2 pF Off Capacitance, 1 pC Charge Injection, $\pm 15 \mathrm{~V} / 12 \mathrm{~V}$ 4:1 i $\mathrm{CMOS}^{\text {TM M Multiplexer }}$

FEATURES
2 pF off capacitance
1 pC charge injection
33 V supply range
120Ω on resistance
Fully specified at $+12 \mathrm{~V}, \pm 15 \mathrm{~V}$
No V_{L} supply required
3 V logic-compatible inputs
Rail-to-rail operation
14-lead TSSOP and 12-lead LFCSP
Typical power consumption: <0.03 $\boldsymbol{\mu W}$

APPLICATIONS

Automatic test equipment
Data aquisition systems
Battery-powered systems
Sample-and-hold systems
Audio signal routing
Communication systems

GENERAL DESCRIPTION

The ADG1204 is a CMOS analog multiplexer, comprising four single channels designed on an i CMOS process. i CMOS (industrial-CMOS) is a modular manufacturing process that combines high voltage CMOS (complementary metal-oxide semiconductor) and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of $30-\mathrm{V}$ operation in a footprint that no other generation of high voltage parts has been able to achieve. Unlike analog ICs using conventional CMOS processes, i CMOS components can tolerate high supply voltages, while providing increased performance, dramatically lower power consumption, and reduced package size.

The ultralow capacitance and charge injection of these switches make them ideal solutions for data acquisition and sample-andhold applications, where low glitch and fast settling are required. Fast switching speed coupled with high signal bandwidth make the parts suitable for video signal switching. iCMOS construction ensures ultralow power dissipation, making the parts ideally suited for portable and battery powered instruments.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

The ADG1204 switches one of four inputs to a common output, D, as determined by the 3-bit binary address lines, $\mathrm{A} 0, \mathrm{~A} 1$, and EN. Logic 0 on the EN pin disables the device. Each switch conducts equally well in both directions when on, and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

PRODUCT HIGHLIGHTS

1. 2 pF off capacitance ($\pm 15 \mathrm{~V}$ supply).
2. 1 pC charge injection.
3. 3 V logic-compatible digital inputs:
$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}$
4. No V_{L} logic power supply required.
5. Ultralow power dissipation: $<0.03 \mu \mathrm{~W}$.
6. 14-lead TSSOP and 12 -lead $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ LFCSP package.
[^0]
TABLE OF CONTENTS

Pin Configurations and Function Descriptions 8
Terminology .. 9
Typical Performance Characteristics .. 10
Test Circuits.. 13
Outline Dimensions .. 15
Ordering Guide ... 15

REVISION HISTORY

11/04—Revision PrD: Preliminary Version

SPECIFICATIONS

DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	Y Version ${ }^{1}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On Resistance Match between Channels (Δ Ron) On Resistance Flatness (Rflation)	120 5 25	160	$\begin{aligned} & V_{D D} \text { to } V_{S S} \\ & 180 \end{aligned}$ 50	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} ; \text { Figure } 21 \\ & \mathrm{~V}_{\mathrm{s}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{s}}=-5 \mathrm{~V}, 0 \mathrm{~V},+5 \mathrm{~V} ; \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, ID (Off) Channel On Leakage, $I_{D}, I_{S}(O n)$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.04 \\ & \pm 1 \end{aligned}$	± 1 ± 1 ± 2	± 5 ± 5 ± 5	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 0 \mathrm{~V} \text {; Figure } 22 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 0 \mathrm{~V} \text {; Figure } 22 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V} \text { or } 10 \mathrm{~V} \text {; Figure } 23 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VinL Input Current, InLor I_{NH} Digital Input Capacitance, $\mathrm{C}_{\text {IN }}$	$\begin{aligned} & 0.005 \\ & 5 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.5 \end{gathered}$	\vee min V max μA typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ Transition Time, ttrans ton (EN) toff (EN) Break-before-Make Time Delay, to Charge Injection Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion + Noise -3 dB Bandwidth C_{s} (Off) C_{D} (Off) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$	40 40 20 15 1 75 85 0.002 700 2 7 4		90 40 1	ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ \% typ MHz typ pF typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V} ; \text { Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V} ; \text { Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V} ; \text { Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V} ; \text { Figure } 25 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \text { Figure } 26 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{mHz} \text {; Figure } 27 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; Figure } 28 \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega, 5 \mathrm{~V} \mathrm{rms}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { Figure } 29 \end{aligned}$
POWER REQUIREMENTS ID IDD Iss	$\begin{aligned} & 0.001 \\ & 150 \\ & 0.001 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 300 \\ & 5.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \text { VDD }=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { Digital Inputs }=5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \end{aligned}$

Parameter	$\mathbf{2 5}{ }^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	Y Version ${ }^{1}$	Unit	Test Conditions/Comments
Ignd	0.001		5.0	$\mu \mathrm{A}$ typ	Digital Inputs $=0 \mathrm{~V}$ or V_{DD}
IGnd				$\mu \mathrm{A}$ max	
	150			$\mu \mathrm{A}$ typ	Digital Inputs $=5 \mathrm{~V}$
			300	$\mu \mathrm{A}$ max	

