Sync Signal Generator for Camera

Description

The CXD1159AQ is a sync signal generator for consumer video cameras.

Features

- Adapts to NTSC or PAL through mode switching
- Low power consumption
- Phase comparator and built-in inverter for active filter (Power supply according to inverter for filter)

- Supports external synchronization

Structure

Silicon gate CMOS

Application

Video cameras

Functions

Generation of various sync signals
Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

- Supply voltage
- Input voltage
- Output voltage
- Storage temperature
*1 Vss = 0V

Recommended Operating Conditions

- Supply voltage	Vod	4.50 to 5.50	V
- Operating temperature	Topr	-20 to +75	${ }^{\circ} \mathrm{C}$

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram

Pin Configuration

Pin Description

Pin No.	Symbol	I/O	
1	BFO	O	Burst flag pulse
2	HR	I	H reset input
3	VR	I	V reset input
4	LR	I	LALT reset input
5	EXT	I	Internal/External mode switching INT/EXT
6	CLKI	I	Clock input (NTSC: 14.31818 MHz, PAL: 14.1875 MHz)
7	CLKO	O	Clock output
8	FLD	O	Field pulse
9	NC	-	
10	NC	-	
11	LALT	O	Line alternate pulse
12	Vss1	-	GND
13	SCOF	I	Sub carrier suppress input L: OFF
14	MODE	I	NTSC/PAL mode switching $\overline{\text { NTSC/PAL }}$
15	VINT	I	Initialize input
16	PSEL	I	Phase comparator polarity switch
17	COMP	O	Phase comparator output
18	VDD2	-	Filter inverter +5V
19	AIN	I	Filter inverter input
20	AOUT	O	Filter inverter output
21	Vss2	-	Filter inverter GND
22	FSCI	I	4fsc clock input
23	FSCO	O	4fsc clock output
24	SC	O	Sub carrier output
25	WNDE	I	WND output enable input (at L: Enable)
26	WND	O	Window output
27	TEST	I	Test input (Normally "L")
28	VDD1	-	+5V
29	HDO	O	Horizontal drive pulse
30	VDO	O	Vertical drive pulse
31	SYNC	O	Composite sync pulse
32	BLKO	O	Composite blanking pulse

Electrical Characteristics

DC Characteristics

$\left(\mathrm{V} D \mathrm{D}=5 \mathrm{~V} \pm 10 \%\right.$, $\mathrm{Vss}=0 \mathrm{~V}$, Topr $=-20$ to $\left.+75^{\circ} \mathrm{C}\right)$

Item		Symbol	Conditions	Min.	Typ.	Max.	Unit
Supply current		IdD			4.5		mA
		IdDs	Static state*1	0		0.1	mA
Output voltage I*2	High level	Vон	$\mathrm{IOH}=-2 \mathrm{~mA}$	VDD - 0.8		VDD	V
	Low level	Vol	$\mathrm{loL}=4 \mathrm{~mA}$	Vss		0.4	V
Output voltage II*3	High level	Vor	$\mathrm{IOH}=-1.5 \mathrm{~mA}$	Vdo/2		Vod	V
	Low level	Vol	$\mathrm{loL}=1.5 \mathrm{~mA}$	Vss		Vdo/2	V
Input voltage	High level	VIH		0.7VdD			V
	Low level	VIL				0.3VdD	V
Input leak current		ILI	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ to V DD	-10		10	$\mu \mathrm{A}$
Input leak current*4		ILz		-10		10	$\mu \mathrm{A}$

*1 $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\text {ss }}$
*2 Output pins except "AOUT"
*3 "AOUT" pin
*4 Tri-state pin

AC Characteristics

Item	Symbol	Conditions	Min.	Typ.	Max.	Unit
Fall delay time	tPDL	VoL $=0.4 \mathrm{~V}$			45	ns
Rise delay time	tPDH	VoH $=2.4 \mathrm{~V}$			45	ns

I/O Capacitance

Item	Symbol	Min.	Typ.	Max.	Unit
Input pin	CIN			9	pF
Output pin	Cout			11	pF

Test conditions: $\mathrm{VDD}=\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}, \mathrm{f} \mathrm{M}=1 \mathrm{MHz}$

Filter Amplifier Characteristics
Voltage gain Gv 25dB (Typ.)

$\mathrm{Gv}=20 \log \frac{\mathrm{~V}_{0}}{\mathrm{~V}_{1}}$

Functions

1. Generation of various sync signals (See the Timing Chart.)

Various sync signals are generated from clocks.

- Clock frequencies

NTSC: 910fн (14.31818MHz)
PAL: $\quad 908 f \mathrm{fH}(14.1875 \mathrm{MHz})$
4fsc (17.734475 MHz)
For the system clock
NTSC: 910fн/7
PAL: $908 \mathrm{fн} / 7$ or 6

2. PAL PLL for 4fsc

To the master clock of 908 fH is matched a phase of 4 fsc . The polarity of the phase comparator can be switched according to the type of external filter (passive or active).

Filter	PSEL	Master $(908 \mathrm{fH})$	4fsc	COMP
Passive	L	Fast	Delay	H
		Slow	Fast	L
Active	H	Fast	Delay	L
		Slow	Fast	H

3. SC (Sub-Carrier) generation

Mode	INT or EXT	SC
NTSC	INT	$910 \mathrm{fH} / 4$
NTSC	EXT	$4 \mathrm{fsc} / 4$
PAL	x	$4 \mathrm{fsc} / 4$

INT: Internal mode
(EXT = L)
EXT: External mode
(EXT = H)

In either mode unused counters are stopped. When SC is not required, by setting SCOF to L all SC counters are stopped and SC is not output.

4. Initialization and Reset

In INT mode the circuit is initialized with the fall of VINT. At that time, H, V and LALT resets are not accepted. In EXT mode, VINT is not accepted, whereas H, V and LALT resets are accepted.

- Initialize (VINT)

When EXT = L, VINT fall is detected and operation is started as the circuit is initialized at the VD fall position just before field I. (Initialization is completed within 100ns after the fall is detected).

- H reset (HR)

Reset is performed with the first fall. However reset is not done anymore unless there is a deviation of more than 2 clocks $(0.98 \mu \mathrm{~s})$ to the subsequent edges.
The minimum reset pulse width is $0.98 \mu \mathrm{~s}$.
HD is reset 2.94 to $3.43 \mu \mathrm{~s}$ in advance of HR input.

- V reset (VR)

VD is reset 3.5 H in advance of VR input.
The minimum reset pulse width is $32 \mu \mathrm{~s}$.

- LALT reset (LR)

LALT is reset in the same phase as LR reset.
The minimum reset pulse width is $32 \mu \mathrm{~s}$.

Timing Chart H (NTSC)

Timing Chart H (PAL)

Timing Chart V (NTSC)

Timing Chart V (PAL)

FIELD I, III \longrightarrow FIELD II, IV

Application Circuit

NTSC (Internal mode)

PAL (Filter configuration 1, Internal mode)

PAL (Filter configuration 2, Internal mode)

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

