PC957L0NSZ

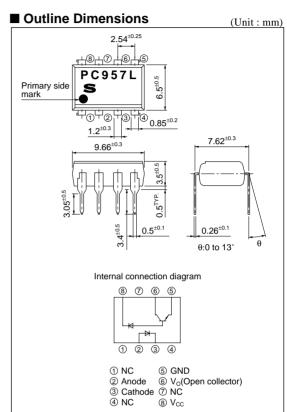
PC957L0NSZ

* VDE (VDE0884) approved type is also available as an option

■ Features

SHARP

- 1. High resistance to noise (CMR:MIN. 15kV/µs)
- 2. High speed response (t_{PHL}:MAX. 0.8µs)
- 3. Standard DIP type
- 4. Isolation voltage (V_{iso (rms)}=5.0kV)
- 5. Recognized by UL, file No. E64380 (model No. PC957L)


■ Applications

- 1. Programmable controller
- 2. Inverter

Absolute Maximum Ratings $(T_a=25^{\circ}C)$								
Parameter		Symbol	Rating	Unit				
Input	*1 Forward current	I_F	25	mA				
	Reverse voltage	V_R	5	V				
	*2 Power dissipation	P	45	mW				
Output	Output current	I_{O}	8	mA				
	Supply voltage	V_{CC}	-0.5 to +30	V				
	Output voltage	$V_{\rm O}$	-0.5 to +20	V				
	*3 Power dissipation	Po	100	mW				
*4 Isolation voltage		V _{iso (rms)}	5.0	kV				
Operating temperature		T_{opr}	-55 to +100	°C				
Storage temperature		T_{stg}	-55 to +125	°C				
*5 Soldering temperature		T_{sol}	270	°C				

^{*1} When ambient temperature goes above 70°C, the power dissipation goes down at $0.8 mA/^{\circ} C$

High Speed and High CMR *OPIC Photocoupler

 ^{* &}quot;OPIC"(Optical IC) is a trademark of the SHARP Corporation.
 An OPIC consists of a light-detecting element and signal-processing circuit integrated onto a single chip.

^{*2} When ambient temperature goes above 70°C, the power dissipation goes down at 0.8mW/°C

^{*3} When ambient temperature goes above 70°C, the power dissipation goes down at 1.9mW/°C

^{*4 40} to 60% RH, AC for 1minute

^{*5} For 10s

■ Electro-optical Characteristics *6 (Unless otherwise specified Ta=0 to +70°C)							
Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input	Forward voltage	V_{F}	T _a =25°C, I _F =16mA	_	1.7	1.95	V
	Reverse current	I_R	$T_a=25^{\circ}C, V_R=5V$	_	_	10	μΑ
	Terminal capacitance C_t $T_a=25^{\circ}C$, $V_F=0$, $f=1MHz$		_	60	250	pF	
Output	High level output current (1)	I _{OH (1)}	$T_a=25$ °C, $I_F=0$, $V_{CC}=V_0=5.5V$	-	3	500	nA
	High level output current (2)	I _{OH (2)}	$T_a=25$ °C, $I_F=0$, $V_{CC}=V_0=15V$	_	0.01	1	μΑ
	High level output current (3)	I _{OH (3)}	$I_{F}=0, V_{CC}=V_{O}=15V$	_	_	50	μΑ
	Low level output voltage	V _{OL}	I _F =16mA, V _{CC} =4.5V, I _O =2.4mA	_	0.1	0.4	V
	Low level supply current	I_{CCL}	I _F =16mA, V _{CC} =15V, V _O =open	_	120	_	μΑ
	High level supply current (1)	I _{CCH (1)}	T _a =25°C, I _F =0, V _{CC} =15V, V _O =open	_	0.02	1	μΑ
	High level supply current (2)	I _{CCH (2)}	I _F =0, V _{CC} =15V, V _O =open	_	_	2	μΑ
Transfer characteristics	Current transfer ratio (1)	CTR (1)	T _a =25°C, I _F =16mA, V _{CC} =4.5V, V _O =0.4V	19	_	50	%
	Current transfer ratio (2)	CTR (2)	$I_F=16mA, V_{CC}=4.5V, V_O=0.4V$	15	-	_	%
	Isolation resistance	R _{ISO}	T _a =25°C, DC=500V, 40 to 60%RH	5×10 ¹⁰	1×10 ¹¹	_	Ω
	Floating capacitance	$C_{\rm f}$	T _a =25°C, V=0, f=1MHz	_	0.6	1	pF
	*7 "High—Low" propagation delay time	t _{pHL}	T _a =25°C, V _{CC} =5V	-	0.2	0.8	μs
	*7 "Low→High" propagation delay time	t _{pLH}	$I_F=16\text{mA}, R_L=1.9\Omega$	_	0.6	0.8	μs
	*8 Instantaneous common mode rejection voltage "Output : High level"	CM _H	$\begin{array}{c} T_a \!\!=\!\! 25^\circ C, I_F \!\!=\!\! 0, V_{CC} \!\!=\!\! 5V \\ V_{CM (p \!\!-\! p)} \!\!=\!\! 1.0 kV, R_L \!\!=\!\! 1.9 k\Omega \end{array}$	15	30	_	kV/μs
	*8 Instantaneous common mode rejection voltage "Output : Low level"	CM_L	$\begin{array}{c} T_a\!\!=\!\!25^{\circ}\!C,I_F\!\!=\!\!16mA,V_{CC}\!\!=\!\!5V\\ V_{CM(p\!-\!p}\!\!=\!\!1.0kV,R_L\!\!=\!\!1.9k\Omega \end{array}$	-15	-30	-	kV/μs