${ }^{1} \mathrm{Y}$ Version temperature range is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {SS }}=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	Y Version ${ }^{1}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On Resistance Match between Channels (Δ Ron) On Resistance Flatness (Rflat(on)	$\begin{aligned} & 220 \\ & 10 \\ & 30 \end{aligned}$		$\mathrm{V}_{\text {ss }}$ to $\mathrm{V}_{\text {D }}$	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\mathrm{V}_{\mathrm{s}}= \pm 3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \text {; Figure } 21$ $\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{s}}= \pm 3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, Io (Off) Channel On Leakage, $I_{D}, I_{S}(O n)$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.04 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 1 \\ & \pm 2 \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \pm 5 \\ & \pm 5 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} \text {; Figure } 22 \\ & \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} \text {; Figure } 22 \\ & \\ & \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} \text {; Figure } 23 \end{aligned}$
DIGITAL INPUTS Input High Voltage, Vinh Input Low Voltage, VINL Input Current, lind or linh Digital Input Capacitance, C_{IN}	$\begin{aligned} & 0.005 \\ & 5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 0.8 \end{aligned}$	± 0.5	V min \checkmark max μA typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS² ton toff Break-before-Make Time Delay, to Charge Injection Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth C_{s} (Off) C_{D} (Off) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & 160 \\ & 60 \\ & 50 \\ & 20 \\ & \\ & 56 \\ & 60 \\ & 20 \\ & 15 \\ & 100 \end{aligned}$		1	ns typ ns max ns typ ns max ns typ ns min pC typ pC max dB typ dB typ MHz typ pF typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} ; \text { Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} ; \text { Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=3 \mathrm{~V} ; \text { Figure } 25 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \text { Figure } 26 \\ & \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, C_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{mHz} ; \text { Figure } 27 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; Figure } 28 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { Figure } 29 \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$

Preliminary Technical Data

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	Y Version ${ }^{1}$	Unit	Test Conditions/Comments
POWER REQUIREMENTS ID Iss	0.001 0.001		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

${ }^{1} \mathrm{Y}$ Version temperature range is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.

SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	Y Version ${ }^{1}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On Resistance Match between Channels (Δ Ros) On Resistance Flatness (Rflation)	$\begin{aligned} & 220 \\ & 1 \\ & 12 \end{aligned}$		0 V to V_{DD}	V Ω typ Ω max Ω typ Ω max Ω typ	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \text {; Figure } 21 \\ & \mathrm{~V}_{\mathrm{s}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{s}}=3 \mathrm{~V}, 6 \mathrm{~V}, 9 \mathrm{~V} ; \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, $I_{\mathrm{D}}, I_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.04 \\ & \pm 1 \\ & \hline \end{aligned}$	± 1 ± 1 ± 2	$\begin{aligned} & \pm 5 \\ & \pm 5 \\ & \pm 5 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=12 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {; Figure } 22 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {; Figure } 22 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 10 \mathrm{~V} \text {; Figure } 23 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current, I InL or linh Digital Input Capacitance, $\mathrm{CIN}_{\mathrm{I}}$	$\begin{aligned} & 0.001 \\ & 5 \\ & \hline \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.5 \end{gathered}$	V min V max μA typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ Transition Time, ttrans ton (EN) toff (EN) Break-before-Make Time Delay, to Charge Injection Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth C_{s} (Off) C_{D} (Off) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{On})$	40 50 15 15 5 75 85 700 2 2 4		1	ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ MHz typ pF typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V} ; \text { Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} ; \text { Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} ; \mathrm{Figure}^{24} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=8 \mathrm{~V} ; \text { Figure } 25 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \text { Figure } 26 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; Figure } 27 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \text { Figure } 28 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { Figure } 29 \end{aligned}$

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	Y Version ${ }^{1}$	Unit	Test Conditions/Comments
POWER REQUIREMENTS					$\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}$
IdD	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
			5.0	$\mu \mathrm{A}$ max	
IDD	150			$\mu \mathrm{A}$ typ	Digital inputs $=5 \mathrm{~V}$
			300	$\mu \mathrm{A}$ max	

${ }^{1} \mathrm{Y}$ Version temperature range is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 4.

Parameter	Rating
$\mathrm{V}_{\text {D }}$ to $\mathrm{V}_{S S}$	38 V
VDD to GND	-0.3 V to +25 V
$\mathrm{V}_{\text {ss }}$ to GND	+0.3 V to -25 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{\text {SS }}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Inputs	GND - 0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, S or D	100 mA (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle max)
Continuous Current, S or D	30 mA
Operating Temperature Range	
Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Automotive (Y Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
14-Lead TSSOP, θ_{JA} Thermal Impedance	$150.4^{\circ} \mathrm{C} / \mathrm{W}$
12-Lead LFCSP, θ_{JA} Thermal Impedance	$30.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering Vapor Phase (60 s)	$215^{\circ} \mathrm{C}$
Infrared (15 s)	$220^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

TRUTH TABLE

Table 5.

