DC-3GHz High Signal Level Down-Converting Mixer

July 2002

feATURES

- Broadband RF, LO and IF Operation
- High Input IP3: +20dBm at 950MHz
+17 dBm at 1900 MHz
- Typical Conversion Gain: 1dB at 1900 MHz
- SSB Noise Figure: 14dB at 1900MHz
- Integrated LO Buffer: Insensitive to LO Drive Level
- Single-Ended or Differential LO Signal
- High LO-RF Isolation
- Enable Function
- 4.5 V to 5.25 V Supply Voltage Range
- $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ QFN Package

APPLICATIONS

- Celluar/PCS/UMTS Infrastructure
- CATV Downlink Infrastructure
- High Linearity Mixer Applications

DESCRIPTION

The $L T^{\circledR} 5512$ is a broadband mixer IC optimized for high linearity downconverter applications including cable and wireless infrastructure. The IC includes a differential LO buffer amplifier driving a double-balanced mixer. An integrated RF buffer amplifier improves LO-RF isolation and eliminates the need for precision external bias resistors.

The LT5512 is a high-linearity alternative to passive diode mixers. Unlike passive mixers, which have conversion loss and require high LO drive levels, the LT5512 delivers conversion gain and requires significantly lower LO drive levels.

TYPICAL APPLICATION

Figure 1. High Signal-Level Downmixer for Wireless Infastructure

Output IF Power and Output IM3 vs RF Input Power (Two Input Tones)

ABSOLUTE MAXIMUM RATINGS(Note 1)
Supply Voltage

\qquadEnable Voltage
\qquad
LO^{+}to LO^{-}Differential Voltage $\pm 1.5 \mathrm{~V}$-0.3 V to $\mathrm{V}_{\mathrm{C}}+0.3 \mathrm{~V}$(+6dBm equivalent)
RF^{+}to RF^{-}Differential Voltage $\pm 0.7 \mathrm{~V}$
Operating Temperature Range
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS

PARAMETER	CONDITIONS	MIN	TYP
RF Input Frequency Range ${ }^{2}$	Requires Appropriate Matching	UNITS	
LO Input Frequency Range 2	Requires Appropriate Matching	DC to 3000	MHz
IF Output Frequency Range ${ }^{2}$	Requires Appropriate Matching	DC to 3000	MHz

1900 MHz Downmixer Application: (Test Circuit Shown in Figure 2) $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{EN}=\mathrm{High}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{RF}$ input $=1900 \mathrm{MHz}$ at -10 dBm , LO input = 1730MHz at -10dBm, IF output measured at 170MHz, unless otherwise noted. (Notes 2, 3)

LO Input Power		-15 to -5	dBm
Conversion Gain		-1	1
Input 3rd Order Intercept	2-Tone, -10dBm/Tone, $\Delta \mathrm{f}=200 \mathrm{kHz}$	dB	
LO to RF Leakage		17	dBm
LO to IF Leakage		-53	dBm
RF to LO Isolation		-46	dBm
Output 1dB Compression		50	dB
LO Input Common Mode Voltage	Internally Biased	6.2	dBm
Single-Sideband Noise Figure		2	V

ELECTRICAL CHARACTERISTICS 1230MHz Cable Infrastructure Downmixer Application: (Test Circuit Shown in Figure 3) $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}}$, $\mathrm{EN}=$ High, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, RF input $=1230 \mathrm{MHz}$ at -10 dBm , LO input swept from 1500 MHz to 2100 MHz , $P_{\mathrm{LO}}=-10 \mathrm{dBm}$, IF output measured from 270MHz to 870 MHz , unless otherwise noted.

PARAMETER	CONDITIONS	MIN TYP	MAX	UNITS
Conversion Gain	$\mathrm{f}_{\text {LO }}=1800 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=570 \mathrm{MHz}$	2.8		dB
Input 3rd Order Intercept	2-Tone RF Input, $-10 \mathrm{dBm} /$ Tone, $\Delta \mathrm{f}=1 \mathrm{MHz}$, $\mathrm{f}_{\mathrm{LO}}=1800 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=570 \mathrm{MHz}$	17.9		dBm
LO to RF Leakage		-56		dBm
LO to IF Leakage		-40		dBm
RF to LO Isolation		51		dB
$2 \cdot$ RF - LO Output Spur	$\mathrm{f}_{\mathrm{IF}}=570 \mathrm{MHz}, \mathrm{P}_{\mathrm{RF}}=-18 \mathrm{dBm}, \mathrm{f}_{\mathrm{L} 0}=1800 \mathrm{MHz}$	-60		dBc
Single-Sideband Noise Figure	$\mathrm{f}_{\mathrm{LO}}=1800 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=570 \mathrm{MHz}$	13.3		dB

