COP400 -
Microcontroller
Family

COPS™ Family User’s Guide

National
Semiconductor

9-3

epIny s Jesn Ajjwed Sd0D



COPS Family User’s Guide

COPS Family User’s Guide
Table of Contents

Saction

1.1

2.1
2.2
23
24
2.5
2.6
2.7
28
29
2.10
21
212
2.13

3.1
3.2
3.3
3.4
3.5

4.1
42
4.3
4.4
45
4.6
4.7
4.8
4.9
4.10
4.1

5.1
5.2
5.3
5.4
5.5
5.6

Description Page
Chapter 1. Introduction to COP400 Microcontrollers
Summary of COP400 Microcontroller Features. . ........ooveeernnunnn.. 9-7
Chapter 2, COP400 Architecture
COP420/COP421 Architecture. . . ..ooie et e e nann,s 9-8
COP420/COP421 Functional Description .........cciiviirineeeuninnnn. 9-10
Initialization ... ... i e, 9-11
COP420/COP421 Mask Programmable Options ..............ovueenen... 9-12
COP420L/COP421L Description .. ...ovvit ittt e i 9-15
COP420L/COP421L Mask-Programmable Options . ............ccvvrn.... 9-15
COP420C DesCription . ...\ it ittt ittt i e e 9-17
COP444L DesCription . .. ... i i i e e e e s 9-18
COP402 and COP402M ROMIess Part Description .. ......coovveennnn... 9-18 -
COP404L ROMIess Part Description ................ e r e 9-18
COP410L/COPATIL Architecture ....... ..ot e 9-18
COP410L/COP411L Functicnal Description ................cooviiinns. 9-20
COP410L/COP411L Mask-ProgrammableOptions .............coovvnn... 9-21
Chapter 3. COP400 Instruction Sets
COP420-Series/COP444L Instruction Set. .. ... oo iiin e, 9-23
COP420-Series/COP444L Instruction Set Description .................... 9-27
COP421-Series Instruction Set Differences............ccovvivennnn... 9-34
COP410L/COP411LInstruction Set ....... ...ttt 9-34
COP410L/COP411L. Instruction Set Differences ............ccovvnvn.... 9-37
Chapter 4. COP400 Programming Techniques
Program Memory Allocation . ... ...t in i et i, 9-42
Data Memory Aliocation and Manipulation ....................... Faeaas 9-45
Subroutine Techniques ... e 9-46
Utility RoUtines . . ... i i i et e et e e e 9-47
Timing Considerations ........ ... ..ttt iianeennnn 9-48
BCD Arithmetic Routines . ......... ..ottt iiinnennnnannns 9-49
Simple Display Loop Routing ..........oiviiiiiiiiii i innneans 9-51
Interrupt Service Routing .. ... i i e 9-53
Timekeeping Routine . ... ... it i e e 9-53
StringSearch Routine ... ... i i e cananes 9-55
Programming Techniques for the COP421-Series, COP410Land 411L....... 9-57
Chapter 5. COP400 I/O Techniques
Hardware Interfacing TEChNIQUES .. ... .vvvensevseeeeeieneeannss 9-58
Software HO TeChNIQUES ... .co.tit ittt e, 9-63
Keyboard/Display Interface . . .......ovirii e e 9-64
SIO(Serial) Input/OuUtput . ... ... e ;@—75
AD-ON RAM ... e /.9-76
ING/ING INPULS .« e e e e e L.9-77
Ve

9-4



COPS Family User’s Guide
List of Figures

Figure

2.1
22
2.3
2.4
2.5
2.6
2.7
2.8
29
2.10
2.11
3.1
3.2
4.1
4.2
4.3
5.1
5.2
5.3
5.4
5.5
5.6
5.7
58
59
510
511
512
513
5.14
5.15
5.16
5.17
5.18
5.19
5.20
521
5.22

Description

COP420/COP421 Block Diagram . . . . ... . i e et
COP420/COP421 ConnectionDiagrams.. .. ............ oo
COP420/COP421 Pin Descriptions ... .. ...t i i
Power-Clear GirCuit ...... .. it i i e e
COP420/COP421 Clock Osciliator Configurations .......................
COP420/COP421 input/Output Configurations ..........................
COP420L/COP421L Oscillator Configurations ..........................
COP410L/COPATILBlock Diagram . .. .. ..o on i e i
COP410L/COP41IL Connection Diagrams . .. ... ..ot iiiii i
COP410L/COPATIL Pin Description ... itit i i
COP410L/COP411L Oscillator Configurations ... ....... ... ... oo it
INIL Hardware implementation. . .............. e e e
Enable Register Features — Bits ENagand ENg ... . ...... ... ... ... .. ..
COP420 Data Memory Map - ..o it i e
Flowchart for Muiltiply Routine .. .. .. ... ..o o
Flowchart for Timekeeping ROUtINE . ... ..ottt e,

COPA20HOLINES . ... i i ‘

COP420 MO OpltioNS . ..o e e e e
COP420 Standard Output Characteristics........... e
COP420 l/O Interconnect Examples . ... ..o e,
COP420 IN Input Characteristics ........ .. .. . it
DandGPort CharacteristiCs. ... ... ... i e it
COP420L 1/Q Port Characteristics ........ i i
COP420S1, S0, SKCharacteristics ...ttt it innn
COP420 CKO, CKl, RESET Characteristics ..............ooiiiiie. ..
COPA2D O EXPaNSION . o ot ittt i e
COP420 LED Display System ... ... it e e
COP420VF Display System . ... ... i e e e et e
COP420 MICROBUS™ Interconnect. ... ... ottt it iie e ieeennns
COP420 Add-On RAM . . ... e i e e e e
Display/Keyboard Interconnect ......... ... i
Flowchart for Display/Keyboard Debounce Routine......................
Display Timing Diagram ............... i
Display/Keyboard interface Source Code ....... ... ... i innn.,
Key-Decode Routine Assembler Qutput Listing .........................
Additional HOUsingSland SO ...... ... ... i e
Multi-COP420 System ... . . i i e e e e
Add-On RAM Interconnect ... .. ... .. ... . . . e

9-5

epIny sesn Ajwed S40D



COPS Family User's Guide

COPS Family User's Guide
List of Tables |

Table Description Page
3.1 COP420/COP421 Instruction SetTable ....................ccivvrnnn.. 9-24
3.2 COP420/COP421 Instruction Set Symbols. . ... ..oviini i, 9-27
3.3 COP410L/COP411L InstructionSetTable ...............ccoviviiine.... 9-34
3.4 COP410L/COP411L Instruction Set Symbols ............... .0 viivin., 9-37
3.5 Alphabetical Mnemonic Index of COP420/COP421 Instructions . .. ......... 9-38
3.6 COP420/COP421 Instructions Listed by Hex Opcodes . . .................. 9-39
3.7  Alphabetical Mnemonic Index of COP410L/COP411L Instructions ......... 9-40
3.8 COP410L/COP411L Instructions Listedby Hex Opcodes ................. 9-41
4.1  Pageto Hexadecimal Address ...............iiiiiiiinrinnannnennnas 9-42
5.1  COP4001/O Comparison Chart ..........oviiiitinttinerennanernans 9-58
52 Seven-SegmentDecodeValues ...........cvuiiveriinnnirrrrnnereennns 9-68
5.3  JID Pointer Table for Display/Keyboard Routine .. ..............cooouut. 9-73

9-6



Introduction to the

COP400 Microcontrollers

This manual provides information on the COP400
series of National’s single-chip microcontroilers.
The material contained in this manual is intended
to assist the reader in understanding the internal
architecture, instruction set, programming
techniques, and hardware and software /O tech-
niques pertaining to the COP400 family of micro-
controller devices.

The primary focus of this manuatl is the COP420 —
at the time of this printing the most inclusive
device, on a hardware and software level, of the
COP400 family. Other members of the COP400
family are discussed primarily in terms of the less
inclusive features of these other parts (i.e., the
COPA421, COP410L, COP411L). This approach
should not result in a lack of understanding in
terms of the operation and programming of these
parts since they are “‘subset” devices of the
COP420, distinguished, for the most part, by
deleted hardware and software features. For further
information on these other devices and on future
COP400 devices the reader should consult the data
sheets appropriate to particular COP400 devices.

1.1 Summary of COP400 Microcontroller
Features

COP400 Microcontroliers are fabricated using
CMOS or N-channel, silicon gate MOS technology.
They are complete microcomputers containing all
system timing, internal iogic, ROM, RAM, and /O
necessary to implement dedicated control
functions in a variety of applications. Features of
the COP400 devices include an instruction set,
internal architecture, and /O scheme designed to
facilitate keyboard input, display output, and
efficient BCD data manipulation.

The various members of the COP400 family allow
the user to specify a microcontrotler best suited for
use in a particular dedicated application.
Specifically, COP400 devices offer a choice among
single-chip parts with differing amounts of ROM,
RAM, /O capability, and number of instructions.
Additionally, many parts have different versions
which allow a choice of electrical characteristics
while retaining the basic architecture and
instruction set of the basic device. (For example,
the COP420L and COP420C are available as low-
power and CMOS versions, respectively, of the
standard COP420 device.) Finally, each part
contains a number of clock, VO and other options,

9-7

mask-programmed into the part at the same time
as the user’'s program,; this allows even greater
flexibility in matching the COP400 Microcontroller
to the user’s specifications, reducing the need for
external interface logic.

apiny sJosn Ajweq S400

All COP400 devices feature single-supply operation
and fast, standardized, “in-house’’ test procedures
which verify the internal logic and user program
(ROM code) mask-programmed into the device.
Several COP400 controilers are available in ROM-
less versions for use in prototyping a COP400
system (using the COP400 Development System) or
for low-volume applications.

Section 1 provides a list of COP400 devices
currently available or in design, together with a
summary of the basic features of each device.
Refer to this manual and data sheets of particular
devices for further information on these parts.
Future members of the COP400 family will include
more powerful hardware and software capabilities,
alternative electrical specification devices (low
power, CMQS versions) and peripheral devices
suitable for use in many applications.

The flexible /O configuration of COP400
Microcontrollers allows them to interface with and
drive a wide range of devices using minimal
external parts. Typical peripheral devices include:

1. Keyboards and displays (direct segment and
digit drive possible for several devices).

. External data memories.
. Printers.

. Other COPS™ gevices.

2

3

4

5. A/D and D/A converters.

6. Power control devices (SCRs, TRIACs).
7. Mechanical actuators.
8

. General purpose microprocessors
{communication with host CPUs over National's
MICROBUS™ for several COP400 devices).

9. Shift registers. -

10, External ROM data storage devices.




COPS Family User's Guide

COP400 Architecture

This chapter provides information on the
architecture of the COP400 Microcontrollers.
Consistent with the general approach of this
manual, the COP420 is primarily discussed with the
COP421 treated in terms of differences with
respect to the COP420. The COP410L, COP411L
and COP444L are similarly treated. The text,
therefore, primarily discusses the internal
architecture of the COP420, with differences noted
for the other devices. Also briefly discussed are
different versions of each primary device (e.g., for

dhe COP420, the COP420L and COP420C). As these

additional devices, as well as the most inclusive
COP400 device, the COP440, become available,
further information witl be provided in data sheets
for each part.

Y Wi
\
f
|

24

2.1 COP420/COP421 Architecture

Figure 2.1 provides a block diagram of the
COP420/COP421. It is intended to acquaint the user
with the functions of, and interconnections among,
the various logic blocks within the processor. Data
paths are illustrated in simplified form to depict
how the logic elements communicate with each
other in implementing the instruction set of the
devices. Note that the IN;-INg general purpose
inputs are not available on the COP421, nor are the
two internal IL latches associated with IN; and INg.

TIME-BASE .

DIVIDER

COUNTER
(BIVIDE BY 1024}

CLDCK ‘
GENERATOR

PROGRAM MEMORY
1kx 8 ROM

ADDRESS

INSTRUCTION
DECODE/CONTROL
SKIF LOGIC

DIGIT ADDRESS

DATA MEMORY AEG y
64x4 RAM

1]
REGISTER

a00A Y

]
REGISTER
BUFFER
L]

L ORIVERS




Figure 2.2 shows the connection diagrams for the
28-pin COP420 and the 24-pin COP421. Figure 2.3
provides a pin description for the COP420/COP421
devices.

9-9

One should consult the COP420/COP421 data sheet
for maximum ratings, DC and AC electrical
characteristics for these devices.

e
R
i

&

apiIng sJes(] ajjwed Sd00D



COPS Family User's Guide

2.2 COP420/COP421 Functional Description

The following text provides a functional description
of the logic elements depicted in the
COP420/COP421 block diagram.

Program Memory

Program memory consists of a 1,024-byte ROM.
ROM words may be program instructions, program
data or ROM address pointers. Due to the special
characteristics associated with the JP and JSRP
instructions, ROM must often be conceived of as
organized into 16 pages of 64 words {bytes) each.
Also, because of the unique operations performed
by the LQID and JID instructions, ROM pages must
often be thought of as organized into four
consecutive blocks of four ROM pages. (For further
informaticn on the paging characteristics of these
instructions, see Section 4.1))

ROM addressing is accomplished by the 10-bit P
register. Its binary value selects one of the 1,024
8-bit words (I;~Ig) contained in ROM. The vatue of P
is automatically incremented by 1 prior to the
execution of the current instruction to point to the
next sequential ROM location, untess the current
instruction is a transfer of contro! instruction. In
the latter case, P is loaded with the appropriate
non-sequential value to implement the transfer of
control operation performed by the instruction. It
should be noted that P will automatically
“roll-over” to point to the next page of program
memory. This feature has particular significance
for transfer of contro! instructions with paging
restrictions, i.e., JP, JSRP, JID and LQID. Since Pis
incremented to roli-over to the next ROM page prior
to executing these instructions, they will be treated
as residing on the next ROM page if they reside in
the last word of a ROM page. Further information
is provided in Section 4.1.