^{*6} When measuring output and transfer characteristics, connect a by-pass capacitor (0.01µF or more) between Vcc (3) and GND (5) near the device

Fig.1 Test Circuit for Propagation Delay Time

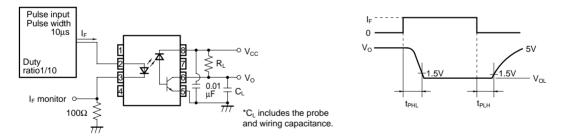
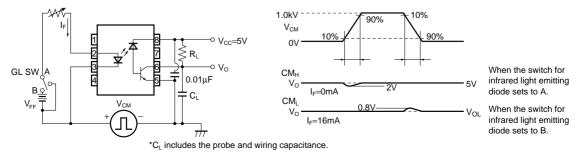



Fig.2 Test Circuit for Instantaneous Common Mode Rejection Voltage

^{*7} Refer to Fig.1

^{*8} Refer to Fig.2

PC957L0NSZ

Fig.3 Forward Current vs. Ambient Temperature

SHARP

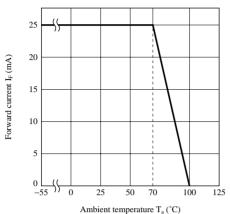


Fig.5 Forward Current vs. Forward Voltage

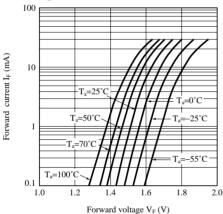


Fig.7 Output Current vs. Output Voltage

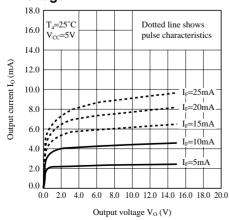


Fig.4 Power Dissipation vs. Ambient Temperature

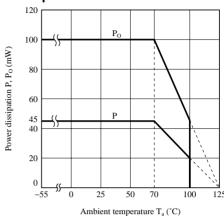


Fig.6 Relative Current Transfer Ratio vs. Forward Current

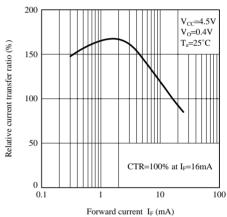



Fig.8 Relative Current Transfer Ratio vs. Ambient Temperture

PC957L0NSZ

Fig.9 High Level Output Current vs. Ambient temperature

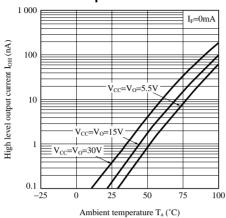
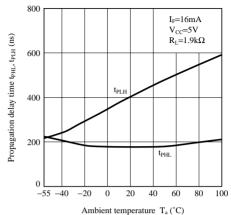



Fig.10 Propagetion Delay Time vs. Ambient Temperature

NOTICE

- The circuit application examples in this publication are provided to explain representative applications of SHARP
 devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes
 no responsibility for any problems related to any intellectual property right of a third party resulting from the use of
 SHARP's devices.
- Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP
 reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents
 described herein at any time without notice in order to improve design or reliability. Manufacturing locations are
 also subject to change without notice.
- Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage
 caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used
 specified in the relevant specification sheet nor meet the following conditions:
 - (i) The devices in this publication are designed for use in general electronic equipment designs such as:
 - --- Personal computers
 - --- Office automation equipment
 - --- Telecommunication equipment [terminal]
 - --- Test and measurement equipment
 - --- Industrial control
 - --- Audio visual equipment
 - --- Consumer electronics
 - (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:
 - --- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
 - --- Traffic signals
 - --- Gas leakage sensor breakers
 - --- Alarm equipment
 - --- Various safety devices, etc.
 - (iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:
 - --- Space applications
 - --- Telecommunication equipment [trunk lines]
 - --- Nuclear power control equipment
 - --- Medical and other life support equipment (e.g., scuba).
- If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Law of Japan, it is necessary to obtain approval to export such SHARP devices.
- This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.
- Contact and consult with a SHARP representative if there are any questions about the contents of this publication.