DC ELECTRICAL CHARACTERISTICS (Test Circuit Shown in Figure 2) $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}}$, $\mathrm{EN}=$ High, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

(Note 3), unless otherwise noted.

| PARAMETER | CONDITIONS | MIN | TYP | MAX |
| :--- | :--- | :--- | :--- | :---: | UNITS

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: External components on the final test circuit are optimized for operation at $f_{\mathrm{RF}}=1900 \mathrm{MHz}, \mathrm{f}_{\mathrm{L} 0}=1730 \mathrm{MHz}$ and $\mathrm{f}_{\mathrm{f}}=170 \mathrm{MHz}$ (Figure 2).

Note 3: Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range are assured by design, characterization and correlation with statistical process controls.

TYPICAL PGRFORMANCE CHARACTGRISTICS (Test C Ciruit Shown in Figure 2)

Shutdown Current vs Supply Voltage

TYPICAL PGRFORMANCE CHARACTERISTICS (1900mHz Downmixer Application)

$V_{C C}=5 V_{D C}, E N=H i g h, T_{A}=25^{\circ}$, 1900MHz RF input matching, RF input $=1900 \mathrm{MHz}$ at -10 dBm, LO input $=1730 \mathrm{MHz}$ at $-10 \mathrm{dBm}, \mathrm{IF}$ output measured at 170MHz, unless otherwise noted. (Test circuit shown in Figure 2).

Conv Gain and IIP3 vs LO Input Power

$5512 \cdot G 06$

5512•G04
SSB Noise Figure vs LO Input Power

5512•G07
Output IF Power and Output IM3 vs RF Input Power (Two Input Tones)

Conv Gain and IIP3 vs Temperature $R F=1900 \mathrm{MHz}, \mathrm{IF}=170 \mathrm{MHz}$

5512•G05

LO-IF and LO-RF Leakage vs LO Input Power

$5512 \cdot 608$
RF, LO and IF Port Return Loss vs Frequency

TYPICAL PGRFORMANCE CHARACTERISTICS (1230MHz Cable Infrastructure Downmixer
Application) $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}}$, $\mathrm{EN}=\mathrm{High}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{RF}$ input $=1230 \mathrm{MHz}$ at -10 dBm , LO input swept from $=1500 \mathrm{MHz}$ to 2100 MHz , $P_{\text {Lo }}=-10 d B m$, IF output measured from 270 MHz to 870 MHz , unless otherwise noted. (Test circuit shown in Figure 3.)

PIn fUnCTIOnS

NC (Pins 1, 4, 8, 13, 16): Not connected internally. These pins should be grounded on the circuit board for improved LO to RF and LO to IF isolation.
$\mathbf{R F}^{+}$, RF- (Pins 2, 3): Differential Inputs for the RF Signal. These pins must be driven with a differential signal. Each pin must be connected to a DC ground capable of sinking 15 mA (30mA total). This DC bias return can be accomplished through the center-tap of a balun, or with shunt inductors. An impedance transformation is required to match the RF input to 50Ω (or 75Ω).

EN (Pin 5): Enable Pin. When the input voltage is higher than 3V, the mixer circuits supplied through Pins 6, 7, 10, and 11 are enabled. When the input voltage is less than 0.3 V , all circuits are disabled. Typical enable pin input current is $50 \mu \mathrm{~A}$ for $\mathrm{EN}=5 \mathrm{~V}$ and $0 \mu \mathrm{~A}$ when $\mathrm{EN}=0 \mathrm{~V}$.
$V_{\text {CC1 }}$ (Pin 6): Power Supply Pin for the LO Buffer Circuits. Typical current consumption is 22 mA . This pin should be externally connected to the other $V_{C C}$ pins, and decoupled with 100 pF and $0.01 \mu \mathrm{~F}$ capacitors.
$V_{\text {CC2 }}$ (Pin 7): Power Supply Pin for the Bias Circuits. Typical current consumption is 4 mA . This pin should be
externally connected to the other $V_{C C}$ pins, and decoupled with 100 pF and $0.01 \mu \mathrm{~F}$ capacitors.
GND (Pins 9 and 12): Ground. These pins are internally connected to the backside ground for better isolation. They should be connected to RF ground on the circuit board, although they are not intended to replace the primary grounding through the backside contact of the package.
IF ${ }^{-}$, IF+ (Pins 10, 11): Differential Outputs for the IF Signal. An impedance transformation may be required to match the outputs. These pins must be connected to $\mathrm{V}_{C C}$ through impedance matching inductors, RF chokes or a transformer center-tap.
LO^{-}, LO^{+}(Pins 14, 15): Differential Inputs for the Local Oscillator Signal. They can also be driven single-ended by connecting one to an RF ground through a DC blocking capacitor. These pins are internally biased to 2 V ; thus, DC blocking capacitors are required. An impedance transformation is required to match the LO input to 50Ω (or 75Ω).