Three levels of subroutine are implemented by the
10-bit subroutine save registers, SA, 8B and SC,
providing a iast-in, first-out (LIFO) hardware
subroutine stack.

ROM instruction words are fetched, decoded and
executed by the Instruction Decode, Control and
Skip Logic circuitry.

Data Memory

Data memory consists of a 256-bit RAM, organized
as 4 data registers of 16 4-bit digits. RAM
addressing is implemented by a 6-bit B register
whose upper 2 bits (Br) select 1 of 4 data registers
and lower 4 bits (Bd) select 1 of 16 4-bit digits in
the selected data register. While the 4-bit contents
of the selected RAM digit (M) are usually loaded
into or from, or exchanged with, the A register
(accumulator), they may also be loaded into or from
the Q latches or loaded from the L ports. RAM
addressing may also be performed directly by the

LDD and XAD instructions based upon the 6-bit
contents of the operand field of these instructions.
The Bd register also serves as a source register for
4-bit data sent directly to the D outputs.

Internal Logic

The 4-bit A register (accumutator) is the source and
destination register for most 1/Q, arithmetic, logic
and data memory access operations. It can also he
used to load the Br and Bd portions of the B register,
to load and input 4 bits of the 8-bit Q latch data, to
input 4 bits of the 8-bit L /O port data and to
perform data exchanges with the SIO register.

A 4-bit adder performs the arithmetic and logic
functions of the COP420, storing results in A. It
also outputs a carry bit o the 1-bit C register, most
often employed to indicate arithmetic overflow. The
C register, in conjunction with the XAS instruction
and the EN register, also serves to control the SK
output. C can be outputted directly to SKL or can
enable SKL to be a SYNC pulse, providing a clock
each instruction cycle time. (See XAS instruction,
Table 3.1, and EN register description, below.)

Four general-purpose inputs, IN3-INg, are provided
for the COP420: IN;, IN; and N3 may be selected,
by a mask-programmable option, as Read Strobe,
Chip Select and Write Strobe inputs, respectively,
for use in MICROBUS™ applications.

The COP421 does not contain the INa-INg inputs
and, therefore, must use the 4 bidirectional G /O
ports or 8 bidirectional L YO ports as input pins to
the device. Use of National’'s MICROBUS is
inappropriate with the COP421.

The D register provides 4 general purpose outputs
and is used as the destination register for the 4-bit
contents of Bd.

The G register contents are cutput to 4 general-
purpose bidirectional /O ports. The COP420 Gp pin
may be mask-programmed as a “ready” output for
MICROBUS applications.

The Q register is an internal, latched, 8-bit register,
used to hold data loaded to or from M and A, as
well as 8-bit program data from ROM. its contents
are output to the L I/O ports when the L drivers are
enabled under program control (via an LE| instruc-
tion). The COP420 may use the MICROBUS option
to write L. I/O port data into Q upon the occurrence
of a WR puise from the host CPU.

The 8 L drivers, when enabled, output the contents
of latched Q data to the L /0 ports. Also, the
contents of L may be read directly into A and M. As
explained above, the COP420 MICROBUS option
aliows L I/O port data to be latched into the Q



register. L VO ports can be directly connected 1o
the segments of a multiplexed LED display {using
the TRI-STATE' LED Direct Drive output
configuration option) with Q data being outputted
to the Sa-Sg and decimal point segments of the
display.

The 310 register functions as a 4-bit serial-in/
serial-out shift register or as a binary counter
depending on the contents of the EN register. (See
EN register description, below.) Its contents can be
exchanged with A, allowing it to input or output a
continuous serial data stream. SiO may also be
used to provide additionai parallel {10 when used
as a shift register with its input or output
connected to external serial-iniparallel-out shift
registers.

The 10-bit time base counter divides the instruction
cycle frequency by 1,024, providing a pulse upon
overflow. The COP420 SKT instruction tests for the
occurrence of this pulse, allowing the programmer
to rely on this internal time-base rather than
external inputs (e.g., 50/60 Hz signals) to implement
“real-time” routines.

The EN register is an internal 4-bit register loaded
under program control by the LEI instruction. The
state of each bit of this register selects or
deselects the particular feature associated with
each bit of the EN register (EN;-ENg).

1. The least significant bit of the enable register,
ENy, selects the SO register as either a 4-bit
shift register or a 4-bit binary counter. With ENg
set, S10 is an asynchronous binary counter, de-
crementing its value by one upon each low-going
puise {“1" to “'0”) occurring on the Sl input
{count-down counter). Each pulse must be at
least two instruction cycies wide. SK outputs the
value of C upon execution of XAS and remains
jatched until the execution of another XAS
instruction. The SO output is equal to the value
of ENg. With ENg reset, SIO is a serial shift
register shifting ieft each instruction cycle time.
The data present at SI goes into the least signifi-
cant bit of SIO. SO can be enabled to output the
most signiticant bit of Si0 each cycle time. The
SK output becomes a logic-controlled clock,
providing a SYNC signal each instruction time. It
will start outputting a SYNC pulse upon the
execution of an XAS instruction with C=1,
stopping upon the execution of a subsequent
XAS with C=0.

2. With ENj set, the COP420 IN; input is enabied
as an interrupt input. Immediately following an
interrupt, EN, is reset to disable further
interrupts. Note that this interrupt feature
associated with IN4 is unavailable on the
COP421 since it tacks the IN inputs. Bit 1 (EN4)

of the Enable Register is, therefore, a “don’t
care” bit for the COP421: setting or resetting
this bit via an LE! instruction will have no effect
on the operation of the COP421. (For further
information on the procedure and protocol of
this COP420 interrupt feature, see Section 3.2,
LEI instruction description.)

3. With EN, set, the L drivers are enabled to output
the data in Q to the L l/O ports. Resetting ENp
disables the L drivers, piacing the L I/Q ports in
a high-impedance input state. If the COP420
MICROBUS™ option is being used, EN; does not
affect the L drivers.

4. ENg, in conjunction with ENg, affects the SO
output. With ENp set (binary counter option
selected), SO will output the value loaded into
ENa. With ENg reset (serial shift register option
selected), setting ENg enables SO as the output
of the SIO shift register, outputting serial shifted
data each instruction time. Resetting ENjz with
the serial shift register option selected disables
SO as the shift register output: data continues
to be shifted through SO and can be exchanged
with A via an XAS instruction but SO remains
reset to “0." Table 2.1 provides a summary of the
options and features associated with EN3 and
ENg.

2.3 Initialization

Upon initialization of the COP420/COP421 as
described below, the P register is cleared to 0
(ROM address 0) and the A, B, C, D, EN, and G
registers are cleared. The INg and N3 latches are
not cleared. The SK output is enabled as a SYNC
output, providing a pulse each instruction cycte
time. Data memory (RAM) can only be cleared by
the user’s program. The first instruction at address
0 must be a CLRA.

The Reset Logic, internal to the COP420/COP421,
will initialize (clear) the device upon power-up it the
power supply rise time is less than 1ms and
greater than 1us. If the power supply rise time is
greater than 1ms, the user must provide an
external RC network and diode to the RESET pin as
shown in Figure 2.4 below. The RESET pin is
configured as a Schmitt trigger input. 1t not used, it
should be connected to Vec. Initialization will occur
whenever a logic “0” is applied to the RESET input,
provided it stays low for at least three instruction
cycle times. In order to reset the Time Base
Counter, a RESET pulse ten instruction cycle times
wide must be applied; note that the counter will
overfiow and generate an output pulse.

apiny sJosn Ajjwed Sd0D



COPS Family User's Guide

2.4 COP420/COP421 Mask Programmable
Options

To allow even greater tlexibility in specifying a
COP400 device appropriate to the user's
application, all COP400 microcontrollers have
spectific clock configuration, O and other mask-
programmable options associated with them. These
options are masked into the part simuitaneously
with the masking of the user’s program in ROM and
have been chosen to offer the user a wide range of
options which encompasses design options most
frequently employed in dedicated, smali system
applications.

The following text summarizes the COP420/COP421
options according to the various functions
{oscillator, I/0, ete.) with which they are associated.

Clock Oscillator Options

There are four basic COP420/COP421 clock
oscillator cantigurations avilable as shown by
Figure 2.5 (a-d):

a. Crystal Controlled Oscillator. CKI and CKO are
connected to an external crystal. The instruction
cycle time equais the crystal frequency (4 MHz
maximum) divided by 16 (optional by 8).

b. External Oscillator. CK| is configured as a TTL
compatible input accepting an external clock
signal. The external frequency (4 MHz maximum)
is divided by 16 (optional by 8) to derive the
instruction cycle time. CKO is now available to
be used as the RAM power supply (Vg) pin, as a
general purpcse input, or as a synchronizing
input. '

c. RC Controlled Oscillator. CKi is configured as a
single-pin RC controlled Schmitt trigger
oscillator. The instruction cycle equals the
oscillation frequency divided by 4. CKO is
available for non-timing functions as in b above.

d. Externally Synchronized Oscillator. Intended for
use in multi-COP systems, CKO is programmed
to function as an input connected to the SK
output of another COP420/COP421 with CKI
connected as shown. In this configuration, the
SK output connected to CKO must provide a
SYNC (instruction cycle) signal to CKO, thereby
allowing synchronous data transfer between the
COPs using only the Sl and SO serial IO pins in
conjunction with the XAS instruction. Note that
on power-up SK is automatically enabled as a
SYNC output. (See Initialization, above.)

The lower portion of Figure 2.5 provides component
values for several instruction cycle times and
crystal vaiues associated with the RG controlled
and Crystal Oscillator options, respectively.

CKO Non-Timing Options

In a crystal controlled or multi-COP oscillator
system, CKO is used as an output to the crystal
network. In the other two configurations (external
clock or RC controlled oscillator), CKO may be
mask-programmed to perform one of two available
options. Specifically, CKO may be mask-
programmed as a general purpose input, read into
bit 1 of the accumulator (Az) upon the execution of
an INIL instruction.

As another option (for bath the COP420 and
COP421), CKO can be a RAM power supply pin (Vg),
allowing its connection to a standby/backup power
supply to maintain the integrity of RAM data with
minimum power drain when the main supply is
inoperative or shut down to conserve power. Use of
this options should include external circuitry to
detect loss of Vo power and force RESET low
before V¢ drops below spec.



apiny sJasq Ajjwed Sd0D

cKI _ cko o e oo e s £KD
™ T (Va OR GENERAL BEERE . : ¥R OR GENERAL
I : EXTEANAL | PUI APOSE INPUT ; e PURPOSE INPUT
. D SLOGR - 5 UORSYNCPIND X I N
~a. Crystal Oscillator ~ -~ = _"b. External Osciilator -~ - ¢. RC Controlled Oscillator
HEYREL
¥ oy
CKI KO}
COPAZ0/421 S COP420/421
20 ot 51
§1 |-ttt SO
@ Externally Synchronized Oscillator.
Crystal Oscitlator T -©+ . RC Controlled Oscillator
o : instruction
Vai ;
Crystal I ,,?,,,,,Cjt“,p:“em alues . J : . ) Cycle Time
Value R Rz c R k) . C {pF)y ) {us)
aMHz 1k M 27pF- 2 106 5 *20%
3 58MHK2 1k Rt 27pF . 6.8 220 5.3 23%
2.09MHz 1k ™ 56pF : .82 300 8 »29%
: ' 22 100 86+ 18%

Figure 2.5 COP420/COP421 Oscillator Contigurations




COPS Family User’'s Guide

MICROBUS™ Option

The COP420 has an option which aliows it to be
used as a peripheral microprocessor device,
inputting and outputting data from and to a host
microprocessor (uP). INy, IN,, and IN3 general
purpose inputs hecome MICROBUS compatible
read-strobe, chip-select, and write-strobe lines,
respectively. INy becomes RD — a togic “0" on this
input will cause Q tatch data to be enabled to the L
ports for input to the uP. IN, becomes CS — a logic
"0 on this line selects the COP420 as the uP
peripheral device by enabling the operation of the
RD and WR lines and allows for the selection of
one of several peripheral components. IN; becomes
WR — a logic "0 on this line will write bus data
from the L ports to the Q latches for input to the
COP420. Gy becomes a “ready’” output, reset by a
write pulse from the uP on the WR line, providing
the “handshaking” capability necessary for
asynchronous data transfer between the host GPU
and the COP420.

This option has been designed for compatibility
with National’'s MICROBUS — a standard
interconnect system for 8-bit parallel data transfer
between MOS/LS! CPUs and interfacing devices.
{See MICROBUS™, National Publication.) The
functioning and timing relationships between the
COP420 signal lines affected by this option are as
specified for the MICROBUS interface. Connection
of the COP420 to the MICROBUS is shown in
Figure 5.13.

a. Standard Output

DiSABLE

d. Standard L Qutput

DISABLE L vep
—_—

S- TRI-STATE®  Push-Pull (L Output}

Figure 2.6 ln.putlcmpﬁf_'an'ﬂrg'uﬁﬂqhé' i

9-14

», Open-Drain Output

h.input with Logd + -

/O Options

COP4201421 outputs have the following optional
configurations, illustrated in Figure 2.6:

a. Standard — an enhancement mode device to
ground in conjunction with a depletion-mode
device to V¢g, compatible with TTL and CMOSs
input requirements. Available on SO, SK, and all
D and G outputs.

b. Open-Drain ~ an enhancement-mode device to
ground only, allowing external pull-up as
required by the user’s application. Available on
SO, SK, and all D and G outputs.

¢. Push-Pull — An enhancement-mode device to
ground in conjunction with a depletion-mode
device paralleled by an enhancement-mode
device to Vee. This configuration has been
provided to allow for fast rise and fall times
when driving capacitive loads. Available on SO
and SK outputs only.

d. Standard L — same as a., but may be disabled.
Available on L outputs only.

