0.2V.

CAPACITANCE^(1,2)

Symbol	Parameter	Conditions	Max.	Unit
CIN	Input Capacitance	$V_{IN} = 0V$	6	pF
Соит	Input/Output Capacitance	Vout = 0V	8	pF

Notes:

1. Tested initially and after any design or process changes that may affect these parameters. 2. Test conditions: $T_A = 25^{\circ}C$, f = 1 MHz, Vcc = 3.3V.

AC TEST CONDITIONS

Parameter	Unit
Input Pulse Level	0V to 3.0V
Input Rise and Fall Times	1.5 ns
Input and Output Timing and Reference Level	1.5V
Output Load	See Figures 1 and 2

AC TEST LOADS

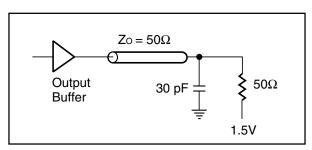


Figure 1

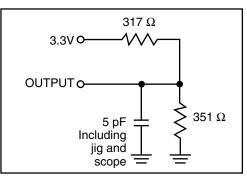
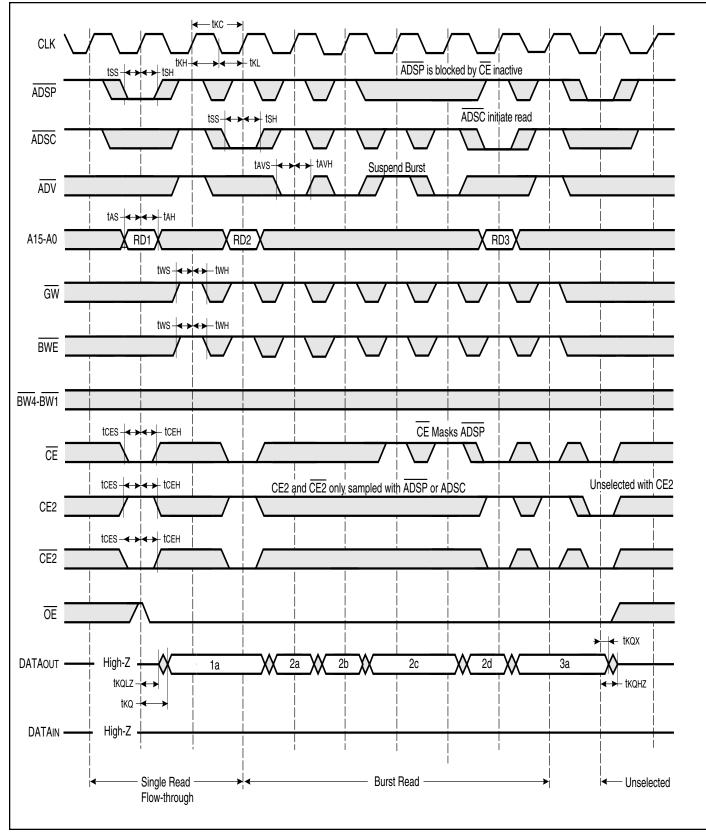


Figure 2

READ CYCLE SWITCHING CHARACTERISTICS (Over Operating Range)