GROUND (Backside Contact): Circuit Ground Return for the Entire IC. This must be soldered to the printed circuit board ground plane.

BLOCK DIAGRAM

TEST CIRCUITS

REF DES	VALUE	SIZE	PART NUMBER	REF DES	VALUE	SIZE	PART NUMBER
$\mathrm{C1}, \mathrm{C5}, \mathrm{C6}, \mathrm{C} 7$	100 pF	0402	Murata GRP1555C1H101J	$\mathrm{L} 1, \mathrm{~L} 2$	47 nH	0402	Coilcraft 0402CS-47NX
C 2	$0.01 \mu \mathrm{~F}$	0402	Murata GRP155R71C103K	L 3	5.6 nH	0402	Toko LL1005-FH5N6
$\mathrm{C3}$	$1.0 \mu \mathrm{~F}$	0603	Taiyo Yuden LMK107F105ZA	R1	10	0402	
$\mathrm{C4}$	1.5 pF	0402	Murata GRP1555C1H1R5C	T1	$2: 1$		Murata LDB211G9010C-001
C 8	6.8 pF	0402	Murata GRP1555C1H6R8D	T2	$8: 1$		Mini-Circuits TC8-1

Figure 2. Test Schematic for 1900MHz Downconverter (PCS/UMTS Applications)

REF DES	VALUE	SIZE	PART NUMBER	REF DES	VALUE	SIZE	PART NUMBER
C1, C5, C6,				L1, L2	12 nH	0402	Toko LL1005-FH12N
C7, C9, C10	100pF	0402	Murata GRP1555C1H101J	L3	8.2nH	0402	Toko LL1005-FH8N2
C2	$0.01 \mu \mathrm{~F}$	0402	Murata GRP155R71C103K	R1	10	0402	
C3	1.04F	0603	Taiyo Yuden LMK107F105ZA	T1	1:1		Murata LDB311G2705C-428
C4	2.7 pF	0402	Murata GRP1555C1H2R7C	T2	4:1		M/A-COM ETC1.6-4-2-3
				TL1, TL2	$Z_{0}=72 \Omega$	$\theta=5.4{ }^{\circ}$	($\mathrm{W}=0.4 \mathrm{~mm}, \mathrm{~L}=2.0 \mathrm{~mm}$)

Figure 3. Test Schematic for 1230MHz Downconverter (Cable Infrastructure Downlink Transmitter Applications)

APPLICATIONS INFORMATION

The LT5512 consists of a double-balanced mixer, RF buffer amplifier, high-speed limiting LO buffer, and bias/ enable circuits. The RF, LO and IF ports are differential. All three ports can be matched from DC to 3 GHz , although the IC has been optimized for downconverter applications where the RF and LO input signals are high frequency and the IF output frequency ranges from DC up to 2 GHz . Low side or high side LO injection can be used.

RF Input Port

The RF input buffer has been designed to simplify impedance matching while improving LO-RF isolation and noise figure. A simplified schematic is shown in Figure 4 with the associated external impedance matching elements for a 1.9 GHz application. Each RF input requires a low resistance DC return to ground capable of sinking 15 mA . This can be accomplished with the center-tap of a balun as shown in Figure 4, or bias chokes connected from Pins 2 and 3 to ground.

Figure 4. RF Input with External Matching for a 1.9GHz Application

Table 1 lists the differential input impedance and differential reflection coefficient between Pins 2 and 3 for several common RF frequencies. As shown in Figures 4 and 5, low-pass impedance matching is used to transform the
differential input impedance up to the desired value for the balun input. The following example shows how to design the low-pass impedance transformation network for the RF input.