€. Open Drain L — same as b., but may be
disabled. Availabie on L outputs only,

f. LED Direct Drive — an enhancement-mode
device to ground and to Vcc, meeting the typical
current sourcing requirements of the segments
of an LED disptay. the sourcing device is
clamped to limit current flow. These devices may
be turned off under program control (See
Functional Description, EN Register), placing the
outputs in a high-impedance state to provide
required LED segment blanking for a multiplexed
display.

#1 C S —DH%»

S

| wsoeenowseves =
S ULEDQ Outpu)

i~ ™



. TRI-STATE® Push-Pull — an enhancement-mode
device to ground and Vge. These outputs are
TRI-STATE outiputs, allowing for connection of
these outputs to a data bus shared by other bus
drivers.

COP420/COP421 inputs have the tollowing optional
configurations:

h. An on-chip depletion load device 10 Vee-

i. A Hi-Z input which must be driven to a "1 or
“Q" by external components.

The above input and output configurations share
common enhancement-mode and depletion-mode
devices. Specifically, all configurations use one of
more of six devices (numbered 1-6, respectively).

The SO, SK outputs can be configured as shown in
a., b., or c. The D and G outputs can be configurad
as shown in a. or b. Note that when inputting data
to the G ports, the G outputs should be set to "“1.”
-The L outputs can be configured as in d., e, f. Or g-

An important point to remember if using configura-
tion d. or {. with the L drivers is that even when the
L drivers are disabled, the depleticn load device
will source a small amount of current; however,
when the L lines are used as inputs, the disabled
depletion device can not be relied on to source
sufficient current to pull an input to logic 17,

Ail of the L driver options are TRI-STATE" -able.
Therefore, the L drivers have TRI-STATE-abie
Standard and Open-Drain output options as well as
the TRI-STATE LED Direct Drive and Push-Pull
output options. Since the device to Vgc in the

Standard output configuration is a depletion-mode
device, it will source up to 0.125 mA when this

output is “turned off” in the TRI-STATE mode. This
is not a worst case input for a logic “1" level on
these inputs and will not be sufficient for an input
lavel without previously enabling Q to L with
{Q)=FFe.

Bonding Option

The COP421 is a bonding option of the COP420: if
the COP420 is bonded as a 24-pin device (without
the 4 IN inputs), it becomes the COP421. Note that
since it lacks the IN inputs, use of the COP421
bonding option precludes use of the IN input
options; the MICROBUS™ option which would
otherwise affect IN3-IN¢ and Go: use of the IN4
hardware interrupt pin and the use of the 'L and
ILp latches associated with the IN; and INg pins. All
other options are available. The COP421 is pin-
compatible with the COP410L.

25 COPA420L/COP421L Description

The COP420L/COP421L are low power versions of
the COP420/COP421 containing the same internal
logic elements and instruction set as the
COP420/COP421, with electrical characteristics
which are similar to the COP410L. The major
differences between the COP420L/COP421L and
COP420/COPA21 are the following:

Wider operating voltage range of 4510 9.5V
optionally available.

Operating supply current less than 8mA @
Voo =5V.

aping sJasn Ajwed sdOd

Minimum instruction cycle time of 15us.

Divide-by-32 crystal clock option (2MHz XTAL
divided by 32 = 15us instruction cycle time).

D and G outputs have direct LED digit drive
option {sink 30mA).

Other outputs will drive 1 LSTTL or 2 LPTTL
loads (lgL =360 uA at 0.4V: lon = 40uA at 2.4V).

No MICROBUS™ option available.

The COP421L is simpiy a COP420L packaged in a
24-pin dual-in-line package. As a resuit, the IN
inputs are not available on the COP421L, so that
the COP421L is pin-compatible with the COP410L.

For further information, see the COP420L/COP421L
data sheet.

2.6 COP420L/ICOP421L Mask Programmable
Options

Since the COP420L/COP421L are frequently used in
battery-operated andfor hand-held consumer-type
products, an even greater array of system-cost-
reducing options is available. The foliowing text
summarizes these options.

Clock Osciltator Options

There are four basic COP420L/COP421L clock
oscillator configurations available as shown in
Figure 2.8 (a-d):

a. CrystaliResonator Controlied Oscillater. CKl and
" CKO are connected to an external ¢rystal of
ceramic resonator. The instruction cycle time
equals the crystaliresonator frequency
(2.097 MHz maximum) divided by 32 (optional by
16 or 8).

External Oscillator. CKl is configured as a
CMOS compatible input accepting an external
clock signat. The external frequency {2 MHz
maximum) is divided by 32 (optional by 16, 8 or
4) to derive the instruction cycle time. CKO is
now available to be used as the RAM power
supply (Vg) pin, as a COP420L general purpose
input, or as a synchronizing input.

E



COPS Family User’s Guide

COP420L/421L

COPa20L/421L

Y pomcewesar
LLUPHRPOSEINRUT ;o
AT




¢. RC Controlled Oscillator. CKl is configured as a
single-pin RC controlled Schmitt trigger
oscillator. The instruction cycle equals the
oscillation frequency divided by 4. CKC is
available for non-timing functions as in b above.

d. Externally Synchronized Oscillator. Intended for
use in multi-COP systems, CKO is programmed
to function as an input connected to the SK
output of another COP420L/ICOP421L with CKI
connected as shown. In this configuration, the
SK output connected to CKO must provide a
SYNC {instruction cycle) signal to CKO, thereby
allowing synchronous data transfer between the
COPs using only the Sl and SO serial /O pins in
conjunction with the XAS instruction. Note that
on power-up SK is automatically enabled as a
SYNC output.

The lower portion of Figure 2.7 provides component
values for several instruction cycle times and
crystal values associated with the RC controlled
and crystal controlled oscillator options,
respectively.

CKO Non-Timing Options

In a crystal controiled or multi-COP oscillator
system, CKO is used as an output to the crystal
network. In the other two configurations (external
clock or RC controlled oscillator), CKO may be
mask-programmed to perform one of two available
options. Specifically, CKO may be mask-
programmed as a general purpose COP420L input,
read into bit 1 of the accumulator (Az) upon the
execution of an INIL instruction.

As another option (for both the COP420L and
COP421L), CKO can be a RAM power supply pin
(VR). allowing its connection to a standby/backup
power supply to maintain the integrity of RAM data
with minimum power drain when the main supply is
inoperative or shut down to conserve power.

110 Options

While the COP420L/COP421L has capabilities to
directly drive LED displays through increased
voltage and current specs, the circuit
configurations are identical to those of the COP420
in Figure 2.6. Increased current sink and source
values are a result of changing device sizes (within
the bounds of the same circuit configuration).
When emulating the COP420L with the COP402,
one might use the typical values of the 402 as
worst case COP420L drive parameters. An
alternative is the use of the COP404L to emulate
the drive of the COP420L.

For detailed electrical characteristics, refer to the
COP420L/COP421L data sheet.

The SO and SK outputs can be configured as
shown in Figure 2.6, a, b, or c. The D and G outputs
can be configured as shown in a or b. Note that
when inputting data to the G ports, the G outputs
should be set to 1. The L outputs can be
configured as shown ind, e, f or g

An important point to remember is that all of the L
driver options are TRI-STATE" -able. Therefore, the
L drivers have TRI-STATE-able Standard and Open-
Drain output options as well as the TRI-STATE LED
Direct Drive and Push-Pull output options. Since
the device to Ve in the Standard output
configuration is a depletion-mode device, it witl
source up to 0.125mA when this output is “turned
off" in the TRI-STATE mode,which is insufficient to
guarantee a logic "1" input level.

Bonding Option

The COP421L is a bonding option of the COP420L:
if the COP420L is bonded as a 24-pin device

(without the 4 IN inputs), it becomes the COP421L.
The COP421L is pin-compatible with the GOP410L.

2.7 COP420C Description

The COP420C is a CMOS version of the COP420. It
differs from the COP420 primarily in electrical
specifications; however, it also features a dual
clock mode option for operation at low speed
{typically 244 us instruction cycie time) with low
power consumption (25uA with Vee = 2.4V) or high
speed (15us instruction cycle time) when necessary
to perform internal data computations at a faster
rate. The COP420C has the same output drive
characteristics as the COP420 (TTL/CMOS
compatible) and retains the MICROBUS™ option.
The following are the major differences between
the COP420C and the COP420:

e Operating voltage of 2.4V to 6.0V.

» Low power consumption at 244pus instruction
cycle time (inexpensive 32kHz XTAL = B)=25uA
at VCC =2.4V.

e Dual clock mode option allowing operation at
16 s instruction cycle time (using external RC
network) for internal data computation
operations.

¢ “Fast” clock mode entered under program
control.

For further information, see the COP420C data
sheet.

apinn sgesn Ajjweyd SdOD



COPS Family User’s Guide

28 COP444L/COP445L Description

The COP444L/COP445L are expanded-memory
versions of the COP420L containing the same
internal logic elements and instruction set as the
COP420 and COP420L, but with twice the amounts
of ROM and RAM. The major differences between
the COP444L/COP445Land the COP420L/COP421L
are the following:

* Operating supply current iess than 11 mA at
Vee =58V,

* 2048 x 8 ROM.
* 128 x4 RAM.

The COP445L is simply a COP444L in a 24-pin duai-

in-line package. As a result, the IN inputs are not
available on the COP445L, so that the COP445L is
pin-compatible with the COP421L and COP410L.

These devices are emulated using the COP404L.

For further information, see the COP444| /4451
and/or COP404L data sheets.

2.9 COP402 and COP402M ROM-Less Parts
Description

The COP402 and COP402M are ROM:-less versions
of the COP420. They are packaged in 40-pin
packages and are available for prototyping a
COP420 system using the COP400 Deveiopment
System (PDS) or, in quantity, for small volume
applications using externai ROM.

The COP402 has been mask programmed with
options suitable for use as a general controlier.
COP402 inputs have load devices to Vee, the
various outputs have the fullest drive capability

9-18

associated with them {L outputs = LED direct drive;
G and D outputs = standard; SO, SK outputs =push-
pull). The COP402 has been programmed for use
with an external crystal network, using CKi and
CKO, with an instruction cycle time equal to the
crystal frequency divided by 16.

The COP402M is the MICROBUS™ compatible
version of the COP402. It features the same options
as the COP402 with the single exception that the
MICROBUS option has been selected. It is, of
course, intended for use in prototyping systems or
small volume applications which use the
microcontroiter as a CPU peripheral component,
with communication over National's MICROBUS.

210 COP404L ROM:Less Part Description

The COP404L is a ROM-less version of the
COP444L. It is packaged in a 40-pin package and
may be used to prototype all low-power COP400
devices (COP411L, COP410L, COP420L, COP421L,
COP444L).

2.11 COP410L/COP411L Architecture

Figure 2.9 provides a block diagram of the
COP410L/COP411L. As with the COP420/COP421
block diagram, it depicts the internal logic and
interconnects of the device in simplitied form. Note
that the COP410L is functionally a subset of the
24-pin COP421L. As with the COP421L, it lacks the
COP420L IN inputs and the internal IL latches
associated with two of these deleted input pins.
These and other architectural differences are
discussed in the Functional Description, below.

Figure 2.10 shows the Connection Diagrams for the
24-pin COP410L and the 20-pin COP411L. Figure
2.11 provides a pin description for the
COP410L/COP411L devices.

See data sheet for the electrical specifications of
the COP410L/COP411L, showing maximum ratings
pius DC and AC characteristics for these devices.

The COP401L is available for final program
verification for a COP410L/COP411L application.



PAGGRAM MEMORY
512k x 8 AOM

ADDRESS

INSTRUCTION
DECODE/CONTROL
SKIP LOGIC

o ELRVEL STACK

DIVIDER

Nk U b

RESET . RESEE
Leeic s E5ET.
01GIT ADDRESS ti -
DATAMEMORY  REG
32 x4 RAN ADDR X" BR | &0
0UT [T & 2 4
BEaE " o3
LT vt o - --D
e ACCUMULATOR i REGISTER g
A ” & :
§ S— - BUFFER [ =8y
A By
SK 5K
1
RIS
hE T i N i
. L REGISTER - G
’ ’ & e
. el BUFFER <6
a : B4
REGISTER I T
SERIAL /O REGISTER i #
L DRIVERS sioz Si0z S107 Si0p :
- 50

apiny s asn Ajjweq S0



COPS Family User's Guide

CoPaigL

LR T P

2.12 COP410L/COP411L Functional
Description

The following text provides a functional description
of the differences which exist between the internal
architecture of the COP420, covered in detail in

Section 2.2, and that of the COP410L and COP411L.

Consequently, for information on logic elements
not discussed below which appear in Figure 2.9,
COP410L/COP411L Block Diagram, refer to Section
2.2. Where appropriate, differences between the
COP410L and its smaller version, the COP411L, are
noted in the following text.

Program Memory

Program memory consists of a 512-byte ROM. The
same paging characteristics apply to the
COP410L/COP411L when allocating program
memory instruction code as those which apply to
the COP420 (see Section 4.1) except that ROM
consists of 8 (0-7) pages of 64 {0-63) words each.

ROM addressing is accomplished by a 9-bit P
register. The auto increment-before-execution and
page-rollover features of the COP420 apply to the
COP410L/COP411L.

Since the COP410L/COP411L have 2 9-bit
subroutine-save registers, SA and SB, subroutine
nesting is allowable to two levels (only one level
when executing a LQID instruction since this
instruction pushes the stack).

coraIL

Data Memory

Data memory consists of a 128-bit RAM organized
as 4 (0-3) data registers of 8 4-bit digits. Digit
addressing is valid only for digits 0, 9-151in a
particular register. (The COP410L/COP411L wiil,
however, treat digit addresses of 1-7 as valid digit
values of 9-15, respectively.) As with the COP420,
RAM addressing is accomplished by a 6-bit B
register whose upper 2 bits (Br) select 1 of 4 data
registers and lower 3 bits (Bd) select 1 of 8 4-bit
digits.

A direct access to data memory, without using the
B register, is only permissible with respect to M(3,
15) by using an XAD 3, 15 instruction. All other XAD
and all LDD instructions have been deleted from
the COP410L/COP411L instruction set.
Consequently, all other RAM locations must be
accessed by loading the B register with the
address of data memory to be accessed.