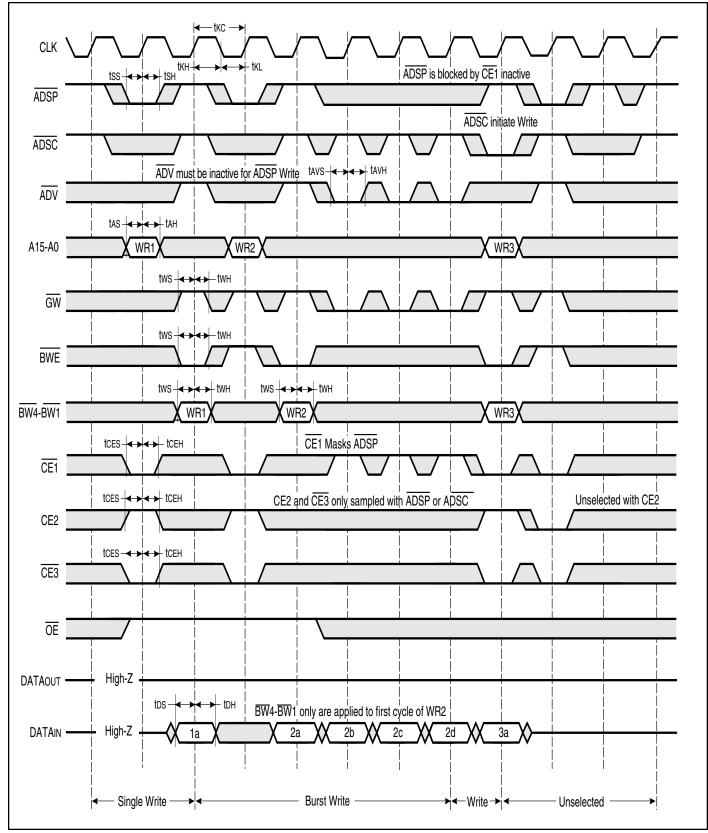

		0				
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
tкc	Cycle Time	13		15		ns
tкн	Clock High Time	6		6		ns
tĸ∟	Clock Low Time	6		6		ns
tкq	Clock Access Time	_	9	_	10	ns
tkqx ⁽²⁾	Clock High to Output Invalid	2	_	2		ns
tkqlz ^(2,3)	Clock High to Output Low-Z	0	_	0		ns
tkqhz ^(2,3)	Clock High to Output High-Z	2	6	2	6	ns
tas	Address Setup Time	2.5	_	2.5		ns
tss	Address Status Setup Time	2.5	_	2.5		ns
tws	Write Setup Time	2.5	_	2.5		ns
tces	Chip Enable Setup Time	2.5		2.5		ns
tavs	Address Advance Setup Time	2.5		2.5		ns
tан	Address Hold Time	1	_	1		ns
tsн	Address Status Hold Time	0.5	_	0.5	_	ns
twн	Write Hold Time	0.5	_	0.5		ns
tсен	Chip Enable Hold Time	0.5		0.5		ns
tavн	Address Advance Hold Time	0.5	_	0.5		ns
t CFG	Configuration Setup ⁽¹⁾	66.7		80		ns

Notes:

Configuration signal MODE is static and must not change during normal operation.
Guaranteed but not 100% tested. This parameter is periodically sampled.
Tested with load in Figure 2.

READ CYCLE TIMING: FLOW-THROUGH

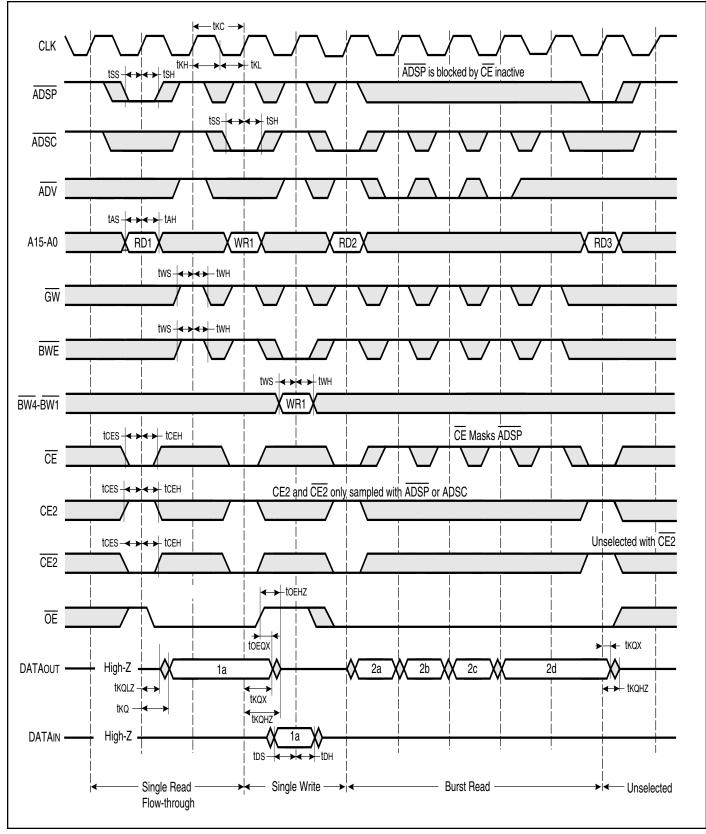
WRITE CYCLE SWITCHING CHARACTERISTICS (Over Operating Range)


