Motor driver ICs

FDD spindle motor driver BA6492BFS

The BA6492BFS is a one-chip IC designed for driving FDD spindle motors. This high-performance IC employs a 3-phase, full-wave soft switching drive system, and contains a digital servo, an index amplifier, two monostable multivibrator elements, and a power save circuit. The compactly packaged IC reduces the number of external components required.

ApplicationsFloppy disk drivers

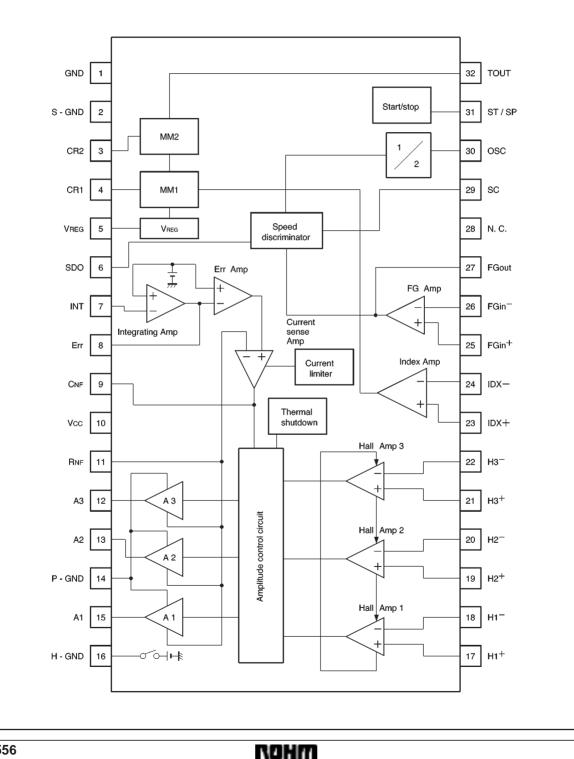
Features

- 1) 3-phase, full-wave soft switching drive system.
- 2) Digital servo circuit.
- 3) Power save circuit.

- 4) Hall power supply switch.
- 5) Motor speed changeable.
- 6) Index amplifier. Built-in 2 monostable multivibrator.

•Absolute maximum ratings (Ta = 25° C)

Parameter	Symbol	Limits	Unit
Applied voltage	Vcc	7.0	V
Power dissipation	Pd	950*	mW
Operating temperature	Topr	-25~+75	°C
Storage temperature	Tstg	-55~+150	Ĉ
Allowable output current	Юмах.	1000	mA

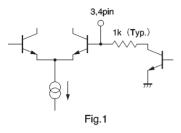

* Reduced by 7.6 mW for each increase in Ta of 1 $^\circ\!C$ over 25 $^\circ\!C.$

* Mounted on a glass epoxy PCB (90 X 50 X 1.6 mm).

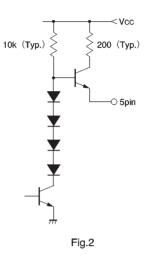
• Recommended operating conditions (Ta = 25° C)

Paramerter	Symbol	Limits	Unit
Power supply voltage	Vcc	4.2~6.5	V

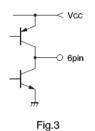
Block diagram



Pin descriptions


Pin No.	Pin name	Function	
1	GND	GND	
2	S - GND	Signal ground	
3	CR2	Mono/multi device 2 timing setting	
4	CR1	Mono/multi device 1 timing setting	
5	VREG	Constant output voltage	
6	SDO	Speed discriminator output	
7	INT	Integrating amplifier input (-)	
8	Err	Error amplifier input; integrating amplifier output	
9	CNF	Current sensing amplifier output (for phase compensation)	
10	Vcc	Signal power supply	
11	RNF	Driver power supply (current sensing pin)	
12	A3	Motor output 3	
13	A2	Motor output 2	
14	P - GND	Driver ground	
15	A1	Motor output 1	
16	H - GND	Hall device bias switch (ground)	
17	H₁+	Hall input amplifier 1 input (+)	
18	H₁ [_]	Hall input amplifier 1 input (-)	
19	H₂ ⁺	Hall input amplifier 2 input (+)	
20	H2 [—]	Hall input amplifier 2 input (-)	
21	H₃+	Hall input amplifier 3 input (+)	
22	H₃ [—]	Hall input amplifier 3 input (-)	
23	IDX ⁺	Index amplifier input (+)	
24	IDX ⁻	Index amplifier input (-)	
25	FGin ⁺	FG amplifier input (+)	
26	FGin ⁻	FG amplifier input (-)	
27	FGout	FG amplifier output	
28	N. C.	N. C.	
29	SC	Speed control	
30	OSC	Oscillator input	
31	ST / SP	Start/stop pin	
32	TOUT	Mono/multi device timing output	

