Unit: mm

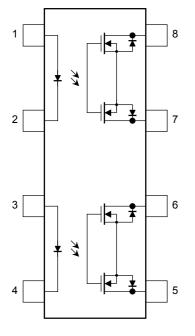
TOSHIBA Photocoupler Photorelay

TLP4202G

Telecommunication Measurement Equipment Security Equipment FA

The Toshiba TLP4202G consists of an aluminum gallium arsenide infrared emitting diode optically coupled to a photo-MOSFET in a SOP package. This 2-form-B (NC) photorelay features a withstanding voltage of $350~\rm V$.

• 8-pin SOP (2.54SOP8): Height = 2.1 mm, pitch = 2.54 mm


Normally closed (2-form-B) device
Peak off-state voltage: 350 V (min)

• Trigger LED current: 3 mA (max)

On-state current: 90 mA (max)
On-state resistance: 50 Ω (max)

• Isolation voltage: 1500 Vrms (min)

Pin Configuration (top view)

1, 3: Anode

2, 4: Cathode

5 : Drain D1

6 : Drain D2

7 : Drain D3

8 : Drain D4

1

8 7 6 5 9.4±0.25 7.0±0.4

JEITA —
TOSHIBA 11-10H1

Weight: 0.2 g (typ.)

2.54±0.25 0.4±0.1

JEDEC

2002-12-26

Maximum Ratings (Ta = 25°C)

	Characteristics	Symbol	Rating	Unit
	Forward current	l _F	50	mA
	Forward current derating (Ta ≧ 25°C)	ΔI _F /°C	-0.5	mA/°C
LED	Peak forward current (100 μs pulse, 100 pps)	I _{FP}	1	Α
	Reverse voltage	V _R	5	V
	Junction temperature	Tj	125	°C
Detector	Off-state output terminal voltage	V _{OFF}	350	V
	On-state current	I _{ON}	90	mA
	On-state current derating (Ta \geqq 25°C)	Δl _{ON} /°C	-0.9	mA/°C
	Junction temperature	Tj	125	°C
Storage temperature range		T _{stg}	-55 to 125	°C
Oper	rating temperature range	T _{opr} -40 to 85		°C
Lead	soldering temperature (10 s)	T _{sol}	260	°C
Isola	tion voltage (AC, 1 min, R.H. ≦ 60%) (Note 1)	BVS	1500	Vrms

Note 1: Pins 1, 2, 3 and 4 are shorted together, and pins 5, 6, 7 and 8 are shorted together.

Recommended Operating Conditions

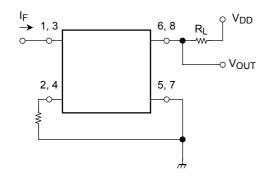
Characteristics	Symbol	Min	Тур.	Max	Unit
Supply voltage	V_{DD}	_	_	280	V
Forward current	lF	5	_	25	mA
On-state current	I _{ON}	_	_	90	mA
Operating temperature	T _{opr}	-20	_	65	°C

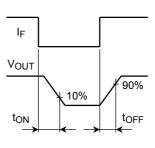
Electrical Characteristics (Ta = 25°C)

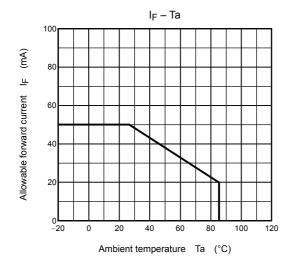
	Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
	Forward voltage	V _F	I _F = 10 mA	1.0	1.15	1.3	V
LED	Reverse current	I _R	V _R = 5 V	_	_	10	μА
	Capacitance	C _T	V = 0, f = 1 MHz	_	30	_	pF
ctor	Off-state current	l _{OFF}	V _{OFF} = 350 V, I _F = 5 mA	_	_	1	μА
Detector	Capacitance	C _{OFF}	$V = 0$, $f = 1$ MHz, $I_F = 5$ mA	_	30	_	pF

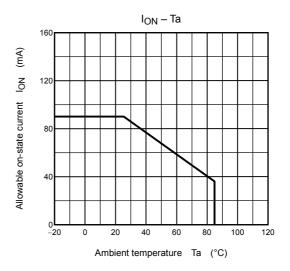
Coupled Electrical Characteristics (Ta = 25°C)

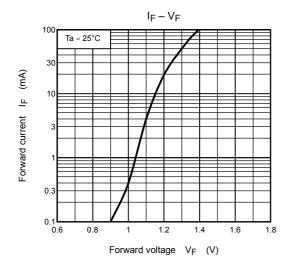
Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Trigger LED current	I _{FC}	$I_{OFF} = 10 \mu A$	_	1	3	mA
Return LED current	I _{FT}	I _{ON} = 90 mA	0.1	_	_	mA
On-state resistance	R _{ON}	I _{ON} = 90 mA	_	30	50	Ω

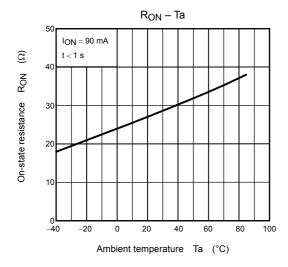

Isolation Characteristics (Ta = 25°C)

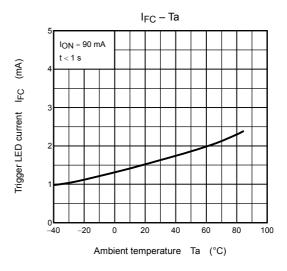

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Capacitance input to output	CS	V _S = 0, f = 1 MHz	_	0.8	_	pF
Isolation resistance	R _S	V _S = 500 V, R.H. ≦ 60%	5×10^{10}	10 ¹⁴	_	Ω
		AC, 1 min	1500	_	_	Vrms
Isolation voltage	BV_S	AC, 1 s, in oil	_	3000	_	VIIIIS
		DC, 1 min, in oil	_	3000	_	Vdc

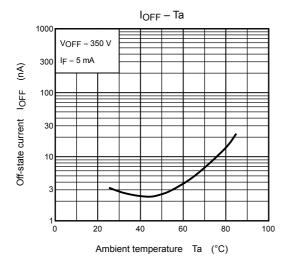

Switching Characteristics (Ta = 25°C)

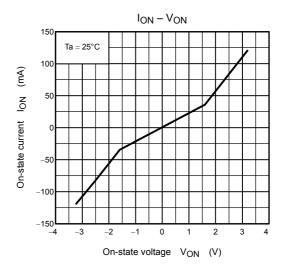

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Turn-on time	t _{ON}	$R_L = 200 \Omega$	_	0.25	0.5	ms
Turn-off time	toff	$V_{DD} = 20 \text{ V}, I_F = 5 \text{ mA}$ (Note	2)	0.5	1	ms

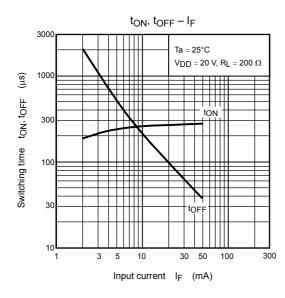

Note 2: Switching time test circuit

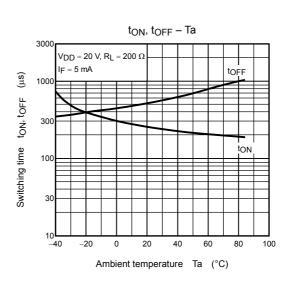









4



RESTRICTIONS ON PRODUCT USE

020704EBC

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- Gallium (GaAs) Arsenide is a substance used in the products described in this document. GaAs dust or vapor is harmful to the human body. Do not break, cut, crushu or dissolve chemically.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.