160-DOT SEGMENT DRIVER (TCP)

GENERAL DESCRIPTION

The MSM6779B is a LCD dot matrix segment driver. Fabricated in CMOS technology, the device consists of 160 -bit latches I and II, a 160-bit level shifter, and a 4 -level driver. The MSM6779B latches the 4-bit parallel display data sent from a microcontroller or a LCD controller to generate a LCD driving signal. This MSM6779B has a power-save function that sets all the drivers except one to the low supply current status (I_{DD} SBY).
This driver's 3 V -operation allows significant reduction in current consumption, suitable for battery-driving. The bias voltage to specify a drive level can be supplied externally. The MSM6779B can be used for various types of LCD panels.

FEATURES

- Logic supply voltage
: 2.7 V to 5.5 V
- LCD drive voltage
: A wide range from 14 V to 28 V
- Applicable LCD duty : $1 / 64$ to $1 / 256$
- The bias voltage can be supplied externally.
- LCD outputs : 160
- A power-save function to reduce power consumption in a large-screen LCD panel.
- A 4-bit parallel data transfer to reduces its transfer speed to $1 / 4$ of conventional serial transfer, providing low power consumption.
- Data transfer clock frequency : 6.5 MHz
- 35mm-wide-film TCP

Tin-plating
User area $: 8 \mathrm{~mm}$

BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)

Note: The drawing shown does not specify the exact outline of the TCP; it only specifies the pin layout.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Supply Voltage (1)	V_{DD}	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to 6.5	V
Supply Voltage (2)	$\mathrm{V}_{\mathrm{DD}-}-\mathrm{V}_{\mathrm{EE}}{ }^{* 1}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	0 to 30	V
Input Voltage	V_{I}	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to $\mathrm{V}_{\mathrm{DD}+}+0.3$	V
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-	-30 to +85	${ }^{\circ} \mathrm{C}$

${ }^{*} 1 \mathrm{~V}_{1}>\mathrm{V}_{3}>\mathrm{V}_{4}>\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{DD}} \geq \mathrm{V}_{1}>\mathrm{V}_{3} \geq \mathrm{V}_{\mathrm{DD}}-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}+10 \mathrm{~V} \geq \mathrm{V}_{4}>\mathrm{V}_{\mathrm{EE}}$
$\mathrm{V}_{1}=\mathrm{V}_{1 \mathrm{~L}}=\mathrm{V}_{1 \mathrm{R}}, \mathrm{V}_{3}=\mathrm{V}_{3 \mathrm{~L}}=\mathrm{V}_{3 \mathrm{R}}, \mathrm{V}_{4}=\mathrm{V}_{4 \mathrm{~L}}=\mathrm{V}_{4 \mathrm{R}}, \mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{EEL}}=\mathrm{V}_{\mathrm{EER}}$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition	Range	Unit
Supply Voltage (1)	V_{DD}	-	2.7 to 5.5	V
Supply Voltage (2)	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}{ }^{* 1}$	-	14 to 28	V
Operating Temperature	Top	-	-20 to +75	${ }^{\circ} \mathrm{C}$

${ }^{*} 1 \mathrm{~V}_{1}>\mathrm{V}_{3}>\mathrm{V}_{4}>\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{DD}} \geq \mathrm{V}_{1}>\mathrm{V}_{3} \geq \mathrm{V}_{\mathrm{DD}}-7 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}+7 \mathrm{~V} \geq \mathrm{V}_{4}>\mathrm{V}_{\mathrm{EE}}$ $\mathrm{V}_{1}=\mathrm{V}_{1 \mathrm{~L}}=\mathrm{V}_{1 \mathrm{R}}, \mathrm{V}_{3}=\mathrm{V}_{3 \mathrm{~L}}=\mathrm{V}_{3 \mathrm{R}}, \mathrm{V}_{4}=\mathrm{V}_{4 \mathrm{~L}}=\mathrm{V}_{4 \mathrm{R}}, \mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{EEL}}=\mathrm{V}_{\mathrm{EER}}$

Note: Unlike mold packages, TCP has a low light resistance. Therefore, they are protected from light.