Input/output circuits


(1) Monostable multivibrator element timing setting (3, 4 pin)

(2) Constant voltage output (5 pin)

(3) Speed discriminator output (6 pin)

(4) Integrating amplifier (7, 8 pin)

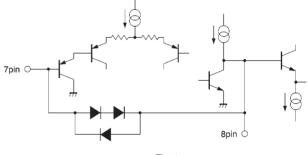
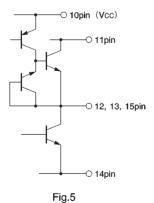
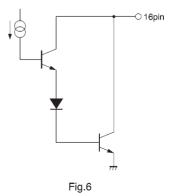
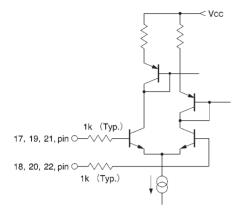
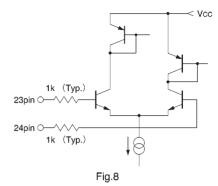




Fig.4

(5) Motor output $(11 \sim 15 \text{ pin})$



(6) Hall bias (16 pin)



(7) Hall input (17~22 pin)

(8) Index input (23, 24 pin)

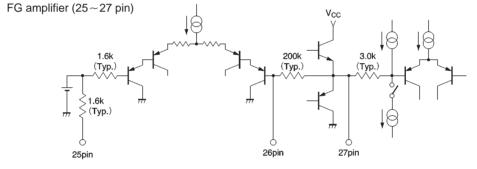
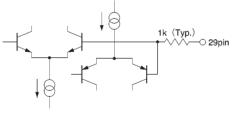
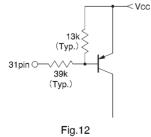



Fig.9


(10) Speed control (29 pin)

(9)

(11) External clock input (30 pin)

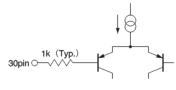
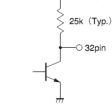



Fig.11

(13) Timing output (32 pin)

●Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 5V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Supply current 1	lcct	-	16	24	mA	Operating state
Supply current 2	lcc2	-	-	3	μA	Standby state
Hall in-phase input voltage range	Vнв	1.5	-	4.0	V	
Hall amplifier input sensitivity	VHin	60	-	_	mV _{P-P}	Differential input
Output saturation voltage 1	V _{sat1}	-	0.95	1.2	V	lout= 350 mA (total of upper and lower values)
Output saturation voltage 2	Vsat2	-	1.2	1.6	V	lout = 700 mA (total of upper and lower values)
Speed discriminator output high level voltage	Vdн	4.7	4.9	_	V	Flow out 500 µ A
Speed discriminator output low level voltage	Vdl	-	0.1	0.25	V	Flow in 500 μ A
Integrated amplifier output high level voltage	VEinH	2.5	2.7	2.9	V	7pin=2.0V
Integrated amplifier output low level voltage	VEinL	1.3	1.5	1.7	V	7pin=3.0V
FG amplifier gain	GFG	39	42	45	dB	f=300Hz
Speed discriminator minimum input	VFGmi	2.0	-	_	mV _{P-P}	FG amplifier input equivalent
Speed discriminator noise margin	VFGnm		-	0.5	mV _{P-P}	FG amplifier input equivalent
Error amplifier reference voltage	VEn	2.35	2.55	2.75	v	
Control input gain	GErr	-14.5	-11	-8.5	dB	V8 pin versus V11 pin $R_{NF} = 0.5 \Omega$
Current limiter voltage	Vcl	175	205	235	mV	Voltage between Vcc and V11 pins R⊮==0.5Ω
External clock frequency	fcк	_	1000	1100	kHz	
External clock input threshold voltage	Vск	1.0	-	2.0	v	
Start/stop voltage, HIGH	Vssh	3.0	-	5.0	v	Standby state
Start/stop voltage, LOW	Vssl	0.0	_	1.5	v	Operating state
Revolving speed switch voltage, HIGH	Vscн	4.0	_	5.0	V	Synchronized at fFG= 360 Hz
Revolving speed switch voltage, MED	Vscм	2.0	_	3.0	v	Synchronized at fFg= 600 Hz
Revolving speed switch voltage, LOW	VSCL	0.0	_	1.0	v	Synchronized at fFg= 300 Hz
Hall bias saturation voltage	Vнg	1.2	1.5	1.8	v	Flow in 10 mA
Index in-phase input voltage range	VBID	1.5	_	4.0	v	
Index input offset voltage	Vosid	-5	0	+5	mV	
Index input hysteresis 1	Vhyidi	8	18	28	mV	
Index input hysteresis 2	Vhy _{ID2}	-28	-18	-8	mV	
Regulator voltage	Vreg	2.0	2.3	2.6	V	
MM1 timing accuracy 1	T1	1.80	2.00	2.20	ms	29pin= "L"
MM1 timing accuracy 2	T2	1.50	1.67	1.83	ms	29pin= "H"
MM1 timing accuracy 3	Т3	0.90	1.00	1.10	ms	29pin="M"
MM2 timing accuracy	T4	1.50	2.14	2.78	ms	
MM1 timing ratio 1	T1 / T2	1.15	1.20	1.25	-	
MM1 timing ratio 2	T1 / T3	1.90	2.00	2.10	-	
Timing output resistance	Roid	17	25	33	kΩ	
Timing LOW level output voltage	Volid	-	0.2	0.4	V	Flow in 500 µ A

ONot designed for radiation resistance.

Circuit operation

(1) Motor drive circuits

The motor driver employs a 3-phase, full-wave soft switching current drive system, in which the rotor position is sensed by Hall elements. The motor drive current is sensed by a small resistor (RNF). The total drive current is controlled and limited by sensing the voltage developed across this resistor. The motor drive circuit consists of Hall amplifiers, an amplitude control circuit, a driver, an error amplifier, and a current feedback amplifier (Fig. 14). The waveforms of different steps along the signal path from the Hall elements to the motor driver output are shown in Fig. 15. The Hall amplifiers receive the Hall elements voltage signals as differential inputs. Next, by deducting the voltage signal of Hall elements 2 from the voltage signal of Hall elements 1, current signal H1, which has a phase 30 degrees ahead of Hall elements 1. is created. Current signals H2 and H3 are created likewise. The amplitude control circuit then amplifies the H1, H2, and H3 signals according to the current feedback amplifier signal. Then, drive current signals are produced at A1, A2, and A3 by applying a constant magnification factor. Because a soft switching system is employed, the drive current has low noise and a low total current ripple. The total drive current is controlled by the error amplifier input voltage. The error amplifier has a voltage gain of about -11dB (a factor of 0.28). The current feedback amplifier regulates the total drive current, so that the error amplifier output voltage (V1) becomes equal to the VRNF voltage, which has been voltage-converted from the total drive current through the RNF pin. If V1 exceeds the current limiter voltage (Vcl), the constant voltage Vcl takes precedence, and a current limit is provided at the level of VcI/RNF.

The current feedback amplifier tends to oscillate because it receives all the feedback with a gain of 0dB. To prevent this oscillation, connect an external capacitor to the C_{NF} pin for phase compensation and for reducing the high frequency gain.

(2) Speed control circuit

The speed control circuit is a non-adjustable digital servo system that uses a frequency locked loop (FLL). The circuit consists of an 1/2 frequency divider, an FG amplifier, and a speed discriminator (Fig. 16).

An internal reference clock is generated from an external

clock signal input. The 1/2 frequency divider reduces the frequency of the OSC signal. The FG amplifier amplifies the minute voltage generated by the motor FG pattern and produces a rectangular-shaped speed signal. The FG amplifier gain (G_{FG} = 42dB, typical) is determined by the internal resistance ratio.

