TONE/PULSE DIALER WITH REDIAL FUNCTION

GENERAL DESCRIPTION

The W91312N are monolithic ICs that provide the necessary signals for either pulse or tone dialing. The W91312 N feature a redial memory.

FEATURES

- DTMF/Pulse switchable dialer
- 32 digits for redial memory
- Pulse-to-tone $(P \rightarrow T)$ keypad for long distance call operation
- Break/Make ratio is selectable by pin option
- Uses 4×4 keyboard
- Easy operation with redial, flash, pause, and $P \rightarrow T$ keypads
- Pause, $\mathrm{P} \rightarrow \mathrm{T}$ (pulse-to-tone) can be stored as a digit in memory
- Minimum tone output duration: 93 mS
- Minimum intertone pause: 93 mS
- On-chip power-on reset
- Uses 3.579545 MHz crystal or ceramic resonator
- Packaged in 18-pin plastic DIP
- The different dialers in the W91310 series are shown in the following table:

TYPE NO.	PULSE (ppS)	FLASH (mS)	FLASH PAUSE (S)	PAUSE (S)
W91312N	$10 / 20$	$600 / 100 / 300 / 73$	1.0	$3.6 / 2.0$

PIN CONFIGURATION

Preliminary W91312N

PIN DESCRIPTION

Preliminary W91312N

Ninbond

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

Keyboard Operation

C1	C2	C3	C4
1	2	3	
4	5	6	F1
7	8	9	F2
*/T	0	\#	R/P1
R/P2	R	F3	F4

- R/P1, R/P2: Redial and pause function key, P1 is 3.6 sec . and P 2 is 2.0 sec .
- $* / \mathrm{T}: ~ * ~ i n ~ t o n e ~ m o d e ~ a n d ~ P ~ T ~ T ~ i n ~ p u l s e ~ m o d e ~$
- F1, ..., F4: Flash keys, the flash break time of F1 $=600 \mathrm{mS}, \mathrm{F} 2=100 \mathrm{mS}, \mathrm{F} 3=300 \mathrm{mS}, \mathrm{F} 4=73$ mS
- R: One-key redial function

Notes: D1, ..., Dn, D1', ..., Dn': 0, .., 9, */T, \#
$R / P: R / P 1$ or R/P2.
Fn: F1, ..., F4

Preliminary W91312N

inbond
Electronics Corp.

Normal Dialing

OFF HOOK, D1, D2, $, \ldots, \mathrm{Dn}$

1. D1, D2, ..., Dn will be dialed out.
2. Dialing length is unlimited, but redial is inhibited if length oversteps 32 digits.

Redialing

OFF HOOK, D1, D2,, D, Dn BUSY, COME ON HOOK, OFF HOOK,$~$ R/P
The R/P key can execute redial function only as the first key-in after off-hook; otherwise, it will execute pause function.

Access Pause

1. The pause function can be stored in memory.
2. The pause function is executed in normal dialing or memory dialing.
3. The pause function timing diagram is shown in Figure 3.

Pulse-to-tone ($* / \mathrm{T}$)

1. If the mode switch is set to pulse mode, then the output signal will be:
D1, D2, ..., Dn, Pause, D1', D2', ..., Dn'
(Pulse)
(Tone)
2. If the mode switch is set to tone mode, then the output signal will be:
D1, D2, .., Dn, $\begin{aligned} & \text { */T } \\ & \text { D1, D2, ..., Dn, } \\ & \text { (Tone) } \\ & \text { (Pause) }\end{aligned}$ (Tone)
3. The dialer remains in tone mode when the digits have been dialed out and can be reset to pulse mode only by going on-hook.
4. The $\mathrm{P} \rightarrow \mathrm{T}$ function timing diagram is shown in Figure 4.

Flash

1. Flash key can't be stored as a digit in memory.
2. The system will return to the initial state after the break time is finished.
3. The flash function timing diagram is shown in Figure 5.

Preliminary W91312N

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT
DC Supply Voltage	VDD-VSS	-0.3 to +7.0	V
Input/Output Voltage	VIL	$\mathrm{VSS}-0.3$	V
	VIH	VDD +0.3	V
	VOL	$\mathrm{VSS}-0.3$	V
	VOH	$\mathrm{VDD}+0.3$	V
Power Dissipation	PD	120	mW
Operating Temperature	TOPR	-20 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	TSTG	-55 to +125	${ }^{\circ} \mathrm{C}$

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

DC CHARACTERISTICS

(VDD-Vss $=2.5 \mathrm{~V}$, Fosc. $=3.58 \mathrm{MHz}, \mathrm{TA}=25^{\circ} \mathrm{C}$, all outputs unloaded)

