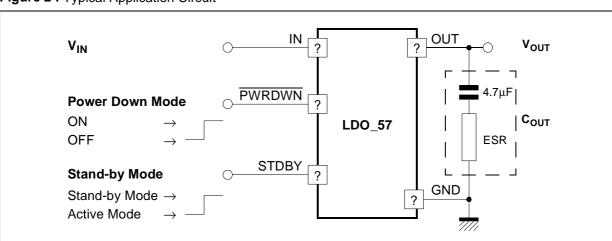


LDO_57


IP Library: High Output Current, Low power, 400mA Low Dropout Voltage Regulator

PRODUCT PREVIEW

- DIGITAL BASEBAND REGULATOR
- VERY LOW DROPOUT VOLTAGE : 50mV
- HIGH OUTPUT CURRENT : 400mA
- LOW QUIESCENT CURRENT : 100µA
- HIGH PSRR : 60dB
- LOW OUTPUT VOLTAGE NOISE
- NO CURRENT IN POWER DOWN MODE
- SHORT CIRCUIT PROTECTION

TYPICAL APPLICATIONS

- Cellular and Cordless phones supplied by 1 cell Lithium-ion battery / 3 cells Ni-MH or Ni-Cd battery.
- PDA (Personal Digital Assistant), Smart phone.
- Portable equipment.
- Supply for Digital Baseband devices for cellular phone.

Figure 2 : Typical Application Circuit

APPLICATION NOTE

An external capacitor ($C_{OUT} = 4.7\mu F$) with an equivalent serial resistance (ESR) in the range 0.02 to 0.6 Ω is used for regulator stability.

Figure 1 : Block Diagram

This is advance information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

ELECTRICAL CHARACTERISTICS

 $3V < V_{IN} < 5.5V$, $-30^{\circ}C < T_A < +85^{\circ}C$, $V_{REF} = 2.8V$, $C_{OUT} = 4.7\mu F \pm 20\%$, $20m\Omega < ESR < 0.6\Omega$, $I_{LOAD} = 400mA$.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input Voltage Range (Note 1)	V _{IN}		2,9		5,5	V
Output Voltage	V _{OUT}		1,8		4,9	V
Output Voltage Accuracy				3		%
Output current	I _{OUT}				400	mA
Dropout Voltage	ΔV_{DO}	$\Delta V_{OUT} = 50 \text{mV},$ I _{LOAD} = 400 mA,			50	mV
		(Note 2)	170			mV
Quiescent current	Ι _Q	I _{LOAD} = 100μA		100	150	μΑ
		I _{LOAD} = 40mA		150	230	
		I _{LOAD} = 400mA		350	450	
Power down mode quiescent current	I _{QPDM}	Power down active		100		nA
Power Supply Rejection Ratio	PSRR	DC	40	60		dB
		f = 10KHz	40	55		
Line Regulation	Lir	I _{LOAD} = 400mA, V _{IN} = 2.9V to 5.5V			4	mV
Load Regulation	Ldr	$I_{LOAD} = 100 \mu A - 400 m A$		50	55	mV
Line Transient	Lirt	$\Delta V_{IN} = 300 \text{mV}$ $t_{RISE} = t_{FALL} = 10 \mu \text{s}$		2,5	5	mV
Load Transient	Ldtr	I _{LOAD} = 100μA - 400mA in 10μs		3	5	mV
Output Noise Voltage	en	100Hz			1,2	$\frac{\mu V}{\sqrt{Hz}}$
		1KHz			400	nV
		10KHz			140	<u>nV</u> √Hz
	en _{RMS}	BW : 100Hz to 100KHz			35	μV_{RMS}
Output decoupling Capacitor	C _{OUT}			4,7		μF
Settling time		From power down to active mode			50	μs
Short Circuit Current Limit	I _{SHORT}				2	Α

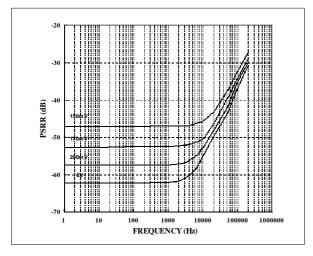
Typical case : $V_{IN} = 4V$, T = 25°C, C_{OUT} = 4.7µF, I_{LOAD} = 400mA.

Notes: 1. Above characteristics are given for 2.9V minimum input operating range voltage, but regulator is operational with 2.7V minimum input voltage.

2. All performances of the regulator are guarenteed for a voltage drop of 170mV minimum.

57

ELECTRICAL CHARACTERISTICS : (Stand-by mode)


 $3V < V_{IN} < 5.5V,~-30^{\circ}C < T_A < +85^{\circ}C,~V_{REF}$ = 2.8V, C_{OUT} = 4.7 μ F ±20%, 20m Ω < ESR < 0.6 $\Omega,~I_{LOAD}$ = 500 μ A.

Typical case : $V_{IN} = 4V$, Ambient temperature, $I_{LOAD} = 500\mu A$.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output current in stand-by mode	I _{OUTSTDBY}				500	μΑ
Quiescent Current in stand-by mode	I _{STDBY}	$I_{LOAD} = 500 \mu A$		20	30	
Power Supply Rejection Ratio in stand-by mode	PSRR _{STY}	f = 10KHz	35	45		dB
Line Regulation in stand-by mode	Lir _{STDBY}	I _{LOAD} = 500μA, V _{IN} = 2.9V to 5.5V		2	6	mV
Load Regulation	Ldr _{STDBY}	I _{LOAD} = 100μA - 500μA		50	55	mV

TYPCIAL CHARACTERISTICS

Figure 7 : PSRR vs Frequency for Various Voltage Drop

57

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

http://www.st.com