As with the COP420, Bd alsc may be used as a
source register to output its 4-bit contents directly
to the D outputs via an OBD instruction.

9-20



The Q register functions in a similar manner as the
COP420 Q register with the following exceptions:

1. Its contents must be read with the INL
instruction, since the CQMA instruction has
been deleted.

. it cannot be loaded with the contents of the L
1O ports since this function is associated with,
the deleted MICROBUS™ option.

The COP410L/COP411L does not contain the
CQOP420 internal divide-by-1024 time-base counter;
hence, the SKT instruction has been deleted. “Real-
time™ program counters must, therefore, rely on an
external time-base input {e.g., 50/60 Hz square wave)
to derive a program “clock” for such applications,
rather than on the COP410L/COP411L instruction
cycle clock itself.

Bit 1 of the EN register (EN4) is a ""don’t care” bit,
as explained above, due to the lack of a
COP410L/ICOP411L IN4 input. (The COP420 uses the
EN, bit to enabte IN{ as an interrupt signal.)

The CASC, ADT and OGi instructions have been
deleted. See Section 3.4 for hints on performing
these functions.

2.13 COP410L/COP411L Mask Programmable
Options

The following text describes the differences which
exist between the COP420L mask programmable
options and those which are available for the
COP410L and COP411L devices.

Available clock oscillator configurations are as
fotlows:

a. Ceramic Resonator Controlled Oscillator. CKli
and CKO are connected to an external ceramic
resonator. The instruction cycie time equals the
resonator frequency (500kHz maximum) divided
by 8. This configuration and its associated
options are not available on the 20-pin COP411L
since it lacks the CKO pin.

. External Oscillator. CK! is configured as a
Schmitt trigger input {(not TTL compatible),
accepting an external clock signal. The external
frequency {500 kHz maximum)} is divided by 8 to
derive the instruction cycle time. This option
applies to both the COP410L and the COP411L.
For the COP410L, moreover, this configuration
allows CKO to be used for a RAM power supply
(VR).

. RC Controlled Oscillator. CKl is configured as a
single pin RC controlled Schmitt trigger
oscillator. The instruction cycle equals the
oscillator (RC time-constant) frequency divided
by 4.

. Externally Synchronized Oscillator. CKO is
configured as a synchronizing input from the SK

9-21

output of another COP400 device. CKl is an
external osciliator (divide by 8).

The lower portion of Figure 2.11 provides
component values associated with the RC
controlied oscillator option.

COP410L CKO Non-Timing Options

in the COP410L resonator controlled configuration,
CKO is used as an output to the resonator network.
In the other two configurations {external clock and
RC controlied), CKO may be mask-programmed as
a RAM power supply pin {Vg), allowing its
connection to a standby battery backup power
supply to maintain the integrity of RAM data with
minimum power drain when the main supply is
inoperative or shut down to conserve power.

apIny sJasn Ajwey SdOD

COP410LICOP411L )/O Options

COP410L/COP411L inputs and outputs have the
same optional configurations as the
COP420L/COP421L.; see Section 2.7.

The input and output configurations share common
enhancement-mode and depietion-mode devices.
For detailed electrical characteristics on these
devices, refer to the COP410L and COP421L data
sheets,

The SO and SK outputs can be configured as
shown in Figure 2.6, a, b, or c. The D and G outputs
can be configured as shown in a or b. Note that
when inputting data to the G ports, the G outputs
should be set to “*1.” The L outputs can be
configured as shown in d, e, f, or g.

An important point to remember is that a// of the L
driver options are TRI-STATE" -able. Therefore, the
L drivers have TRI-STATE-able Standard and Open-
Drain output options as well as the TRI-STATE LED
Direct Drive and Push-Pull output options. Since
the gevice to V¢ in the Standard output
configuration is a depletion-mode device, it will
source up to 0.125mA when this output is “turned
off” in the TRI-STATE mode, which is insufficient to
guarantee a logic 1" input level.

Bonding Option

The COP411L is a bonding option of the COP410L:
if the COP410L is bonded as a 20-pin device
(without CKO, D5, D3, and Gj), it becomes the
COP411L. Use of output options associated with
these deleted pins are, of course, preciuded. All
other COP410L options are available.




COPS Family User’s Guide

COPA10L (or COP420L/

CoPatoL o 421114341 /aa50)

P410LICOP411L Oscillator Configurations

9-22




COP400 Instruction Sets A4

This chapter provides information on the
instruction sets of the COP400 microcontroliers. As
with the architecture of the different devices in the
COP400 family, the instruction sets of the various
devices allow the user to choose among several
devices to provide only as much software
capability as is needed for a particular application.
Specifically, the instruction sets of the various
devices are, generally, subsets of the most
inclusive instruction set of the COP440. This
chapter will discuss the COP420-series (includes
COP421, COP421L, COP421C), COP444L, COP410L,
and COP411L, respectively. Users of the COP440
shouid refer to the COP440 data sheet (when the
device becomes available) for information on the
additional instructions associated with the COP440
instruction set.

This chapter primarily provides information on the
machine operations associated with the instruction
set of COP400 devices. However, where
,appropriate, short examples indicating typical
usage of particular instructions are provided. For a
detailed treatment on using COP400 instructions 1o
write COP400 assembly language programs, see
Chapter 4 of this manual.

9-23

|
|

3.1 COP420-Series/COP444L Instruction Set

Table 3.1 provides the mnemonic, operand, machine
code, data flow, skip conditicns and description
associated with each instruction in the COP420-
series/COP444L instruction set. As indicated, an
asterisk in the description column signifies a
double-byte instruction. Also, notes are provided
foilowing this table which describe or refer to
additional information relevant to-particular
instructions. As indicated by Note 3, the INI and
INIL instructions are not included in the COP421
instruction set, due to its lack of IN inputs and the
IL; and ILg latches associated with two of the IN
inputs {IN5 and INg, respectively).

Note that the COP420-series/COP444L set, as with
all COP400 instruction sets, is divided into the
following categories: Arithmetic Operations,
Input/Output Instructions, Transfer of Control
Instructions, Memory Reference Instructions,
Register Reference Instructions, and Test
Instructions.

apiny sJesn Ajlwey Sd0D



ARITHMETIC INSTRUCTION

ADD
ADT

COPS Family User’s Guide

s

XoR

" TRANSFER OF COM

-

JgsP.

CRETSK

9-24



ticontinged)

‘Skip Conditions~© Description

e

. . CopyQIoRAM.A

. _Load RAMinto A,
.- Exc!usiye—08=ﬂ_r-with T

epIND s esn AWed S40D

A

"= [oad A with. RAM pointed
i io d:rectly by L d : :

. .Load Q lndu'ect (the 33 :

i _nésétnw an_ el

. SetRAM B

. 'Stors Memory Immediate
: ;Zand Increment Bd |

A Exchange RAM witr A
. Excluswe Oﬂ Br with r

B ]

G Exchange A wnh RAM
L po;rtted to dlrectky by rd. ]

= _Exchange RAM with A |
v and: Decrement Bd, : .
: ~Exclusive-OR Br witt}r :

L Bd @egﬁrejméntfspas:t:ﬁ

. Bdiincrements past 15 - Exchange RAM with A
cihriosin e e o e anddncrement Bd,
“ 1 Exclusive-OR Brwith ¢

"éd + i Bﬁs ;' :
| Becen

 REGISTER REFERENGE INSTRUGTIONS

A &di\ione =Copygtggdﬂ

f 8d - A=j=j- S e jjf'c';pysdmA

e wﬁegwy;}}}"'"
_. fssfjum91¢wa11_4
,.,.E1gr! 'd':

LRy .:':3_3:=j= -0{111001 f.ﬁy%EN:f' T gme LoadENimmedLate '
Cena P e 6~1011€3{ Note 7) .

CXABR :Z.V':fzﬁ-ﬁ'-jga'af}-ﬁ;do'j.o]: | A BrO0-AgA)  None oo sxcnange#wém'aﬁ

 SkipuntilnotalBi - Load B Immediate with
R SN S Y _rd(NoteG)

»

9-25



COPS Funly Uow's Guks

. Table 3 1C°P42953*’"3$fc‘}?44 L Instruction Set (continued) AR

: Maehine
guage. Code
Binary} =

- DataFlow . Skip Conditions

- TES? msmucnows

000000 il

. poropooy |

- lbooogary (™
ooiwery |)

looopooy |

lbooopors |
jonoijooty

o

Ib
1I

f - RAM(B)

o0
T e

=.a?=>'°_"°=ﬂ. S

G.:a =

o RAM{B}Q = e
. RAM(Bl =0
. RAM(B)y
o RAM{B);; =_a

~earry has: occufred
since iast test

A ume-base c0unter" S
i (Nute 3)

' émp ifCis .True-' 3

Skup lf A Equais HAM

:‘ Skup it G is "ero :

{a!l 4bits)

"+ SKip it & Bit isZero

| SKip if RAM Bit is Zero |

Smp on ?‘lmer

'“Nota Sy
spénds wk%h tha selacﬁm ar deselectinn 6! a parﬁcuiar funcﬂon assoc{ratezi wim eaah fm {See Functionai Descnpﬁon EN- Regnster_.r' =

.t Inpui G Ports to A

_Output tc- G Ports
i }mmecjlate

;Note‘l. Allsu BCHD :
N whareﬂs;gﬁm% e,«least slgnifmant (mw-ordef, ﬂght mos b:t) For

Nota 5 A JSAP transfers prﬁgr -
JSHP may not mmg m thﬂ mst ward

symbols indlcate bl numbars unles

. ‘ . defined) ‘Bits.are numbered{}
esthe o5t srgmficanf {Iaﬂmsﬂ bﬁt of the 4-bit

olor ithin: etwu page bcundary f pages 2 c:r AThe J
J‘F_’ may ot pio ﬂae last wotﬁ ef a page

: U ais the bmary value of the
struct{a equat 8(1 Goozj Tol oacto themwer

ac:ltins cuﬁe !o; operand Hield y for LE mstruatiﬁn should equal the binary: value o be taichad into EN where - “‘%“ or 0” iR .each it o

9-26



~Table 3.2 provides a list of internal architecture,
‘astruction operand and operational symbols used
in the COPA420-series/COP444L instruction Set
Table. Table 3.5 shows an alphabetical mnemonic
index of COP420-series/COP444L instructions,
indicating the hexadecimal opcode and description
associated with each instruction. Table 3.6 is a list
of COP420-series/COP444L instructions arranged in
order of their hexadecimal opcodes.

The following text gives a description of each
COP420-series/COP444L instruction, explaining the
machine operations performed by each instruction
and, where appropriate, providing short examples
iltlustrating typical usage of particular instructions.

i -'ame 3.2 comzo SBries!CONML o
knstruct:on Sel Table Symimls :

Swnbol h . - Definition

: FNTERNAL AFK)H kTEGTUﬂE SYM BO’Ls

A bit: Accumula}nr e L
: .AM Address ﬂegis:ezr S
"ls of B {remstef address)

A0hit Sabrouﬁne ave ﬂegaster A
o fmm Subroutine Save Rogister B.
A0 Sahmutme Save Register ¢ 2 :
S St Heg ster.and Counter <
Logic{;ontmiled Gmck Outpu!

+ : : Defimlwn
=y !N_ ﬁUCTIG‘N OPERAND SYMBOLS ‘_ g
a - adbit Qpera;td Fleld 0-45 btnary (RAM Digit Se ect)

:1 2bli Operand: F.em L abmary (RAM Reglster :
Select) -

SR 0 Operand Field, 0-1033 bmary (HOM Address]
: y o blt Dperaﬁd Fneld‘ o= 15 b%nary (Immedléte Data) :
o 'RAQ(S}:_ Comsnts of BAM' |ocatlon addressed by's
Bl :ﬁ_C?M(ﬁ}- _ :_‘cgmem.s oEROM ocation addressed by £

i QPERANQNAL smac;,s
ChaT P
S '_-:Mmus
““Raplaces - -
_ls exchaﬂged with
“isedealto
U Thiegnes complemem of A
CUExCisive-0R
“‘Range.ofvallies "

e

3.2 COP420-Series/COP444L instruction Set
Description

Arithmetic Instructions

ASC (Add with carry, Skip on Carry) performs a
binary addition of A, C (Carry bit), and M, placing
the result in A and C. If a carry occurs, the next
program instruction is skipped.

ADD (ADD) performs binary addition. The 4-bit
addends are A and M. The 4-bit sum is placed in A.
ADD does not affect the carry or skip.

ADT (ADd Ten toc A) adds ten (1010,) to A and, like
ADD, does not affect the carry or skip. It is
intended to facilitate Binary Coded Decimal (BCD)
arithmetic. For example, the following sequence of
instructions will perform a single-digit BCD add of
the contents of A and M [the carry is assumed set
when entering this routine if addition of the
previous least significant digits produced an
overflow (A > 9)):

AISC 6
ASC
ADT

The AISC 6 instruction adds a BCD correction
factor (i.e., 6) to the digit in the accumuliater. (See
AISC instruction.) Since the accumulator contains a
BCD digit (< 9) no carry will occur and the next
instruction, ASC, will always be executed. The ASC
instruction adds the carry and memory digit to A,
as explained above. If the result deoes not produce
a carry, signifying that the previous AISC 6
(correction factor) instruction was unnecessary, the
ADT instruction is executed, readjusting the
accumutator to the proper BCD result. (Remember:
ADT neither affects the carry nor skips.)

If the ASC result does produce a carry, C is set for
propagation to the addition of the next most

significant digits and, since no readjustment of the
result is necessary, the ADT instruction is skipped.

AISC (Add Immediate, Skip on Carry) adds the
instruction operand constant “'y” (1-15) to A,
skipping the next instruction if a carry out occurs
(C is not changed). This instruction finds frequent
use in BCD add and subtract routines (see ADT and
CASC descriptions) as well as in testing the value
of A.{If A is greater than 12, for instance, an

AISC 5 will skip the next instruction.)