PARAMETER	SYM.	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating Voltage	VDD		2.0	-	5.5	V
Operating Current	IOP	Tone	-	0.3	0.5	mA
		Pulse	-	0.15	0.3	mA
Standby Current	ISB	$\overline{\text { HKS }}=0$, No load, \& No key entry	-	-	15	$\mu \mathrm{A}$
Memory Retention Current	IMR	$\overline{\mathrm{HKS}}=1, \mathrm{VDD}=1.0 \mathrm{~V}$	-	-	0.2	$\mu \mathrm{A}$
DTMF Output Voltage	Vто	Row group, RL=5 $\mathrm{K} \Omega$	130	150	170	mVrms
Pre-emphasis		Col/Row, VDD $=2.0$ to 5.5 V	1	2	3	dB
DTMF Distortion	THD	$\mathrm{RL}=5 \mathrm{~K} \Omega$, VDD $=2.0$ to 5.5 V	-	-30	-23	dB
DTMF Output DC Level	VTDC	$\mathrm{RL}=5 \mathrm{~K} \Omega, \mathrm{VDD}=2.0$ to 5.5 V	1.0	-	3.0	V
DTMF Output Sink Current	ITL	V TO $=0.5 \mathrm{~V}$	0.2	-	-	mA
$\overline{\mathrm{DP}}$ Output Sink Current	IPL	$\mathrm{VPO}=0.5 \mathrm{~V}$	0.5	-	-	mA
T/P MUTE Output Sink Current	IML	$\mathrm{VMO}=0.5 \mathrm{~V}$	0.5	-	-	mA
HKS I/P Pull-high Resistor	Rкн		-	300	-	$\mathrm{K} \Omega$

Preliminary W91312N

DC Characteristics, continued

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Keypad Input Drive Current	IKD	$\mathrm{VI}=0 \mathrm{~V}$	30	-	-	$\mu \mathrm{A}$
Keypad Input Sink Current	IKS	$\mathrm{VI}=2.5 \mathrm{~V}$	200	400	-	$\mu \mathrm{A}$
Keypad Resistance			-	-	5.0	$\mathrm{~K} \Omega$

AC CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Keypad Active in Debounce	TKID		-	20	-	mS
Key Release Debounce	TKRD		-	20	-	mS
Pre-digit Pause ${ }^{1}$	TPDP1	$B / M=1$	-	40	-	mS
	10 ppS	$B / M=0$	-	33.3	-	
Pre-digit Pause ${ }^{2}$	TPDP2	$B / M=1$	-	20	-	mS
	20 ppS	$B / M=0$	-	16.7	-	
Interdigit Pause (Auto dialing)	TIDP	10 ppS	-	800	-	mS
		20 ppS	-	500	-	
Make/Break Ratio	M/B	$\mathrm{B} / \mathrm{M}=1$	-	40:60	-	\%
		$B / M=0$	-	33:67	-	
DTMF Output Duration	TTD	Auto Dialing	-	100	-	mS
Intertone Pause	TITP	Auto Dialing	-	100	-	mS
Flash Break Time	TFB	F1	-	600	-	mS
		F2	-	100	-	
		F3	-	300	-	
		F4	-	73	-	
Flash Pause Time	TFP	-	-	1.0	-	S
Pause Time	TP	Pause 1	-	3.6	-	S
		Pause 2	-	2.0	-	

Notes:

1. Crystal parameters suggested for proper operation are $\mathrm{Rs}<100 \Omega$, $\mathrm{Lm}=96 \mathrm{mH}, \mathrm{Cm}=0.02 \mathrm{pF}, \mathrm{Cn}=5 \mathrm{pF}, \mathrm{Cl}=18 \mathrm{pF}$, Fosc. $=3.579545 \mathrm{MHz} \pm 0.02 \%$.
2. Crystal oscillator accuracy directly affects these times.

Preliminary W91312N

TIMING WAVEFORMS

Figure 1(a). Pulse Mode Timing Diagram

Figure 1(b). Pulse Mode Timing Diagram

Preliminary W91312N

TIming Waveforms, continued

Figure 2(a). Tone Mode Timing Diagram

Figure 2(b). Tone Mode Auto Dialing Timing Diagram

Preliminary W91312N

Tlming Waveforms, continued

Figure 3. Pause Function Timing Dragram

Figure 4. Pulse-to-tone Function Timing Dragram

Electronics Corp.

Tlming Waveforms, continued

Figure 5. Flash Function Timing Diagram

Headquarters

No. 4, Creation Rd. III,
Science-Based Industrial Park, Hsinchu, Taiwan
TEL: 886-3-5770066
FAX: 886-3-5792766
http://www.winbond.com.tw/
Voice \& Fax-on-demand: 8862-27197006
Winbond Electronics (H.K.) Ltd. Winbond Electronics North America Corp.
Unit 9-15, 22F, Millennium City, Winbond Memory Lab.
No. 378 Kwun Tong Rd; Winbond Microelectronics Corp.
Kowloon, Hong Kong
TEL: 85227513100
FAX: 852-27552064

Taipei Office
11F, No. 115, Sec. 3, MirSheng East Rd.,
Taipei, Taiwan
TEL: 886-2-27190505
FAX: 886-2-27197502

Winbond Systems Lab.
2727 N. First Street, San Jose,
CA 95134, U.S.A.
TEL: 408-9436666
FAX: 408-5441798

Note: All data and specifications are subject to change withou t notice.