From Table 1, the differential input impedance at 1900 MHz is $20.6+j 22.8$. As shown in Figure 5, the 22.8Ω reactance is split, with one half on each side of the 20.6Ω load resistor. The matching network will consist of additional inductance in series with the internal inductance and a capacitor in parallel with the desired 100Ω source impedance. The capacitance (C4) and inductance are calculated as follows.

$$
\begin{aligned}
& n=R_{S} / R_{L}=100 / 20.6=4.85 \\
& Q=\sqrt{n-1}=1.963 \\
& X_{C}=R_{S} / Q=100 / 1.963=50.9 \Omega \\
& C 4=1 /(\omega X C)=1.6 p F(\text { use } 1.5 p F) \\
& X_{L}=\left(R_{L} \cdot Q\right)=(20.6 \cdot 1.963)=40.4 \Omega \\
& X_{E X T}=X_{L}-X_{\text {INT }}=40.4-22.8=17.6 \Omega \\
& L_{\text {EXT }}=\left(X_{E X T} / \omega\right)=1.47 \mathrm{nH}
\end{aligned}
$$

The external inductance is split in half $(0.74 \mathrm{nH})$, with each half connected between the pin and the shunt capacitor, as shown in Figure 5. The inductance is implemented with short (2 mm) high-impedance printed transmission lines, which yield a compact board layout. Finally, the 2:1balun transforms the 100Ω differential impedance down to a 50Ω single-ended input for the RF signal.
Table 1. RF Input Differential Impedance

Frequency	Differential Input	Differential S11	
(MHz)	Impedance	Mag	Angle
10	$18.2+\mathrm{j} 0.14$	0.467	179.6
44	$18.0+\mathrm{j} 0.26$	0.470	178.6
240	$18.1+\mathrm{j} 2.8$	0.471	172.6
450	$18.1+\mathrm{j} 5.2$	0.473	166.3
950	$18.7+\mathrm{j} 11.3$	0.479	150.8
1900	$20.6+\mathrm{j} 22.8$	0.503	124.3
2150	$21.4+\mathrm{j} 26.5$	0.512	116.9
2450	$22.5+\mathrm{j} 30.5$	0.522	109.2
2700	$24.1+\mathrm{j} 34.7$	0.530	101.7

APPLICATIONS INFORMATION

Figure 5. 1.9GHz RF Input Matching
It is also possible to eliminate the RF balun and drive the RF inputs differentially. In this case, inductors from Pins 2 and 3 to ground would be required to bias the input stage. The value of the inductors should be high enough to avoid reducing the input impedance at the frequency of interest.

LO Input Port

The LO buffer amplifier consists of high-speed limiting differential amplifiers, designed to drive the mixer quad for high linearity. The LO ${ }^{+}$and LO^{-}pins are designed for differential or single-ended drive. An external balun is optional. Both LO pins are internally biased to $2 \mathrm{~V}_{\mathrm{DC}}$.
The LO input has been designed for simple impedance matching for frequencies up to 3 GHz . A simplified schematic is shown in Figure 6 with the associated external impedance matching. The matching technique is similar to that described earlier for the RF port, except the match is not nearly as critical. Table 2 lists the differential input impedance and differential reflection coefficient between the LO ${ }^{+}$and LO^{-}pins (Pin 15 to Pin 14). As shown, the real part of the series impedance is close to 100Ω. Series inductors (L3, L4) are used to tune out the capacitive portion of the differential impedance.

Figure 6. LO Input with External Matching Elements

Table 2. LO Input Differential Impedance

Frequency $(\mathbf{M H z})$	Differential Input Impedance	Differential S11	
		Angle	
750	$263-j 172$	0.766	-10.2
1000	$213-j 178$	0.760	-13.4
1250	$175-j 173$	0.752	-16.6
1500	$146-j 164$	0.743	-19.8
1750	$125-j 153$	0.733	-22.8
2000	$108-j 142$	0.722	-25.8
2250	$95-j 131$	0.709	-28.9
2500	$86-j 122$	0.695	-31.8
2750	$78-\mathrm{j} 113$	0.68	-34.6

Single-ended LO drive can be used if a differential LO source is not available, or the added expense of a LO balun is undesirable. In this case, one LO input is AC-coupled to ground through a 100pf DC blocking capacitor as shown in Figure 7. The other input is matched to 50Ω using a series inductor and a second DC blocking capacitor. The LT5512 is characterized and production tested with singleended LO drive.

Figure 7. Single-Ended LO Input Matching

The differential port impedance listed in Table 2 can be used to compute the value of the series matching inductor, L3. Alternatively, Figure 8 shows measured LO input return loss for various values of L3.