CASC (Complement and Add, Skip on Carry)
performs a binary subtraction of A from M by
summing the complement of A (E) with C and M,
placing the result in A and C. f no carry out
occurs, indicating a borrow, C is reset and the next
instruction is executed. If a carry occurs, indicating
no borrow, C is set and the next instruction is
skipped.

opINg sJesn Ajwed Sd0D



COPS Family User's Guide

A single BCD digit binary subtraction of A from M
may be performed as follows. (The carry bit is
assumed set upon initial entry to the routine.)

CASC
ADT

The CASC instruction will set C and skip the ADT
instruction if the subtraction does not result in a
borrow (A > M). If a borrow occurs, the ADT
instruction is executed, readjusting the resuit to
the proper BCD vaiue, leaving C reset for
propagation of the borrow in the subtraction of the
next most significant 8CD digits. CASC is
functionally equivalent to a COMP instruction
followed by an ASC.

CLRA (CLeaR A) clears the accumulator by placing
zeros in each of the 4 bits of A,

This instruction is often required prior to loading A
equal to a desired value with an AISC instruction if
the previous contents of A are unknown. For
instance, to load A =11, the following sequence
may be used:

CLRA
AISC 11

The skip features associated with AISC need not
be considered in this example. (A carry will never .
occur.)

COMP (COMPIement A) changes the state of each
of 4 bits of A with ones becoming zeros and zeros
becoming ones. It has the effect of, and may be
used to perform, a binary (one’s complement)
subtraction of A from 15 (1111,), e.g.,
complementing A =6 (0110;) will yield 9 (10013},

NOP (No OPeration) does not perform any
operation. it is useful, however, for simple single
instruction time delays or to defeat the skip
conditions associated with particular instructions.

SC (Set Carry) and RC (Reset Carry) set C and reset
C, respectively. SC and RC are most often
employed to initialize C prior to entering arithmetic
routines. They also allow C to be used as a
general-purpose (testable) flag, as long as
subsequent instructions do not inadvertently affect
the C register.

XOR (eXclusive-OR A with M) performs a logical
EXCLUSIVE-OR operation of each bit of A with
each corresponding bit of M, placing the result in
A. This operation can be used to change the state
of any bit in M, if the corresponding {equally
weighted) bit of A is set. This follows from the
EXCLUSIVE-OR truth table where a X +“1" =X, and
a X+ 0" =X, assuming the “X" bits to be one of
the 4 bits in M, and the "'1” and “0" to be equally
weighted bits in A. This instruction, therefore,
allows the selective complementing or toggling of
one or more bits of M. Example: to change the
state of bit 2 of M, set A=0100, perform an XOR,
then exchange A into M with an X instruction.

Input/Output Instructions

ING (INput G ports to A) transfers the 4-bit
contents of the IN ports {IN3-1INp) to A.

INEN (INput IN inputs to A) transfers the 4-bit
contents of the IN ports (IN3-1Ng) to A.

INIL (INput IL latches to A) is a special purpose
instruction which inputs the two iatches IL; and ILg
(see Figure 3.1 below) and, if the appropriate option
is selected, a general-purpose input, CKO, to the
accumulator — the unused bit/bits of A are reset.
Specifically, INIL places ILs = A3, CKO — A,

0" = Ay, Hg— Ag. IL3 and ILg are the outputs of
latches associated with the IN; and INg inputs.
{The general purpose inputs, IN3-INg, are input to A
upon the execution of an ININ instruction. (See
ININ Instruction.) The ILs and ILg latches are set If
a low-going pulse {1’ to 0"’} has occurred on the
IN3 and INg inputs, respectively, since the last INIL
instruction, provided the input pulse stays low for
at least two instruction times. Execution of an INIL
inputs IL3 and Iy into A; and Ag respectively, and
resets these latches to allow them to respond to
subsequent low-gcing pulses on the iN3 and INg
lines. These latches are not cleared during a power
on reset.

If CKQ is mask-programmed as a general-purpose
input, an INIL will input the state of CKQ into A,. If
CKO has not been so programmed, a ‘1" will be
placed in A,. A “0” is always piaced in Ay upon the
execution of an INIL.

INIL is useful in recognizing and capturing pulses
of short duration or which can't be read
conveniently by an ININ instruction.

INL (INput L ports to M, A) transfers the 8-bit
contents of the bidirectional TRI-STATE® /O ports
to M, A. L;-L, are placed in M3-Mg (the memory
digit pointed to by the B register); L3- Ly are placed
in As—Ao.



OBD (Output Bd to D outputs) transfers the 4-bit
contents of Bd (lower 4 bits of the B register) to the
D output ports {D3-Dyg). Since, in many
applications, the D outputs are connected to a digit
decoder, the direct output of Bd aliows for a
standard interconnect to the binary inputs of the
decoder/driver device.

OGI {Output to G ports Immediate) transfers the
four bits specified in the “y"” operand field of this
instruction (0-15, binary) to G3-Gg.

OMG (Output M to G ports) transfers the 4-bit
contents of M (M3-Mg) to Gz~ Gg.

XAS (eXchange A with Si0O) exchanges the 4-bit
contents of A {Az-Ag) with the 4-bit contents of the
S0 register (S10;3~-SI10yg). SIC will contain serial-
infserial-out shift register or binary counter data,
depending on the value of the EN register. An XAS
instruction wiil also affect the SK output. The XAS
instruction copies C into the SKL latch. In the
counter mode, SK is the output of SKL; in the shift
register mode, SK outputs SKL ANDed with the
clock.

For further information on the EN register and its
relationship to the XAS instruction, see LEI
Instruction, below. If SIO is selected as a shift
register, an XAS instruction must be performed
once every 4 instruction cycle times to effect a
continuous serial-in or serial-out data stream.

Transfer of Control Instructions

JID (Jump InDirect) is an indirect addressing
instruction, transferring program control to a new
ROM location addrssed by the contents of the ROM
location pointed to by A and M. Specifically, it
ioads the lower 8 bits of the ROM address register
P with the contents of ROM pointed to by the 10-bit
word PgPgAs Ay Ay AgM3M; My M. The contents of
the selected ROM location (17-1g) are, therefore,
loaded into P;-Pg, changing the lower 8 bits of P
to transfer program control to the new ROM
location.

Py and Pg remain unchanged throughout the
execution of the JiD instruction. JID, therefore, may
only jump to a ROM location within the current
4-page ROM “block” (pages 0-3, 4-7, 8-11 or
12-15). For further information regarding the
“paging” restrictions associated with the JID
instruction, see Section 4.1.

JiD can be useful in keyboard-decode routines
when the values associated with the row and
column of a particular key closure are placed in A
and M for a jump indirect to the contents of ROM
which point to the starting address of the
appropriate routine associated with that particular
key closure. For an example of use of the JID
instruction to access a keyboard-decode ROM
pointer table, see Display/Keyboard Program,
Section 5.3, #16.

9-29

JMP (JuMP) transfers program control to any word
in the ROM as specified by the “a" field of this
instruction. The 10-bit “'a” field is placed in Pg- Py.
JMP is used to transfer program controlf from one
page to another page (if in page 2 or 3, the more
efficient single-byte JP instruction may be used) or
to transfer control to the /ast word of the current
page — an invalid transfer for the JP instruction.

JP (Jump within Page) transfers program control to
the ROM address specified in the operand field of
this instruction. The machine code and operand
fieid of this instruction have two formats. If
program execution is currently within page 2 or 3
(subroutine pages) a 7-bit “a’ field is specified,
transferring program controf to a word within either
of the two subroutine pages. Otherwise, only a 6-bit
“a” fleld is specified, transferring program control
to a particutar word within the current 64-word
ROM page.

Specitically, this instruction places ag-ag in Pg-Pq
if the program is currently in subroutine page 2 or
3. If in any other page, it places as-ag in Ps-Pg.

The restrictions associated with the JP instruction,
therefore, are that a 7-bit “a” field may be used
only when in pages 2 or 3. Otherwise, a JP may be
used only to jump within the current page by
specifying a 6-bit “a” field in the operand of this
instruction. An additional restriction associated
with the JP instruction, in either of the above two
formats, is that a JP to the last word of any page is
invalid, i.e., “a” may not equal all 1s. A transfer of
program control to last word on a page may be
effected by using a JMP instruction. (See JMP

Instruction, above.)

JSRP (Jump to SubRoutine Page) is used to
transfer program control from a page other than 2
or 3 to a word within page 2. It accomplishes this
by placing a 2 (0010;) in Pg- Pg, and the word
address specified in the 8-bit "a" field of the
instruction into Ps-Pg. Designed to transfer control
to subroutines, it pushes the stack to save the
subroutine return address — the address of the
next program instruction is saved in SA and the
other subroutine-save registers are likewise pushed
(P+1— SA— SB - SC). Any previous contents of
SC are lost, since SC is the last of the three
subroutine-save registers. Subroutine nesting.
therefore, is permitted to three levels. JSRP is used
in conjunction with the RET or RETSK instructions
which “pop" the stack at the end of subroutine to
return program control to the main program. As
with the JP instruction. JSRP may not transfer
program control to the last word of page 2: “a”
may not equal all **1s.”" A JSR may be used to jump
to the last word of a subroutine beginning at the
last word of page 2. (See JSR, beiow.) As
mentioned above. a further restriction is that a

apiny sJasn Ajiwe4 S40)



COPS Family User’'s Guide

JSRP may not be used when in subroutine pages 2
or 3. To transfer program-control to a subroutine in
page 2 when in pages 2 or 3, the double-byte JSR
should be used, or, if it is not necessary to push
the stack, a JP instruction may be used.

JSR (Jump to SubRoutine) transfers program
control to a subroutine located at a particular word
address in any ROM page. It modifies the entire P
register with the vaiue of the “a” operand of this
instruction, as follows: ag-ag —~ Pg-Py. As with the
JSRP instruction, JSR pushes the stack

(P+1— SA — SB — SC), saving the next program
instruction for a return from the subroutine to the
main program via a RET or RETSK instruction. JSR
may be used to overcome the restrictions
associated with the JSRP instruction: to jump to a
subroutine and push the stack when in pages 2 or
3, or to jump to a subroutine located at the last
word of page 2.

RET (RETurn from subroutine) is used to return
program control to the main program following a
JSR or JSRP instruction. RET “pops’’ the stack
(SC = 8B — SA — P): the next main program
instruction address (P + 1) saved in SA is loaded
into P, the contents of SB are loaded into SA and
the contents of SC are loaded into SB. (The
contents of SC are also retained in SC.) Program
control, therefore, is returned to the instruction
immediately foilowing the previcus subroutine call.

RETSK (RETurn frem subroutine then SKip), as with
the RET instruction above, pops the stack

(8C — SB - SA - P), restoring program control to
the main program following a subroutine call. it,
however, always skips the first instruction
encountered when it returns to the main program.
This instruction, therefore, provides the
programmer with an alternate return from
subroutines, either via a RET or RETSK, based
upon tests made within the subroutine itself.

CAMQ (Copy A, M to Q) transfers the 8-bit contents
of A and M to the Q latches. A;- A, are output to
Q7-Qy; M3-M;g are outout to Q3-Qp. Note that
CAMQ is the inverse of CQMA (see CQMA
Instruction, below) with respect to the 4 bits of Q
with which A and M communicate. Therefore, the
input and processing of Q must often be followed
by an X (Exchange M with A) instruction before

final output to Q in order to maintain the proper bit-

weights of the Q data. For example, the following
instructions read Q to M, A, set Q; and perform the
necessary exchange before execution of the CAMQ
instruction:

CQMA TQTOM, A

SMB 3 ; SET Q; BIT LOCATED IN My
X y EXCHANGE M WITH A
CAMQ ALMTOQ

9-30

CQMA (Copy Q to M, A) transfers the 8-bit contents
of the Q latches to M and A. Q;-Q, are placed in
M3-My; Q3-Qg are placed in Az-Ag. CQMA can be
employed after an LQID {Lcad Q InDirect)
instruction to input or alter the value of lookup
data. CQMA is also an essential instruction when
the COP420 is employed as a MICROBUS™
peripheral component. In such applications, IN; is
used by the control microprocessor to write bus
data from the L ports to the Q latches. (See Section
2.4, MICROBUS™ option.) A CQMA will then input
this data to M, A as explained above for processing
by the COP420 program.

Memory Reference Instructions

LD (LoaD M into A) loads M (the 4-bit contents of
RAM pointed to by the B register: Mz~ Mg) into
As-Ap. After M is loaded into A, the 2-bit “r"
operand field is EXCLUSIVE-ORed with the
contents of Br (upper 2 bits of B — RAM register
select) to point to a new RAM register for
successive memory reference operations. Since the
properties of the EXCLUSIVE-OR logic operation
are such that a 1 & X equals the complement of X,
use of the “r” field allows the programmer to
switch between any one of the 4 RAM registers by
complementing the appropriate bit/bits of the
current contents of the Br register. Of course, if
“r" =0, the contents of Br will remain unchanged
after the execution of a LD instruction.

For example, if the assembly janguage instruction
LD 3 (1" =11,) is executed with Br =2 (10,) and
Bd =12 (1100,), the contents of RAM register 2,
digit 12 will be loaded to A and Br will be changed
to (112 + 10, = 015,), with B pointing to RAM register
1, digit 12. For assembiy language programming
use of an EXCLUSIVE-OR “r” operand field with
memory reference instructions which use this field
is optional — if not specified, an “0” operand is
assumed. For further information on allocating
RAM map locations for optimum use of the
EXCLUSIVE-OR feature associated with this and
other memory reference instructions and for
sample routines utilizing this feature, refer to
Sections 4.2 and 4.4.

SMB (Set Memory Bit) and RMB (Reset Memory Bit)
set and reset, respectively, a bit in M as specified
by the operand field of these instructions.
(Remember: M is the 4-bit RAM digit pointed to by
the B register.) The operand field is specified
according to the bit number (0-3, left-most to right-
most bit) of the particular bit to be set or reset,
e.g., an SMB 3 would set the most significant bit of
M. These instructions are useful in operating upon
program status flags located in RAM.