For noise filtering, a high-pass filter is given by C3 and a resistor of 1.6k Ω (typical), and a low-pass filter is given by C4 and a resistor of 200k Ω (typical). The cutoff frequencies of high-pass and low-pass filters (f_H and f_L, respectively) are given by:

$$f_{H=} \ \frac{1}{2\pi \times 1.6 k\Omega \times C3} \quad f_{L=} \ \frac{1}{2\pi \times 200 k\Omega \times C4}$$

The C3 and C4 capacitances should be set so as to satisfy the following relationship:

 $f_{\text{H}}\,{<}\,f_{\text{FG}}\,{<}\,f_{\text{L}}$

where f_{FG} is the FG frequency. Note that the FG amplifier inputs have a hysteresis.

The speed discriminator divides the reference clock and compares it with the reference frequency, and then outputs an error pulse according to the frequency difference. The motor rotational speed N is given by:

N=60 ·
$$\frac{f_{osc}}{n} \cdot \frac{1}{z}$$
 (1)

fosc is the reference clock frequency,

n is (speed discriminator count) \times 2,

z is the FG tooth number.

The discriminator count depends on the speed control pin voltage.

Speed control pin	Count
Н	1388
М	834
L	1666

The integrator flattens out the error pulse of the speed discriminator and creates a control signal for the motor drive circuit (Fig. 17).

(3) Index signal circuit

The index signal circuit receives and amplifies differential inputs of Hall device signals. The Hall inputs have a hysteresis. The monostable multivibrator devices create a delay time from the zero-cross point, and outputs a pulse after the delay time. The delay time and the pulse width can be set arbitrarily with the time constant of the external CR. The following equations are given for the delay times T1, T2, and T3 for the speed control pin voltage levels of LOW, HIGH, and MEDIUM, respectively:

T1 \doteq 1.35 × C5 × VR [sec] (Typ.) T2 \doteq 1.13 × C5 × VR [sec] (Typ.) T3 \doteq 0.68 × C5 × VR [sec] (Typ.) T4 \doteq 2.14 × 10⁵ × C4 [sec] (Typ.) T1/T2 = 1.2 (Typ.) T1/T3 = 2.0 (Typ.)

The delay angle remains constant regardless of changes in the motor speed.

(4) Other circuits

The start/stop circuit puts the IC to the operational state when the control pin is LOW, and to the standby state (circuit current is nearly zero) when the control pin is HIGH. The Hall elements bias switch, which is linked to the start/stop circuit, is turned off during the standby state, so that the Hall elements current is shut down.

The thermal shutdown circuit shuts down the IC currents when the chip junction temperature is increased to about 175° C (typical). The thermal shutdown circuit is deactivated when the temperature drops to about 20° C (typical).