EN	A1	A0	S1	S2	S3	S4
0	X	X	Off	Off	Off	Off
1	0	0	On	Off	Off	Off
1	0	1	Off	On	Off	Off
1	1	0	Off	Off	On	Off
1	1	1	Off	Off	Off	On

${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. TSSOP Pin Configuration

Figure 3. LFCSP Pin Configuration

Table 6. Pin Function Descriptions

Pin No.			
TSSOP	LFCSP	Mnemonic	Function
1	11	A0	Logic Control Input. Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches.
2	12	EN	
3	1	VSS	Most Negative Power Supply Potential.
4	2	S1	Source Terminal. Can be an input or an output.
5	3	S2	Source Terminal. Can be an input or an output.
6	4	D	Drain Terminal. Can be an input or an output.
$7-9$	5	NC	No Connection.
10	6	S4	Source Terminal. Can be an input or an output.
11	7	S3	Source Terminal. Can be an input or an output.
12	8	VDD	Most Positive Power Supply Potential.
13	9	GND	Ground (0 V) Reference.
14	10	A1	Logic Control Input.

Preliminary Technical Data

TERMINOLOGY

$I_{\text {DD }}$

The positive supply current.
Iss
The negative supply current.
$\mathbf{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$
The analog voltage on Terminals D and S.
Ron
The ohmic resistance between D and S.
$\mathrm{R}_{\text {flat(on) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance, as measured over the specified analog signal range.
I_{S} (Off)
The source leakage current with the switch off.
I_{D} (Off)
The drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathrm{On})$
The channel leakage current with the switch on.
VINL
The maximum input voltage for Logic 0 .
$\mathrm{V}_{\text {INH }}$
The minimum input voltage for Logic 1.
$\mathbf{I}_{\text {INL }}\left(\mathbf{I}_{\text {INH }}\right)$
The input current of the digital input.
C_{s} (Off)
The off switch source capacitance, which is measured with reference to ground.
C_{D} (Off)
The off switch drain capacitance, which is measured with reference to ground.

$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)

The on switch capacitance, which is measured with reference to ground.

Cin
The digital input capacitance.
ton (EN)
The delay between applying the digital control input and the output switching on. See Figure 24, Test Circuit 4.
toff (EN)
The delay between applying the digital control input and the output switching off.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB .

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

THD + N

The ratio of the harmonic amplitude plus noise of the signal to the fundamental.
$t_{\text {trans }}$
The delay time between the 50% and 90% points of the digital input and switch on condition when switching from one address state to another.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Single Supply

Figure 5. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply

Figure 6. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

Figure 7. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

Figure 8. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Dual Supply

Figure 9. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

Figure 10. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

Figure 11. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

Figure 12. Leakage Currents as a Function of Temperature

Figure 13. Leakage Currents as a Function of Temperature

Figure 14. Supply Currents vs. Input Switching Frequency

Figure 15. Charge Injection vs. Source Voltage

Figure 16. ton/toff Times vs. Temperature

Figure 17. Off Isolation vs. Frequency

Figure 18. Crosstalk vs. Frequency

Figure 19. On Response vs. Frequency

Figure 20. $T H D+N$ vs. Frequency

TEST CIRCUITS

Figure 21. Test Circuit 1—On Resistance

Figure 22. Test Circuit 2—Off Leakage

Figure 23. Test Circuit 3—On Leakage

Figure 24. Test Circuit 4—Address to Output Switching Times

Figure 25. Test Circuit 5—Break-before-Make Time

Figure 26. Test Circuit 6—Enable to Output Switching Delay

Figure 27. Test Circuit 7—Charge Injection

Figure 28. Test Circuit 8—Off Isolation

Figure 29. Test Circuit 9—Bandwidth

CHANNEL-TO-CHANNEL CROSSTALK $=20$ LOG $\frac{\mathrm{v}_{\mathrm{OUT}}}{\mathrm{v}_{\mathrm{S}}}$ 吂
Figure 30. Test Circuit 10—Channel-to-Channel Crosstalk

Figure 31. Test Circuit 11—THD + Noise

OUTLINE DIMENSIONS

Figure 32. 14-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-14)
Dimension shown in millimeters

Figure 33. 12-Lead Lead Frame Chip Scale Package [VQ_LFCSP]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body, Very Thin Quad
(CP-12-1)
Dimensions shown in inches and (millimeters)

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG1204YRU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-14
ADG1204YCP	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Lead Frame Chip Scale Package (LFCSP)	CP-12-1

NOTES

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
 Tel: 781.329.4700
 www.analog.com
 Fax: 781.326.8703 © 2004 Analog Devices, Inc. All rights reserved.