		-9		-1	0	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
tкc	Cycle Time	13	_	15	—	ns
tкн	Clock High Time	6	—	6	—	ns
tĸ∟	Clock Low Time	6	—	6	_	ns
tas	Address Setup Time	2.5	_	2.5	_	ns
tss	Address Status Setup Time	2.5	_	2.5		ns
tws	Write Setup Time	2.5	_	2.5		ns
tos	Data In Setup Time	2.5	_	2.5	_	ns
tces	Chip Enable Setup Time	2.5	_	2.5		ns
tavs	Address Advance Setup Time	2.5	_	2.5		ns
tан	Address Hold Time	1	_	1	_	ns
tsн	Address Status Hold Time	0.5	_	0.5		ns
tdн	Data In Hold Time	0.5	_	0.5		ns
twн	Write Hold Time	0.5		0.5	_	ns
tсен	Chip Enable Hold Time	0.5		0.5	_	ns
tavн	Address Advance Hold Time	0.5		0.5	_	ns
tCFG	Configuration Setup ⁽¹⁾	52	_	60	_	ns

Notes:

1. Configuration signal MODE is static and must not change during normal operation.

WRITE CYCLE TIMING: PIPELINE


READ/WRITE CYCLE SWITCHING CHARACTERISTICS (Over Operating Range)

		-9 -10				
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
tкc	Cycle Time	13	—	15	—	ns
tкн	Clock High Time	6	_	6		ns
tĸ∟	Clock Low Time	6	_	6	—	ns
tкq	Clock Access Time		9	_	10	ns
tkqx ⁽²⁾	Clock High to Output Invalid	2	_	2	_	ns
tkqlz ^(2,3)	Clock High to Output Low-Z	0	_	0	_	ns
t kqhz ^(2,3)	Clock High to Output High-Z	2	6	2	6	ns
toeqx ⁽²⁾	Output Disable to Output Invalid	0	_	0		ns
toehz ^(2,3)	Output Disable to Output High-Z		6		6	ns
tas	Address Setup Time	2.5	_	2.5	_	ns
tss	Address Status Setup Time	2.5	_	2.5	_	ns
tws	Write Setup Time	2.5	_	2.5		ns
tces	Chip Enable Setup Time	2.5	_	2.5	_	ns
tан	Address Hold Time	0.5	_	0.5	_	ns
tsн	Address Status Hold Time	0.5	_	0.5	_	ns
twн	Write Hold Time	0.5		0.5	_	ns
tсен	Chip Enable Hold Time	0.5		0.5	_	ns

Notes:

Configuration signal MODE is static and must not change during normal operation.
Guaranteed but not 100% tested. This parameter is periodically sampled.
Tested with load in Figure 2.

READ/WRITE CYCLE TIMING: FLOW-THROUGH

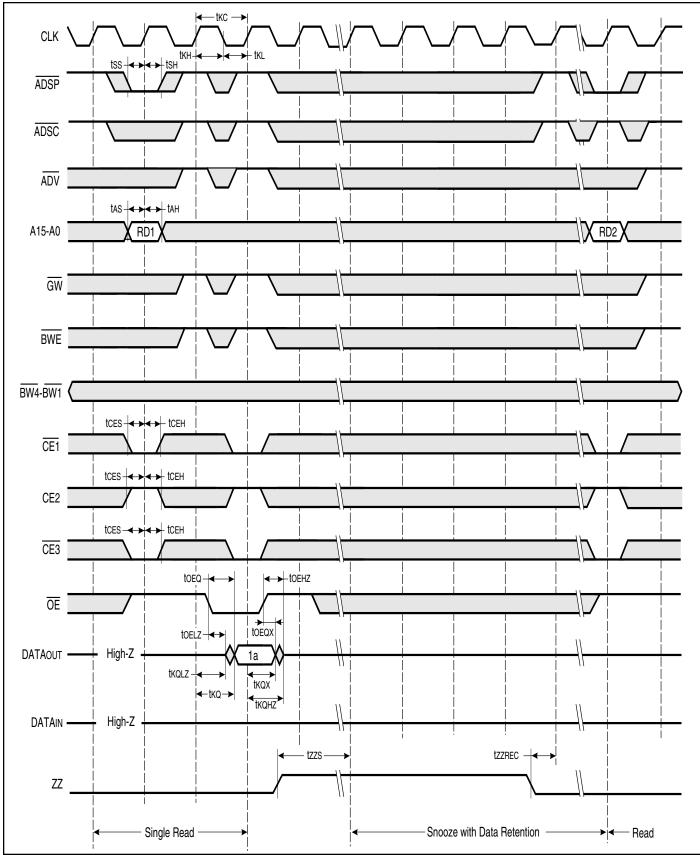
SNOOZE AND RECOVERY CYCLE SWITCHING CHARACTERISTICS (Over Operating Range)