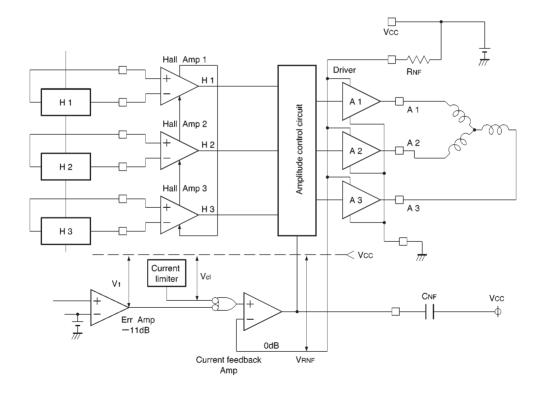


Fig.14 Motor drive circuit

Circuit operation

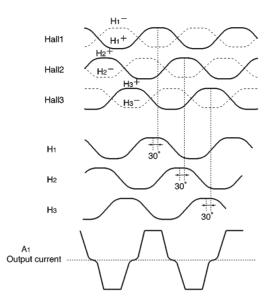


Fig.15 I / O waveforms

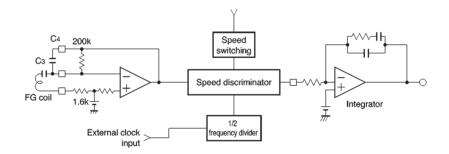


Fig.16 Speed control circuit

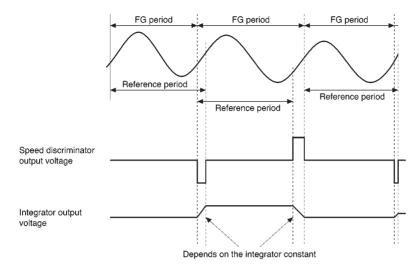
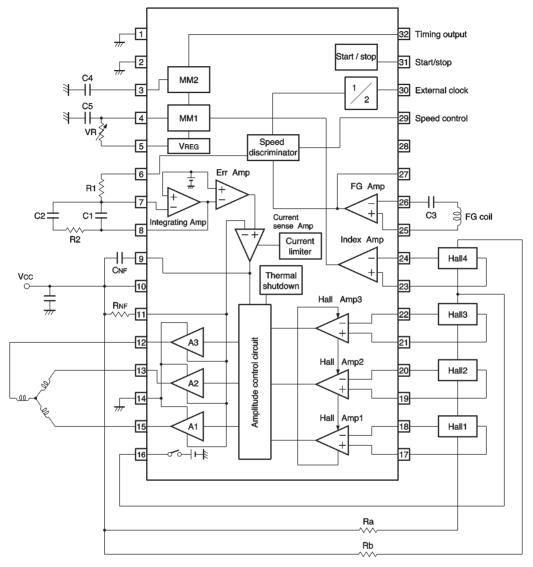



Fig.17 Control signal waveforms

Application example

Operation notes

(1) Thermal shutdown circuit

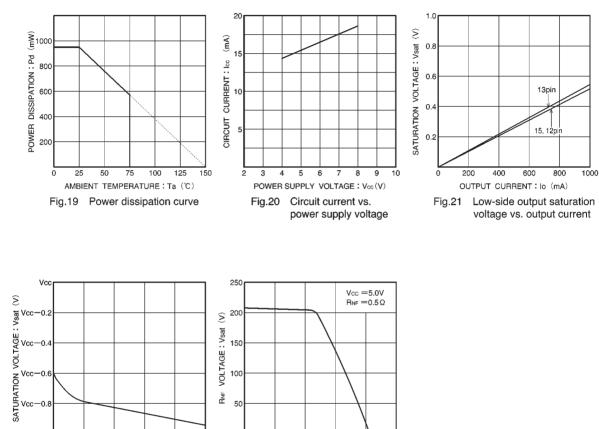
This circuit shuts down all the IC currents when the chip junction temperature is increased to about $175^{\circ}C$ (typical). The circuit is deactivated when the temperature drops to about $155^{\circ}C$ (typical).

(2) Hall elements connection

Hall elements can be connected in either series or paral-

lel. When connecting in series, care must be taken not to allow the Hall output to exceed the Hall common-mode input range.

(3) Hall input level


Switching noise may occur if the Hall input voltage $(17 \sim 22 \text{ pin})$ is too high. Differential inputs of about 100mV (peak to peak) are recommended.

Motor driver ICs

(4) Driver ground pin (pin 14)

Pin 14, which is the motor current ground pin, is not connected to the signal ground pins (pin 1 and 2). Design a proper conductor pattern in consideration of the motor current that flows through pin 14.

•Electrical characteristic curves

0.5

1.0

Fig.23

1.5

CONTROL INPUT VOLTAGE : V8pin

RNF voltage vs.

2.0

control input voltage

2.5

3.0

(5)

age.

External clock

For the external clock, make sure that the pin30 voltage

is always less than Vcc and more than the ground volt-

ō

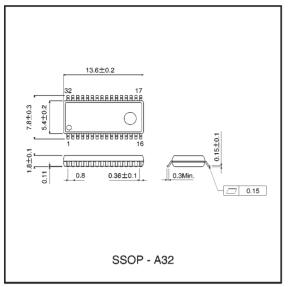
Fig.22

200

400

OUTPUT CURRENT : Io (µ A)

600


High-side output saturation

voltage vs.output current

800

1000

External dimensions (Units: mm)