STII (Store Memory Immediate and Increment Bd)
loads the 4-bit contents specified by the “y”



OBD (Output 8d to D outputs) transfers the 4-bit
contents of Bd {lower 4 hits of the B register) to the
D output ports {Ds-Dg). Since, in many
applications, the D outputs are connected to a digit
decoder, the direct output of Bd allows for a
standard interconnect to the binary inputs of the
decoder/driver device.

OGI (Output to G ports immediate) transfers the
four bits specified in the “'y” operand field of this
instruction (0- 15, binary) to G;3-Gg.

OMG (Output M to G ports) transfers the 4-bit
contents of M (M3- Mg} to Gz-G.

XAS (eXchange A with SIO) exchanges the 4-bit
contents of A (A3~ Ag) with the 4-bit contents of the
SIO register (S103-SI0g). SIO will contain serial-
iniserial-out shift register or binary counter data,
depending on the value of the EN register. An XAS
instruction wiil also affect the SK output. The XAS
instruction copies C into the SKL latch. in the
counter mode, SK is the output of SKL; in the shift
register mode, SK outputs SKL ANDed with the
clock.

For further information on the EN register and its
relationship to the XAS instruction, see LEI
Instruction, below. If SIO is selected as a shift
register, an XAS instruction must be performed
cnce every 4 instruction cycle times to effect a
continuous serial-in or serial-out data stream.

Transter of Control Instructions

JID (Jump InDirect) is an indirect addressing
instruction, transterring program control to a new
ROM location addrssed by the contents of the ROM
location pointed to by A and M. Specifically, it
|loads the lower 8 bits of the ROM address register
P with the contents of ROM pointed to by the 10-bit
word PgPg Az A, Aj AgMa My M,y M. The contents of
the selected ROM location {I;-1y) are, therefore,
ioaded into P;- Py, changing the lower 8 bits of P
to transfer program control to the new ROM
focation.

Py and Pg remain unchanged throughout the
execution of the JID-instruction. JID, therefore, may
only jump to a ROM location within the current
4-page ROM “‘block” (pages 0-3, 4-7,8-11or
12-15). For further information regarding the
“paging’’ restrictions associated with the JiD
instruction, see Section 4.1.

JID can be useful in keyboard-decode routines
when the values associated with the row and
column of a particular key closure are placed in A
and M for a jump indirect to the contents of ROM
which point to the starting address of the
appropriate routine associated with that particular
key ¢losure. For an example of use of the JID
instruction to access a keyboard-decode ROM
pointer table, see Display/Keyboard Program,
Section 5.3, #16.

9-29

JMP (JuMP) transfers program control to any word
in the ROM as specified by the "a” tield of this
instruction. The 10-bit “a” field is placed in Pg-Py.
JMP is used to transfer program control from one
page’to another page (if in page 2 or 3, the more
efficient single-byte JP instruction may be used) or
to transfer control to the /ast word of the current
page — an invalid transfer for the JP instruction.

JP (Jump within Page) transfers program control to
the ROM address specified in the operand field of
this instruction. The machine code and operand
fietd of this instruction have two formats. if
program execution is currently within page 2 or 3
{subroutine pages) a 7:bit “a" field is specified,
transferring program control to a word within either
of the two subroutine pages. Otherwise, only a 6-bit
“a" field is specified, transferring program control
to a particular word within the current 64-word
ROM page.

Specifically, this instruction places ag-ag in Pg-Py
if the program is currently in subroutine page 2 or
3. 1f in any other page, it places as-ag in Ps-Pg.

The restrictions associated with the JP instruction,
therefore, are that a 7-bit “a’ field may be used
only when in pages 2 or 3. Otherwise, a JP may be
used only to jump within the current page by
specifying a 6-bit "'a"" field in the operand of this
instruction. An additional restriction associated
with the JP instruction, in either of the above two
tormats, is that a JP to the last word of any page is
invalid, i.e., “a’” may not equal all is. A transfer of
program control to last word on a page may be
effected by using a JMP instruction. (See JMP
Instruction, above.)

JSRP (Jump to SubRoutine Page) is used to
transfer program control from a page other than 2
or 3to a word within page 2. It accomplishes this
by placing a 2 {0010} in Pg-Pg, and the word
address specified in the 6-bit *a" field of the
instruction into Ps-Pg. Designed to transfer control
to subroutines, it pushes the stack to save the
subroutine return address — the address of the
next program instruction is saved in SA and the
other subroutine-save registers are likewise pushed
(P+1—SA—~SB— SC). Any previous contents of
SC are lost, since SC is the last of the three
subroutine-save registers. Subroutine nesting.
therefore. is permitted to three levels. JSRP is used
in conjunction with the RET or RETSK instructions
which “pop’” the stack at the end of subroutine to
return program control to the main program. As
with the JP instruction, JSRP may not transfer
program control to the last word of page 2: “a”
may not equal all “1s.” A JSR may be used to jump
to the last word of a subroutine beginning at the
last word of page 2. (See JSR, beiow.} As
mentioned above, a further restriction is that a

apiny s Jasn Ajlwed Sd09



COPS Family User’s Guide

JSRP may not be used when in subroutine pages 2
or 3. To transfer program control to a subroutine in
page 2 when in pages 2 or 3, the double-byte JSR
should be used, or, if it is not necessary to push
the stack, a JP instruction may be used.

JSR (Jump to SubRoutine) transters program
control to a subroutine located at a particular word
address in any ROM page. It modifies the entire P
register with the value of the “a” operand of this
instruction, as follows: ag-ag = Pg- Py. As with the
JSRP instruction, JSR pushes the stack

{P+1—+ SA - SB — SC), saving the next program
instruction for a return from the subroutine to the
main program via a RET or RETSK instruction. JSR
may be used to overcome the restrictions
associated with the JSRP instruction: to jump to a
subroutine and push the stack when in pages 2 or
3, or to jump to a subroutine located at the last
word of page 2.

RET (RETurn from subroutine) is used to return
program control to the main program follewing a
JSR or JSRP instruction. RET “pops” the stack
(8C -+ 8B — SA - P): the next main program
instruction address (P + 1) saved in SA is loaded
into P, the contents of SB are loaded into SA and
the contents of SC are loaded into SB. (The
contents of 8C are also retained in SC.) Program
control, therefore, is returned to the instruction
immediately following the previous subroutine call.

RETSK (RETurn from subroutine then SKip}, as with
the RET instruction above, pops the stack

(8C —~ SB -~ SA - P), restoring program control to
the main program following a subroutine call. it,
however, always skips the first instruction
encountered when it returns to the main program.
This instruction, therefore, provides the
programmer with an alternate return from
subroutines, either via a RET or RETSK, based
upon tests made within the subroutine itself.

CAMQ (Copy A, M to Q) transfers the 8-bit contents
of A and M to the Q latches. A3- Ag are output to
Q7- Qg M3-Mg are output to Qz-Qg. Note that
CAMQ is the inverse of COMA (see CQMA
Instruction, below) with respect to the 4 bits of Q
with which A and M communicate. Therefore, the
input and processing of Q must often be followed
by an X (Exchange M with A) instruction before

final output to Q in order to maintain the proper bit-

weights of the Q data. For example, the following
instructions read Q to M, A, set Q; and perform the
negessary exchange before execution of the CAMQ
instruction:

CQMA QTOM, A

SME 3 ; SET Q; BIT LOCATED IN M3
X  EXCHANGE M WITH A
CAMQ AMTOQ

9-30

CQMA {Copy Q to M, A) transfers the 8-bit contents
of the @ latches to M and A. Q;-Q4 are placed in
M3- Mg, Q3-Qp are placed in Az-A;. CQMA can be
employed after an LQID (Load Q InDirect)
instruction to input or alter the value of lookup
data. COMA is also an essential instruction when
the COP420 is employed as a MICROBUS™
peripheral component. In such applications, IN3 is
used by the control microprocessor to write bus
data from the L ports to the Q latches. {See Section
2.4, MICROBUS™ option.) A CQMA wili then input
this data to M, A as explained above for processing
by the COP420 program.

Memory Reference Instructions

LD (LoaD M into A) loads M (the 4-bit contents of
RAM pointed to by the B register: M3-Mg) into
Az-Agp. After M is loaded into A, the 2-bit *'r”
operand field is EXCLUSIVE-ORed with the
contents of Br (upper 2 bits of B — RAM register
select) to point to a new RAM register for
successive memory reference operations. Since the
properties of the EXCLUSIVE-OR logic operation
are such that a 1 ® X equals the complement of X,
use of the “r” field ailows the programmer to
switch between any one of the 4 RAM registers by
complementing the appropriate bit/bits of the
current contents of the Br register. Of course, if
“r” =0, the contents of Br will remain unchanged
after the execution of a LD instruction.

For example, if the assembly tanguage instruction
LD 3 (“r” =11,) is executed with Br=2 (10,) and

Bd =12 (1100,), the contents of RAM register 2,
digit 12 will be loaded to A and Br will be changed
to (115 + 10, = 01,), with B pointing to RAM register
1, digit 12. For assembly language programming
use of an EXCLUSIVE-OR “r”’ operand fieid with
memory reference instructions which use this field
is optional — if not specified, an “0” operand is
assumed. For further information on allocating
RAM map locations for cptimum use of the
EXCLUSIVE-OR feature associated with this and
other memory reference instructions and for
sample routines utilizing this feature, refer to
Sections 4.2 and 4.4.

SMEB (Set Memory Bit) and RMB (Reset Memory Bit)
set and reset, respectively, a bit in M as specified
by the operand field of these instructions.
(Remember: M is the 4-bit RAM digit pointed to by
the B register.) The operand field is specified
according to the bit number (0-3, left-most to right-
most bit) of the particular bit to be set or reset,
e.g., an SMB 3 would set the most significant bit of
M. These instructions are useful in operating upon
program status flags located in RAM.

STl (Store Memory Immediate and Increment Bd)
loads the 4-bit contents specified by the “y”



operand field of the instruction into the RAM
memory digit pointed to by the B register, M3- M.
It is important to note that the value of Bd (RAM
digit-select) is incremented (as with the XIS
instruction) after the “y"” data is stored in M.

LDD (LoaD A with M Directly) loads the 4-bit
contents of the RAM memory location pointed to
directly by the v’ and “*d” operand fields (register
and digit select, respectively) of the instruction,
M3-Mg, into As-Ag. Note that this instruction and
the XAD instruction differ from other memory
reference instructions in that the operand of the
instruction, not the B register, is used to point to
the appropriate RAM digit location to be accessed
— the B register is unaffected by these
instructions. This instruction is useful in accessing
RAM counters, status and flag digits, etc., within
routines or loops without destroying the previous
value of B, allowing the latter to be used for
sequential memory access operations and for other
reiterative purposes.

LQID (Load Q InDirect) is, in effect, a ROM data
“lookup” instruction. tt transfers the 8-bit contents
of ROM, I;-1q, pointed to by the 10-bit word
PgPgAM to Q7-Qq, respectively. It does this by
pushing the stack (P+1 - SA — SB - 8C) and
replacing the least significant 8 bits of P as
follows: Az-Ag— P7-P4 M3-Mg— P3- Py, leaving
the two most significant bits of P unchanged. The
ROM data pointed to by the new P address is
fetched and loaded into the Q latches, Q7- Q.
Next, the stack is popped (SC ~ SB — SA = P),
restoring the previous pushed value of P (P+ 1) to
continue sequential program execution. Since LQID
pushes SB — SC, the previcus contents of SC are
lost. Also, when LQID pops the stack, the
previously pushed contents of SB are left in SC as
well as loaded back into SB. The net result,
therefore, of an LQID instruction upon the
subroutine-save stack is that the contents of SB
are placed in SC (SB — SC). Since it pushes the
stack, a LQID should not be executed when three
levels of subroutine nesting are currently in effect.
(The last return address in SC will be lost.)

Since, as with the JID instruction, LQID affects
onty the lower 8 bits of P (Pq and Py are
unchanged}, it may only access ROM data located
within the current 4-page ROM “block’ (pages 0-3,
4-7,8-11 or 12-15). For further information on the
use of the LQID instruction, see Section 4.1.

X {eXchange M with A) exchanges the 4-bit
contents of RAM pointed to by the B register,

M3 -Mg, with Aj-Aq. The “r” operand field of the
instruction is EXCLUSIVE-ORed with the contents
of Br after the exchange to provide a new Br RAM
register select value as explained in the LD
instruction above.

XAD (eXchange A with M Directly) exchanges the
4-bit contents of the RAM memory location pointed

9-3

to directly by the “r” and ““d” operand fields of the
instruction, M3- Mg, with Az-Ag. It has the same
characteristics and utility as the LDD instruction
above, e.g., the B register is not affected.

XDS (eXchange M with A, Decrement Bd and Skip
on borrow) performs the same operation as the X
instruction above, and also decrements the value of
the Bd register (RAM digit-select) after the
exchange. Use of an “r” operand field wili,
therefore, result in both an altered RAM digit-select
value and a new RAM register select value in B.
XDS skips the next program instruction when Bd is
decremented past O (after the contents of RAM
digit 0 have been exchanged with A and XDS
decrements Bd to 15). Repeated XDSs will “watk
down” through the digits of a RAM register before
skipping. XDS together with X instructions can be
used to operate upon the corresponding digits of
different RAM registers in successive fashion. (See
Section 4.2))

XIS (eXchange M with A, Increment Bd, and Skip on
carry) performs the same operation as the XDS
instruction except that it increments Bd after the
exchange and skips the next program instruction
after 8d increments past 15 (after the contents of
RAM digit 15 have been exchanged with A and XIS
increments Bd to 0). Consequently, successive XISs
“walk up” through the digits of a RAM register
betore skipping.