APPLICATIONS IIFORMATION

Figure 8. Single-Ended LO Port Return Loss vs Frequency for Various Values of L3

IF Output Port

The IF outputs, IF^{+}and IF^{-}, are internally connected to the collectors of the mixer switching transistors as shown in Figure 9. These differential outputs should be combined externally through an RF balun or 180° hybrid to achieve optimum performance. Both pins must be biased at the supply voltage, which can be applied through matching inductors (see Figure 2), or through the center-tap of an output transformer (see Figure 3). These pins are protected with ESD diodes; the diodes allow peak AC signal swing up to 1.3 V above $\mathrm{V}_{\text {Cc }}$.

As shown in Table 3, the IF output differential impedance is approximately 390Ω in parallel with 0.44 pF . A simple band-pass IF matching network suitable for wireless applications is shown in Figure 9. Here, L1, L2 and C8 set the desired IF output frequency. The 390Ω differential output can then be applied directly to a differential filter, or an $8: 1$ balun for impedance transformation down to 50Ω. To achieve maximum linearity, C8 should be located as close as possible to the IF+/IF- pins. Even small amounts of inductance in series with C8 (such as through a via) can significantly degrade IIP3. For high IF frequencies, the value of C8 should be reduced by the value of internal capacitance (see Table 3). This matching network is simple and offers good selectivity for narrow band IF applications.

An alternative matching network for a broadband CATV IF (270 MHz to 870 MHz) is shown in Figure 3. Here, a lowpass impedance transformer consisting of the internal capacitance, with L1 and L2, transforms the 371Ω output resistance at 870 MHz to 200Ω. A $4: 1$ balun then completes the match down to 50Ω. Supply voltage is applied through the center-tap of the transformer.

Table 3. IF Output Differential Impedance (Parallel Equivalent)

Frequency	Differential Output	Differential S11		
(MHz)	Impedance	Mag	Angle	
10	$396 \\|-j 10 \mathrm{k}$	0.766	0	
70	$394 \\|-j 5445$	0.775	-1.1	
170	$393 \\|-j 2112$	0.774	-2.8	
240	$392 \\|-j 1507$	0.773	-3.9	
450	$387 \\|-j 798$	0.772	-7.3	
750	$377 \\|-j 478$	0.768	-12.2	
860	$371 \\|-j 416$	0.766	-14.0	
1000	$363 \\|-j 359$	0.762	-16.2	
1250	$363 \\|-j 295$	0.764	-19.6	
1500	$346 \\|-j 244$	0.756	-23.6	
1900	$317 \\|-j 192$	0.743	-29.9	

Figure 9. IF Output Equivalent Circuit with Band-Pass Matching Elements

PACKAGG DESCRIPTION

UF16 Package
16-Lead Plastic QFN ($4 \mathrm{~mm} \times 4 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1692)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS
BOTTOM VIEW—EXPOSED PAD

NOTE:

1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)
2. ALL DIMENSIONS ARE IN MILLIMETERS
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
4. EXPOSED PAD SHALL BE SOLDER PLATED

APPLICATIONS InFORMATION

Figure 10. 1900MHz Evaluation Board Layout

Figure 11. 1230MHz Cable Infrastructure Evaluation Board Layout (Wide Output Range Down-Converting Mixer for Downlink Transmitter)

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT5500	1.8GHz to 2.7GHz Receiver-Front End	1.8 V to 5.25 V Supply, Dual-Gain LNA, Mixer, LO Buffer
LT5502	400MHz Quadrature IF Demodulator with RSSI	1.8 V to 5.25V Supply, 70MHz to 400MHz IF,
		84 dB Limiting Gain, 90db RSSI Range
LT5503	1.2GHz to 2.7GHz Direct IQ Modulator	1.8 V to 5.25V Supply, Four-Step RF Power Control,
	and Upconverting Mixer	120 MHz Modulation Bandwidth
LT5504	800MHz to 2.7GHz RF Measuring Receiver	80 dB Dynamic Range, Temperature Compensated, 2.7V to 5.5V Supply
LTC5505	RF Power Detectors with >40dB Dynamic Range	300MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply
LTC5507	100kHz to 1000MHz RF Power Detector	Temperature Compensated, 2.7V to 6V Supply
LT5511	High Signal Level Upconverting Mixer	RF Output to 3GHz, 17dBm IIP3, Integrated L0 Buffer