ELECTRICAL CHARACTERISTICS

DC Characteristics

$\left(\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}$)						
Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
"H" level Input Voltage	$\mathrm{V}_{\text {IH }}$	-*1	0.8 VDD	-	-	V
"L" level Input Voltage	V_{IL}	-*1	-	-	$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
"H" level Input Current	İ	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$ *1	-	-	1	$\mu \mathrm{A}$
"L" level Input Current	IIL	$\mathrm{V}_{1}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V}$ *1	-	-	-1	$\mu \mathrm{A}$
"H" level output Voltage	V_{OH}	$\mathrm{I}_{0}=-0.2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ *2	$V_{D D}-0.4$	-	-	V
"L" level output Voltage	V_{0}	$\mathrm{I}_{0}=0.2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ *2	-	-	0.4	V
ON Resistance	Ron	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=25 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \\ & \mathrm{I} \mathrm{~V}_{\mathrm{N}}-\mathrm{V}_{0} \mathrm{I}=0.25 \mathrm{~V} * 3 * 4 \end{aligned}$	-	1.5	3.0	k Ω
Stand-by Current Consumption	$\begin{aligned} & \mathrm{I}_{\mathrm{ID}} \\ & \mathrm{SBY} \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{CP}}=6.5 \mathrm{MHz}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=25 \mathrm{~V}, \\ & \text { No load }{ }^{* 5}, \mathrm{f}_{\mathrm{LOAD}}=21.6 \mathrm{kHz} \end{aligned}$	-	-	300	$\mu \mathrm{A}$
Current Consumption (1)	$I_{D D}$	$\begin{aligned} & \mathrm{f}_{\mathrm{CP}}=6.5 \mathrm{MHz}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=25 \mathrm{~V}, \end{aligned}$ No load * $6, \mathrm{f}_{\text {LOAD }}=21.6 \mathrm{kHz}$	-	-	1.5	mA
Current Consumption (2)	$\mathrm{IEE}^{\text {e }}$	$\begin{aligned} & \mathrm{f}_{\mathrm{CP}}=6.5 \mathrm{MHz}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=25 \mathrm{~V}, \end{aligned}$ No load *7, fload $=21.6 \mathrm{kHz}$	-	-	2.0	mA
Current Consumption (3)	Iv	$\begin{aligned} & \mathrm{f}_{\mathrm{CP}}=6.5 \mathrm{MHz}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=25 \mathrm{~V}, \end{aligned}$ No load *8, fload $=21.6 \mathrm{kHz}$	-	-	± 200	$\mu \mathrm{A}$
Input Capacitance	C_{1}	$\mathrm{f}=1 \mathrm{MHz}$	-	5	-	pF

*1 Applicable to LOAD, CP, $\mathrm{D}_{0} \sim \mathrm{D}_{3}, \mathrm{EIO}_{1}, \mathrm{EIO}_{2}, \mathrm{SHL}, \mathrm{DF}, \overline{\mathrm{DISPOFF}}$ pins
*2 Applicable to $\mathrm{EIO}_{1}, \mathrm{EIO}_{2}$ pins
*3 $\mathrm{V}_{\mathrm{N}}=\mathrm{V}_{\mathrm{DD}}$ to $\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{4}=14 / 16\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}\right), \mathrm{V}_{3}=2 / 16\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}\right), \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{1}$
*4 Applicable to O_{1} to O_{160} pins
*5 Display data 1010.....f $\mathrm{fF}_{\mathrm{DF}}=45 \mathrm{~Hz}$, Current from V_{DD} to V_{SS} when the display data is not fetching.
*6 Display data 1010.....f $\mathrm{fF}=45 \mathrm{~Hz}$, Current from $V_{\text {DD }}$ to $V_{S S}$ when the display data is fetching.
*7 Display data 1010.....f $\mathrm{fF}_{\mathrm{DF}}=45 \mathrm{~Hz}$, Current from V_{DD} to V_{EE}
*8 Display data 1010.....f $\mathrm{fF}=45 \mathrm{~Hz}$, Current on V_{1}, V_{3}, and V_{4} pins.
$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\text {IR }}, \mathrm{V}_{3}=\mathrm{V}_{3 \mathrm{~L}}=\mathrm{V}_{3 \mathrm{R}}, \mathrm{V}_{4}=\mathrm{V}_{4 \mathrm{~L}}=\mathrm{V}_{4 \mathrm{R}}, \mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{EEL}}=\mathrm{V}_{\mathrm{EER}}$

Note: The above values are quaranteed when TCP is protected from light.

Switching Characteristics

$\left(\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $\left.+75^{\circ} \mathrm{C}\right)$						
Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
Clock Frequency	f_{f}	DUTY=50\%	-	-	6.5	MHz
Clock Pulse Width	tw1	-	56	-	-	ns
Load Pulse Width	tw2	-	70	-	-	ns
Clock Pulse Rise/Fall Time	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	-	-	-	20	ns
Data Set-up Time	tosu	-	50	-	-	ns
Data Hold Time	$\mathrm{t}_{\text {DHD }}$	-	40	-	-	ns
Clock Load Time 1	tcL1	-	0	-	-	ns
Clock Load Time 2	$\mathrm{t}_{\mathrm{CL} 2}$	-	65	-	-	ns
Load Clock Time 1	tlc1	-	65	-	-	ns
Load Clock Time 2	tLC2	-	65	-	-	ns
Propagation Delay Time	$\mathrm{t}_{\text {PHL }}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	-	236	ns
$\mathrm{EIO}_{1}, \mathrm{EIO}_{2}$ Set-up Time	teSu	-	50	-	-	ns
$\mathrm{EIO}_{1}, \mathrm{ElO}_{2}$ Hold Time	teho	-	50	-	-	ns

Note: The above values are quaranteed when TCP is protected from light.