Register Reference Instructions

CAB (Copy A to Bd) transfers the 4-bit contents of
A, As- Ag, to Bd (the RAM digit-select register). This
instruction allows the loading of a new RAM digit-
select value via the accumulater, a useful operation
in many memory-digit access loops.

CBA (Copy Bd to A) transfers the 4-bit contents of
Bd (RAM digit select) to A3- Ag. it is the functional
com.plement of the CAB instruction and finds
similar use in memory-digit access loops.

LBl (Load B Immediate) lcads the B register with
the 6-bit value specified by the “'r’’ (2-bit) and “d”
(4-bit) fields of the instruction. !ts purpose is to
directly toad a new RAM register and digit select
value into B and, unlike CAB, CBA or XABR, does
not require use of the accumulator. A further
distinction with respect to CAB and CBA is its
ability to alter the Br register (RAM register-select).

The LBl instruction is coded or assembled into
machine language as ejther a single- or a double-
byte instruction, depending on the value of the “d”
field. If the “d” field value equals 0 or 9 through 15,
the instruction is coded as a single-byte instruction
with the lower 6 bits equal to the value of “d”
minus 1. If the “d" field equals 1 through 8 (1-8),
the instruction is coded as a double-byte
instruction, with the lower 8 bits of the second byte
equal to the value of “'d.” (See LBI Instruction,
Table 3.1, and Note 6 of Table 3.1.)

apiny sJasn Ajlweq4 SdOD



COPS Family User's Guide

To take advantage of the more efficient single-byte
LBI format, frequently used program data (counters,
flags, etc.) should be placed within RAM digit
locations accessible by the LBl single-byte “d”
field (d =0, 9- 15). (See Section 4.2 for further
information.)

An important characteristic of the LBI instruction is
that it will skip all subsequent LBl instructions
until it encounters an instruction which is not an
LBI. This feature accommodates it for use in
muitiple-entry subroutines. (For example, see
Adjacent Memory Move Routine, Section 4.4.)

LEl {Load EN immediate) loads the enable register
with the value contained in the “y” operand field of
this instruction {015, binary). its function is to
select or deselect a particutar software selectable
feature associated with each of the four bits of the
enable register (EN3- ENg). These features and the
corresponding bit-weights and values associated
with each feature are as follows:

1. The least significant bit of the enable register,
ENg. selects the SI0 register as either a 4-bit
shift register or a 4-bit binary counter.

With ENg set, SIO is an asynchronous binary
counter, decrementing its value by one upon
each low-going pulse (1" to “0") occurring on
the Sl input. Each pulse must remain at each
logic level at least two instruction cycles. SK
outputs the value of the C upon the execution of
an XAS and remains latched until the execution
of another XAS instruction. The SO output is
equal to the value of ENj.

With ENg reset, SIO is a serial shift register,
shifting continuously left each instruction cycle
time. The data present at Sl goes into the least
significant bit of S10; SO can be enabled to
output the most significant bit of SIO each cycle
time. SK output becomes a logic-controlled
clock, providing a SYNC signal each instruction
time. It will start outputting a SYNC pulse upon
the execution of an XAS instruction with C=*1"
stopping upon the execution of a subsequent
XAS with C="0."

If ENg is changed frem “1" to “0” (0" to 1",
the SK output will change from “1” to SYNG
(SYNC to “1") without the execution of an XAS
instruction.

2. With EN, set, the IN; input is enabled as an
interrupt input. Upon the occurrence of a
negative pulse on INy, program control is
transferred to the last word of page 3 (address
OFF16). Immediately following an interrupt, ENy
is reset to disable further interrupts until later
set by an LE! instruction (usually at the end of
the interrupt service routine or later within the
main program).

9-32

The following features are associated with the
INy interrupt procedure and protocol and must
be considered by the programmer when utilizing
this software-selectable feature of the COP420-
series. {Interrupt is unavailable on the COP421-
series since it does not have the INa-INg inputs.)

a. The interrupt, once acknowiedged as
explained below, pushes the next sequential
program counter address (P + 1) onto the
stack, pushing in turn the contents of the
other subroutine-save registers to the next
lower level (P+1—+ SA — SB - SC). Any
previous contents of SC are lost. The program
counter is set to address OFF ¢ (the last word
of page 3) and EN, is reset.

. An interrupt will be acknowledged only after

the foilowing conditions are met:
1) ENy has been set;

2) A low-going pulse (“1" to “0") at least two
instruction cycles in width has occurred on
the IN, input;

3) A currently executing instruction has been
completed;

4) All successive transfer of control
instructions and successive LBls have
been compieted (e.g., if the main program
is executing a JP instruction which
transfers program control to another JP
instruction, the interrupt will not be
acknowliedged until the second JP
instruction has been executed).

c. Upon acknowledgement of an interrupt, the
skip logic status is saved and implemented
upon the execution of a subsequent RET
instruction. For example, if an interrupt
occurs during the execution of ASC (Add with
carry, Skip on Carry) instruction which results
in a carry, the next instruction (which would
normally be skipped) is not skipped; instead,
its address is pushed onto the stack, the skip
logic status is saved and program control is
transferred to the interrupt servicing routine
at location OFF 4. At the end of the interrupt
routine, a RET instruction is executed to pop
the stack and return program control to the
instruction following the original ACS. At this
time, the skip logic is enabled and skips this
instruction because of the previous ASC
carry. Since, as explained above, it is the RET
instruction which enables the previously
saved status of the skip logic, subroutines
should not be nested within the interrupt
service routine since their RET instruction will
enable any previously saved main program
skips, interfering with the orderly execution of
the interrupt routine.

d. The first instruction of the interrupt routine at
address OFF,g must be NOP,



3. With EN, set, the L drivers are enabled, loading
data previously latched into Q to the L /O ports.
Resetting EN, disables the L drivers, placing the
L /O ports in a high-impedance state. When the
L /O ports are used as segment drivers to an
LED display, the setting and resetting of EN,
resuits in the outputting and bilanking,
respectively, of segment data to the display.
When using the MICROBUS™ option EN, does
not affect the L drivers.

4. ENg, in conjunction with ENg, affects the SO
output. With ENg set (binary counter option
selected) SO will output the value loaded into
ENs. With ENg reset (serial shift register feature
selected), setting EN4 enables SO as the output
of the SIO shift register, outputting serial shifted
data {the most significant bit of St0) each
instruction time as explained above. Resetting
ENj5 with the serial shift register feature selected
disables SO as the shift register output: data
continues to be shifted through SO and can be
exchanged with A via an XAS instruction but SO
remains reset to “0.” Figure 3.2 below provides a
summary of the features associated with ENj
and ENq.

- osio ] st | s0 [skatterXas
bl kLR
SHift {0 dnpuite. o} ] SK=SYHE
I Register!  ShiftRegister ‘| I jfgki=0,
et Lol ek=0
L R | HsKL=1,
St b notle g iou)
-f Register: - “Shiff Reglister . |7 o sl g o
L
e
o) Binary U Boative Edgo - | R M !
T ot Sensitive Input to Q. p B EL
SRR Binary Gouter e .If.SI'.(L- :=0_,_ :
BN SK=0 "
Binary 1 MNegative Edge | ST SKe=Y
cooesto i Sensitive dniput o |- b g e =00
Gounter 0 . i : ] H ARt R
SR Bingry Counter S SK=0 -

Figure 3.2 Enable Register Features — Bits ENg and ENg

XABR (eXchange A with Br) exchanges Br (upper 2
bits of B: RAM register-select) with A. Since Br
contains only 2 bits, only the lower two bits of A,
A,- A, are placed in Br. Similarly, the 2 bits of Br
are placed in A;- Ag with “0s” being loaded into
the upper 2 bits of A, Az-A,. XABR is an efficient
means of loading the Br register via the
accumulator — a direct load of the Br register
must otherwise be accomplished by an LBI
instruction which also affects the Bd portion of the
B register.

Test Instructions

SKC (SKip on Carry) skips the next program
instruction if the carry bit is equal to “1.” When
used in conjunction with the RC and SC '
instructions, it allows C to be used as a 1-bit
testable flag.

SKE (SKip if A Equals M) compares all 4 bits of A
with M, skipping the next instruction if the value of
A is equal to the value of M. SKE can be used to
compare A with a status or counter digit in M,
skipping to an instruction which transfers program
control to ancther routine if equality exists.

SKGBZ (SKip if G Bit is Zero) is a double-byte
instruction. It tests the state of one of the four G
lines (G3-Gg) as specified by the “n” operand of
the instruction, skipping the next program

instruction if the specified G line is equal to "0.”

SKGZ (SKip if G is Zero) is a double-byte
instruction. It tests the state of all four of the G
lines, skipping the next program instruction if
Gs- Gy are all egual to 0.

SKMBZ (SKip on Memory Bit Zero) skips the next
program instruction if the RAM memory bit
specified by the “n” field of the instruction (0-3,
right-most to left-most M bit) is equal to *0.” This
instruction, together with the SM8 and RMB
instructions, allow for the testing and manipulation
of single-bit flags contained within RAM digit
locations.

SKT (SKip on Timer) instruction tests the state of
an internal 10-bit time-base counter. This counter
divides the instruction cycle clock frequency by
1024 and provides a iatched indication of counter
overflow. The SKT instruction tests this latch,
executing the next program instruction if the latch
is not set. If the latch has been set since the
previous test, the next program instruction is
skipped and the latch is reset. The features
associated with this instruction, therefore, allow
the controller to generate its own time-base for
real-time processing rather than relying on an
external input signal.

For exampie, using a 2.097 MHz crystal as the time-
base to the clock generator, the instruction cycle
clock frequency will be 131kHz (crystal

frequency + 16) and the binary counter output pulse
frequency will be 128 Hz. For time-of-day or similar
real-time processing, the SKT instruction can call a
routine which increments a “‘seconds” counter
every 128 ticks.

apIny saasn Ajlweq Sd0D



COPS Family User’'s Guide

3.3 COPA421-Series Instruction Set Differences

The ININ instruction has been deleted. This is due
to the lack of the IN inputs.

The INIL instruction has been substantially
modified due to the lack of IN inputs and ILa/lL

‘latches. If an INIL instruction is executed on a

COP421-series device, it will input only the state of
CKO, providing CKO has been programmed as a
general-purpose input (0 = Ag, Ay, Ag; CKO ~ Ay). if
CKO has not been programmed as a general-
purpose input, the INIL instruction is non-functional
on the COP421-series.

3.4 COP410L/COP411L Instruction Set

The COP410L and COP411L instruction sets are
subsets of the COP421-series instruction set.

Table 3.3 provides the mnemonic, operand, machine
code, data flow, skip conditions and description
associated with each instruction in the COP410L
and COP411L instruction sets. An asterisk in the
description column indicates the double-byte
instruction. Notes are provided, following this

AY

table, which include additional information relevant
to particular instructions.

Table 3.4 provides a list of internal architecture,
instruction operand and operational symbols used
in the COP410L/COP411L Instruction Set Table.
Tabie 3.7 provides an alphabetical mnemonic index
of COP410lJCOP411L instructions, indicating the
hexadecimal opcode and description associated
with each instruction. Table 3.8 is a list of
COP410L/JCOP411L instructions arranged in order
of their hexadecimal opcodes.

The following text discusses the differences which
exist between the COP410L and COP411L
instruction sets and that of the COP420-series. The
COP410L is specifically discussed with differences
between it and the COP411L noted. All other
instructions perform the same machine operations
and have the same typical usage as discussed in
Section 3.2. For a treatment of the significance of
those differences when writing programs for the
COP410L and COP411L, see Section 3.5,
COP410L/COP411L Instruction Set Differences, and
Section 4.11, COP410L/COP411L Programming.

Table 3.3 COP410LICOPATIL Instruction et~ '

e :_.ma&mﬂ'_"
| Mremonic .Oi':e.r:a;"t_rl i cﬂgé o Lan?g;‘%s:;):ada P patsﬂnw
| ARITHMETIC INSTRUCTIONS o S
ASC © a0 00110000 | A+C <+ RAMBI~A
baon . poripoey | LRAMEBI A
Jhsc 4 s ooy ol eA S
. ._'cijMP J: ER _"46'_ T _1:_9_b=[§6._:f3_:t);.:; . ‘,,r..A
NOP T Ca 181000100 1_5@'9.’9:6:' o e
i e
Jige T e 0010001 |
xon % poodssig | asmamm-a

9-34



410LICOPA L. Instruction Set (continued)

Chemew |

_ Skip Conditions - =

- ' Description .

OF GONTROL IN

b ROM (FGgA M}

LNongt ol

: Aiways Skrp on Return

o '.:Jum;)_'lnﬂifec:t (Note )

i Jump within Page
o (Note 3) : :

B : Jump to Subroutme Page
e '(Note 4y -
- Jumpto Subroutine
= ““Return trom Subrouline.”

- Retutn from Subroutine
wiothen Skip .

apINg s.esn ANWeS S40D

-Qwalmni.
10 gmue

Dicmmey
I RAMB)
o 1"’HAM(B)2'=_"
LT RAMB) -

y-RAMB)
| Bd+1=Bg

| ramm - A&
Bt Bri

b - BN A

g oram@ A
Bd wsa_-_ :

. Br aa { Er

CRAM(E) e
Bd +:1-Bd.

Brer—Br

0~ ﬁAMQB’Q' i
i RAM(B)1 :

CNBRe

- Noﬂe :

iNone

o None

Nong'.

. Bd decrements past 0.

‘Bq increments past 15 -

 Copy A RAM1toQ. .

“Load RAM into A,

Exclusive-OR Brwih.ri .

