LH2108/LH2308 Dual Super-Beta Operational Amplifier

GENERAL DESCRIPTION

The LH2108A/LH2308A and LH2108/LH2308 series of dual operational amplifiers consist of two LM108A or LM108 type op amps in a single hermetic package. Featuring all the same performance characteristics of the single device, these duals also offer closer thermal tracking, lower weight, and reduced insertion cost.

FEATURES

- Low Offset Current 50pA
- Low Offset Voltage 0.7mV
- Low Offset Voltage LH2108A: 0.3mV LH2108: 0.7mV
- Wide Input Voltage Range ± 15V
- Wide Operating Supply Range ±3V to ±20V

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
_H2108D	-55°C to +125°C	16-PIN
LH2108AD	-55°C to +125°C	
LH2308D	0°C to +70°C	CERAMIC
LH2308AD	0°C to +70°C	

4-99

Note: All typical values have been guaranteed by characterization and are not tested.

LH2108/LH2308

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±20V
Power Dissipation (Note 1)	500mW
Differential Input Current (Note 2)	± 10mA
Input Voltage (Note 3)	±15V
Output Short Circuit Duration	

Operating Temperature Range	
LH2108A/LH2108	55°C to +125°C
LH2308A/LH2408	0°C to +70°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10sec)	300°C

ELECTRICAL CHARACTERISTICS (See Note 4) (LH2108/LH2308)

PARAMETER	TEST CONDITIONS	LIMITS		
		LH2108	LH2308	UNIT
Input Offset Voltage	T _A = 25°C	2.0	7.5	mV Max
Input Offset Current	T _A = 25°C	0.2	1.0	nA Max
Input Bias Current	T _A = 25°C	2.0	7.0	
Input Resistance (Note 5)	T _A = 25°C	30	10	MΩ Min
Supply Current	T _A = 25°C	0.6	8.0	mA Max
Large Signal Voltage Gain	$T_A = 25$ °C $V_S = \pm 15V$ $V_{OUT} = \pm 10V$, $R_L \ge 10kΩ$	50	25	V/mV Min
Input Offset Voltage		3.0	10	mV Max
Average Temperature Coefficient of Input Offset Voltage (Note 6)		15	30	μV/°C Max
Input Offset Current		0.4	1.5	nA Max
Average Temperature Coefficient of Input Offset Current (Note 6)		2.5	10	pA/°C Max
Input Bias Current		3.0	10	nA Max
Supply Current	T _A = +125°C	0.4	-	mA Max
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$ $R_L \ge 10k\Omega$	25	15	V/mV Min
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10k\Omega$	± 13	± 13	V Min
Input Voltage Range	V _S = ±15V	± 13.5	±14	
Common Mode Rejection Ratio	$V_S = \pm 15V, V_{CM} = \pm 13.5V$	85	80	dB Min
Supply Voltage Rejection Ratio	±5V to ±20V	80	80	40 WIII
ELECTRICAL CHARACTERISTICS	6 — LH2108/LH2308			
Input Offset Voltage	T _A = 25°C	0.5	0.5	mV Max
Input Offset Current	T _A = 25°C	0.2	1.0	nA Max
Input Bias Current	T _A = 25°C	2.0	7.0	TITY WIGH
Input Resistance	T _A = 25°C	30	10	MΩ Min
Supply Current	T _A = 25°C	0.6	0.8	mA Max
Large Signal Voltage Gain	$T_A = 25$ °C $V_S = \pm 15V$ $V_{OUT} = \pm 10V$, $R_L \ge 10kΩ$	80	80	V/mV Min
Input Offset Voltage		1.0	0.73	mV Max
Average Temperature Coefficient of Input Offset Voltage (Note 6)		5	5	μV/°C Max
Input Offset Current		0.4	1.5	nA Max
Average Temperature Coefficient of Input Offset Current (Note 6)		2.5	10	pA/°C Max
Input Bias Current		3.0	10	nA Max
Supply Current	T _A = +125°C	0.4	-	mA Max
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$ $R_L \ge 10k\Omega$	40	60	V/mV Min
			1.40	V Min
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10k\Omega$	± 13	±13	V Min

4-100

Note: All typical values have been guaranteed by characterization and are not tested.

ELECTRICAL CHARACTERISTICS (CONT.)

PARAMETER	TEST CONDITIONS	LIMITS		LIMIT
		LH2108	LH2308	UNIT
Common Mode Rejection Ratio		96	96	dB Min
Supply Voltage Rejection Ratio		96	96	

- 1. The maximum junction temperature of the LH2108/A is 150°C, and that of the LH2308/A is 85°C. The thermal resistance of the packages is 100°C C/W, junction to ambient. NOTES:
 - 2. The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input

 - The inputs are sintred with back-to-back induces for verticage in the property of the property o
 - 5. Input resistance is guaranteed by Input Bias Current test.
 6. For Design only, not 100% tested.