		-9		-1	0	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
tкc	Cycle Time	13	—	15	—	ns
tкн	Clock High Time	6	_	6	_	ns
tĸ∟	Clock Low Time	6	_	6	_	ns
tкq	Clock Access Time		9		10	ns
tkqx ⁽⁴⁾	Clock High to Output Invalid	2	_	2	_	ns
tkqlz ^(4,5)	Clock High to Output Low-Z	0	_	0	_	ns
t kqhz ^(4,5)	Clock High to Output High-Z	2	6	2	6	ns
toeq	Output Enable to Output Valid		6		6	ns
toeqx ⁽⁴⁾	Output Disable to Output Invalid	0	_	0		ns
toelz ^(4,5)	Output Enable to Output Low-Z	0		0		ns
toehz ^(4,5)	Output Disable to Output High-Z		6		6	ns
tas	Address Setup Time	2.5	_	2.5		ns
tss	Address Status Setup Time	2.5	_	2.5		ns
tces	Chip Enable Setup Time	2.5	_	2.5		ns
tан	Address Hold Time	0.5	_	0.5		ns
tsн	Address Status Hold Time	0.5	_	0.5	_	ns
tсен	Chip Enable Hold Time	0.5	_	0.5	_	ns
tzzs	ZZ Standby ⁽¹⁾	2	_	2	_	сус
tzzrec	ZZ Recovery ⁽²⁾	2	_	2	_	сус
tcfg	Configuration Setup ⁽³⁾	52	_	60		ns

Notes:

1. The assertion of ZZ allows the SRAM to enter a lower power state than when deselected within the time specified. Data retention is guaranteed when ZZ is asserted and clock remains active.

2. ADSC and ADSP must not be asserted for at least 2 cyc after leaving ZZ state.


3. Configuration signal MODE is static and must not change during normal operation.

4. Guaranteed but not 100% tested. This parameter is periodically sampled.

5. Tested with load in Figure 2.

SNOOZE AND RECOVERY CYCLE TIMING

ORDERING INFORMATION

Commercial Range: 0°C to +70°C

Speed (ns)	Order Part Number	Package
9	IS61SF6432-9TQ	TQFP
9	IS61SF6432-9PQ	PQFP
10	IS61SF6432-10TQ	TQFP
10	IS61SF6432-10PQ	PQFP

ORDERING INFORMATION

Industrial Range: -40°C to +85°C

Speed (ns)	Order Part Number	Package
10	IS61SF6432-10TQI	TQFP
10	IS61SF6432-10PQI	PQFP

NOTICE

Integrated Silicon Solution, Inc., reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. Integrated Silicon Solution, Inc. assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained herein reflect representative operating parameters, and may vary depending upon a user's specific application. While the information in this publication has been carefully checked, Integrated Silicon Solution, Inc. shall not be liable for any damages arising as a result of any error or omission.

Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurances, to its satisfaction, that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; and (c) potential liability of Integrated Silicon Solution, Inc. is adequately protected under the circumstances.

Copyright 1998 Integrated Silicon Solution, Inc.

Reproduction in whole or in part, without the prior written consent of Integrated Silicon Solution, Inc., is prohibited.

Integrated Silicon Solution, Inc.

2231 Lawson Lane Santa Clara, CA 95054 Tel: 1-800-379-4774 Fax: (408) 588-0806 E-mail: sales@issi.com www.issi.com