FUNCTIONAL DESCRIPTION

Pin Descriptions

$\mathbf{V}_{\mathrm{DD}}, \mathbf{V}_{\mathrm{SS}}$

Power supply for the device. V_{DD} is set to 2.7 V to 5.5 V . V_{SS} is set to 0 V .
$\mathrm{V}_{1 L}, \mathrm{~V}_{1 \mathrm{R}}, \mathrm{V}_{3 \mathrm{~L}}, \mathrm{~V}_{3 \mathrm{R}}, \mathrm{V}_{4 \mathrm{~L}}, \mathrm{~V}_{4 \mathrm{R}}, \mathrm{V}_{\text {EEL }}, \mathrm{V}_{\text {EER }}$
Bias power supply for the LCD drive voltages. Power supply should be
$V_{D D} \geq V_{1}>V_{3}>V_{4}>V_{E E}$.

$\overline{\text { DISPOFF }}$

Input for controlling the output level of O_{1} to O_{160}. The V_{1} level is output from O_{1} to O_{160} pins during "L" level input. Refer to Truth Table.

DF

Input for LCD drive wave form AC synchronization.

$\mathrm{O}_{1} \sim \mathrm{O}_{160}$

LCD drive outputs that correspond to each bit of the latch (II). Depending on the combination of the contents of the latch (display data) and DF signal, one of 4 levels $\left(V_{1}, V_{3}, V_{4}, V_{E E}\right)$ is output. Refer to Truth Table.

CP

Clock pulse input for display data reading. Data is taken into the latch (I) at the falling edge of the clock pulse.
Use an even number for the clock number per line (the number of the clock pulses during the period from Load input to the next Load input).

$\mathrm{EIO}_{1}, \mathrm{EIO}_{2}$

Chip Select Signal Input/Output. Input/Output are controlled by the SHL input. If the SHL input at "L"level, EIO_{1} is output and EIO_{2} is input. If the SHL input is at " H " level, EIO_{1} is input and EIO_{2} is output. If the SHL is at "L" level, the first EIO_{2} is fixed to " L "level, and the following EIO_{2} is connected to the preceding EIO_{1}. If the SHL is at "H"level,the first EIO_{1} is fixed to "L" level, and the following EIO_{1} is connected to the preceding EIO_{2} as shown below.

When SHL is at "L" level

When SHL is at " H " level

$D_{0}, D_{1}, D_{2}, D_{3}$

These are display data inputs that input data with clock synchronization. The table below shows the relationship between the LCD output for the display data and DFs and the LCD.

Display Data	DF	LCD drive output	LCD
L	L	Non-selection level (V3)	OFF
H	L	Selection level (V1)	ON
L	H	Non-selection level (V4)	OFF
H	H	Selection level (VEE)	ON

LOAD

This is an input to simultaneously output the display data of one line stored in the latch (I). At the falling edge, the data in the latch (I) is transferred to the latch (II) end is output.

SHL

Input to select for display data reading direction. Input of "L" level at Vss level fetches data in the direction from O_{160} to O_{1} sequentially, while input of " H " level at V_{DD} fetches data in the direction from O_{1} to O_{160}. The table below shows the relationship between read data and driver outputs (O_{1} to O_{160}).

SHL	ElO_{1}	ElO_{2}	Data input	Numbers of the clock pulse						
				40 clocks	39 clocks	38 clocks	...	3 clocks	2 clocks	1 clocks
L	Outputs	Inputs	D_{0}	0_{1}	0_{5}	O9	...	0_{149}	0_{153}	0_{157}
			D_{1}	0_{2}	0_{6}	0_{10}	...	0_{150}	0_{154}	0_{158}
			D_{2}	0_{3}	0_{7}	011	...	0_{151}	0_{155}	0_{159}
			D_{3}	0_{4}	0_{8}	0_{12}	...	0_{152}	0_{156}	0_{160}
H	Inputs	Outputs	D_{0}	0_{160}	0_{156}	0_{152}	...	012	0_{8}	0_{4}
			D_{1}	0_{159}	0_{155}	00_{151}	...	011	0_{7}	0_{3}
			D_{2}	0_{158}	0_{154}	0150	...	0_{10}	0_{6}	O_{2}
			D_{3}	0_{157}	0153	0_{149}	...	09	0_{5}	01

TRUTH TABLE

DF	Display Data	$\overline{\text { DISPOFF }}$	Driver output (01~0160)
L	L	H	V_{3}
L	H	H	V_{1}
H	L	H	V_{4}
H	H	H	V_{EE}
X	X	L	V_{1}

X : don't care

NOTES ON USAGE (when turning the power ON or OFF)

If a high voltage is applied to a LCD drive system while the logic supply is floating, over-current may destroy the device, because the voltage over the LCD drive system is high.
Follow the sequence below when turning the power ON or OFF.
Power ON : Logic system ON \rightarrow LCD drive system ON, or both ON
Power OFF : LCD drive system OFF \rightarrow logic system OFF, or both OFF