- Load Q indirect {Note 2

Reset RAM B:i! :
" Set RAM Bit .

i Slore Memory !mmediate

and Insrement Bd

: Exchange RAM wnth ' =
Exctuswe@R Br wv_th_r o

*

Exchange A with RAM -

(3,45

Exchang‘é RAM with A
and Decrement Bd,

- Exclusive-OR: Br with 1

“Exchange RAMwith A

and-increment Bd..
Exclusive-OR Br with r-

9-35



Table 33 COPMGL!CON“ kS Insiructmn Set (conﬂnued}

_ . S gumn e e Macbme B S SR ERIE .. F _
Solou ool M Lan uageCode Rl e g fie Sl
-=Mnem0nic -Qper‘and- J:aee. Biaary} ool Dataflow. oo L Skip Conditions . . - = Description

REG|STER HEF&REMCE tNSTﬂUCTIONS

oseT 0 g logmtoooo; JA=Bd o None -ca;;y'mgs--taia:’

omR el G Bd=A CoNone o CopyBdIoA

B rd -- 100)r S rdes o S None Loadaimmediatewnhag:
T e e e T T '__:-rd{?v&meﬁ)

(Note 6}

COPS Family User’s Guid_e

By _'-_"gomqoang:_-s’té EN 0 Nene o + Load EN- if‘nmemate

_ TESTINSTRUCTIONS

ske c :.4”5 -skip}f c”aa"r'm‘é-

' HAM(B} smp |fAEquafs ﬂAM

.::»'-_'
u

SKGZ i - o s L '(330 = 0 Sklp WG ia Z_em
e veeeeas . @h4bitsy

| SKGBZ | tstoyte

u

1t

Gy
Gy

A

o

H

i i ; :

. RAM{B)p =
5 RAMIBYY
. RAMBR =0
s aAM(B);a, = 0__' S

. =.S.L<:'i;t)':i$__3‘ffA&1=:_‘Bii s

l 3
: G_:'c: :

~ None

: '--_3.74—» RAM{B) i Nome

| | RAME) =G " None

 Nome-

Hpts for aiababe{ical symbnts in ucate bkt numbers unless expticitly defmad {e g. Br and Ed are explic y
6 s rities the least sigwﬂcam fowgrder. right-most bt For gxample, A3 mdacates the ‘mosi signifmant {felt rrmsi) hit nf t

'or addit;onai ntmmatian on the operaticn ot the XA$ J!D and LOID mstrucnons, see Section 3.2,

_jﬂotﬁ 3 The JF instrusctlon ailaws a iump, while in subrouzme pages o ot 3, ta: any ROM Iocaucm wiihln the two page bcundary of pages 2.of
“Andtruction, nihemise ;aermits ajumpto a ROM. Tac:ation thmn the Current B4-word ‘pags; 4R May not jumB tothe last word ot a: pag

§ A_JSRP transfers program contini to suﬁmutlne page 2 (0010 is Maded mto the upper 4 bets of P) A JSHP may nat be useci wh
not: 1ump to the: Iast werd in page 2 |

ﬂbfﬁ: 5 (Biisa single-byte instiuction ifd =8, 8 SD 11 12 13, 14 of 15 The machme coée for the Icwsr A bﬁs aauais the binary valie of ¢
minus'1,8.9.'to 1oad the lower fourbits of B {Bd)with tha vaiue 4 (10012) thﬁ igwer, 4 bats of the LBl mstmcticm equaf B (1 aoog) Tc load.o he [owe
tha’ LBi mstructlun shaum ec;ual 15 (111 Tak oo

Note 8: Machme code for: o;mrand Hald v for LEI instfuction shouid equat the binary vasue 16 be latched mtc; EN where a “?" ar “0” i C
,sponds with the setectmn of deseiection o¥ a part:cuiar funetion assockated with eacﬁ bxt (See Funcﬁanal Descrit}tion EN Register)

9-36



Input/Output instructions

ININ has been deleted due to the COP410L's fack
of IN inputs.

OGl has been deleted. A loading of data to the G
ports must be accomplished via M by first loading
M and then outputting its contents to G via an
OMG instruction.

Memory Reference Instructions

CQMA has been deleted. Since no MICROBUS™
option is provided for the COP410L, Q is used in
the COP410L primarily for output operations. An
input of the L /O ports, therefore, will effectively
function as the equivatent of a CQMA,; this is
- 8bit Rﬂglstef 10 1atch da!a fof L o F_Oﬂ s g accomplished by the execution of an INL
© - 9bil Subrouting.Save. Feeg:sier A 2 Lo instruction.

g .‘:Lb;t Submutme Save RegosierB Spmr :
t Shitt Ragtsier and Counter o
ontrofled Clock Ou!put o

apInyY sJasn Ajjweg4 S40D

LDD has been deleted. To lcad the contents of a
data memory digit location into A, the usual
procedure of loading B via an LB to point to a
particular RAM location foliowed by an LD
instruction must be used.

XAD has been altered to reference one data
memory location only; specifically, M(3,15).
“Scratch-pad” data to be exchanged with A without
affecting the B register shouid be placed, therefore,
in M(3,15) and accessed by the XAD 3,15
instruction.

ostiiten

bma;y {ﬁAM Dsgﬁ Se' ect): :
0 Ehmary {HAM Register

Register Reference Instructions
mcahon addresseﬁ by s L
Iocation: m{,,esse{, b“ it LBI has been altered to correspond to the data

memory configuration of the COP410L. Specifically,
it may only be used to access valid RAM locations,
namely digits 9 through 15 and 0 in registers 0-3.
The LBI “d” field, therefore, is limited to “d” values
of 9-15 and 0, resulting in a// LBls being coded as

‘gé,‘cgm‘gga with R TR e single-byte instructions. Remember, the machine
lsequarto’ Lo :: S code for the “d” operand field is the binary value of
A7 Trie pres complement. TSR L “d” minus 1.
Vil Erenisive-OR T e
L Rangeofvatues T ool s XABR has been deleted. To load Br, the entire B

e : S register must be loaded via an LBI. Altering Br may
alsc be accomplished by using the EXCLUSIVE-OR
“r” field associated with the memory reference
instructions LD, X, XDS, and X!S.

3.5 COP410L/COP411L Instruction Set

Differences Test Instructions
Arithmetic Instructions SKT has been deleted since the COP410L does not
contain an internal divide-by-1024 time-base

ADT has been deleted. To perform a similar
operation an AISC 10 followed by a NOP to defeat
the skip condition (carry) may be used.

CASC has been deleted. A COMP instruction
followed by an ASC will achieve the same result

(subtraction of A from M). g

counter.

9-37



COPS Family User's Guide

s_waz _dn_;zé--

Table 35 Alphabetical Mnemonic Index of
COP#%ICOP&T-S@fEes instructions

g '_ woinf .. 3 nga“c‘mal .
: _:m_,:'g_m'.;;inr:i - Opcode -
S ADd Tar: tn A

: Add Immediate. Sktp on ' 3
: Carry i :

Ac‘d wﬂh cafry, Sk;p on.:
: Carfy .

CopyAchi
Copy A HAMIS G

Compfement and Add wzm
© oAy, Skip onCarry .

" Copy B.c}-t_d A
S ClearR A
COMPIement A
.- CoprtoﬂAM A
mput G poris to A :
1Nput ik latches to A%
ENput N in;zu%s to Arrin -
o inut L ports 1o RAM AL
Jump inDn&c% :
JuMP :
Jump mthm Page i
Jump 10 Subﬂoutfne i
mp ta Subﬂoutine Page :

Dascrlpuon i

. e
AISC 15

"éABVQ'_J
S CAMQ* :
: CASC =;=; g

clma

."CdMP”"
CQMA‘ :
NGt
.:Nu_..*ﬂ_ﬂ '

ap

:'JSR‘.
_ Jsﬂp”-- o
“:{.BH}‘QISG :
(Brfe. 15,9: L

: Load Bd lmmediate

. LBI3Ss
LB OGS
B 178
LB:*z,w
LB! 31—8:' '

- ::Lo"a EN im'méaam'e
Loaci Q'n Di rect
No OParation i

. “'Ou by RAMtﬁGpoﬂs i
ﬂesat Carry :

: HETurn ..
RETum ir&en' Kig " :
Reset Memory Bat'_:'f i
o iSet Qarry.. :

o setMemorysi
o SKip if Garry is true Fiid
SKsp A Equals RAM
S_ ip rf G Bit is Zem

SK!p fG equms Zem i
(aﬂ d biis)

SKi;; i Memcry Bn is Zero
i SKIp on Ttmer

SMBOJ23

Apa7deam
8 SKE = ::.. - " 21 i :
jsmaz* 01 23 s:ym,w 03 13;- :

oneaE
CSTH 07F Sane mamory ;mmednate !
S SEEan i and lncremem Bd

9-38

Table 35 Aiphabet;cal Mnementc Endex: t .
: comzmcomm Sa:ies lastructions

P e '_:stadeﬁmai_
'.mstmmon “7 Opcoda: Lo
| X0123 66263
XADT 03015,
' XDS0,1,25 _'0?:1_:7;2?;57..: ©ex
© s 'Q,'f.z_,"a'.. _:'a;;x_;,:z&,éaj Xchat

‘Doub&e Syte lnstructmn it
byte semga) .

ot
: B SKMEZD :.: G

 XOR .
| Skmazz.

B iooxAot
L '. i .: )GSZ




37n15r?

o RN
JERP IO paged
wirrd: XX {0-3!:16) L

Plousd X

L -GpCode CO+ X)( :

cimos oo

- {DDO0D
o2 1ODO2
e D03z
04 . DDO4
s LDDOS
TP I DD OB
L ADDO7
- loDos
Lo ipoos
o ' LDDOSO.
CLEN2 . mltotieg - LDDO
i Copoiz
£5WE e 1.'.-?";22":'_f.t§§§fj*
:IHHS‘TH?'.. | : S rRL AN
o TE S e R T e e o
o om0 :69_; 1:".:'LEi§.' .':'1:.f . - _tﬁgu:;
7B st e T 18T g _

CEAL T RERRR b

JSR“'toPage o
1293, 14, 0r 15

O nvalid
o smio
sz
st

328 3;$:

et R

28288
n
&

9-39

b e cetEE L e
Prowegxe ) - eE LB L 1
e e
Comc ot e
om0z | A
Coqmiod o B

miea o1t
Comes T
e
H=;Bﬁmfrf=l=iz'1Fu"

B b g
Camd2 b2
: 'L3113 ‘ ".;,. 2@. 
ey l.'BF__"vft” : ': A
omits s
e ow
e
Coomizag o o
G e
cmize ] eA
B2y o a8
Biad o e

Clmze e
Camigy bR
.;:L8j2£"=:='=ii'3ﬁf; S
Csiay e
ez
LotBrEa - Es s
B34 om0
Cmiss | i
_'.Lgf&g;. :: ::.36"
ey
Csise | om

. LDD14
DD 15 -
ELLADDAR
LoDt
LoD 18
Bbg
TR
Dt
D11z
o is
Cpptie
DI
D20
Lop2d
i :LéDIQ;Q:_-
Ciop23
lop2a
. ipp2s
Lipbas
op2r
onze
©rop2g .
po2Ae T
B2t
- ippzaz
LolbeRis: o
LpD21d
LoDz

1.DD: 3,(:!

.:.t5032: =
SLDDBE

: LD034

L 1op3s

L 1DDAE

B ko
 iopss
BN At

i "-D.D"édd o

bDaf

S ApDBIZ
D3N

L EDD 34

'LDD 3,15

XABOG
CXADOX
XADOE'U
XAD 03

XAD.04

XAD OB
XADGS

XADQ?

XAaosj
SUXAD 08
CLUXAD OO -

XAD O

opiny sJes( Ajlwed Sd0D



COPS Family User’s Guide

Table 3 6. Table of COP42OICOP421 Series Instruchons
Listed by chodes (Rexadec;mal} (cantinued)

86 XAD 0,12
LBD . XAD D13
8E xADO14 -
O BE- . IXADG5 .
907 xApto
9 Nap i
e xapi2
93 L XAD L3
94 " XAD 14
95 XAD 15
9% . XAD1E
87 U XAD17
98 XAD 1.8
99 . XAD'19
9A XAD 1,10
© 9B XAD 111
L8CT T xap 1Az’
9 xAD13
C9E T XAD 1,14
gE XAD 1,15
CAD . XAD2D
AT xAD 2,
A2 ixAD22
A3 XAD23
AL xAD 24
S AS .Y xAD2s
AB T XAD26
AT S XAD 27
CAE . XADZE
AR xADRE
CAAC L XADI0
AB L XAD 2%
AC - UXAD 22
AD . xADZ3
AE - XADZ4.
CAFTL L XAD 215
BO . XAD3p
CBY U XAD 3
B2 . XAD32
B3 CXAD 8.3
B4 XAD'34
B5 . XAD35
B6 . XAD3&
BT IXAD3T
B8 U %ADaS
89 ixap3g’
BRI XADBIG
BB XADB11
BC T xAD 342
BDU . XAD 3,13
UBE . XAD3M4
BF . xAD3As

“*ﬂG+XX JSﬂorJMf-"to pageo 4 10 or 14, wordXX{OGFw) 03? :

40+XX JSH o JMP 10'page 1, 5 1160 15 word XX {03F ) AO?F
BO4XX ISR or IMP o page 2, 8, 12,'6r. 16, word XX {0:3F. ) 80-BF:
CO+XX JSR o1 IMP 10 page 3, 7, 13 o 17 worci XX (ﬂsF,S)CGFF

9-40

Tabig 3.7 Alphabe!lca! Mnemonic Index of
L COP410UCOP411L-Seties lnstrucﬁons :

Ihél_rﬁcl‘lon_
ADD
AISG 1:15
ASC
CAB.
CAMQ
cBA
“CLRA
come’
ING*
INL®
dip
amer
JSR*
 JSRP
ALBH9150
LB 19750
. LB 28150

LBI39150
D023

LE/* 015
- iQin

CNOR
.. o8O
oMG*

RET
RETSK

RMBOT?IJ !

Lose

“SMBO0.1,23

Coskoo
SKE

SKGBZ* 01,23

L SKGZH

SKMBZ 0123
sT
CXADT3AS

. ; as

XDS0123

- X15023

" XOR

'DoublevByls Instruction: ﬂrst by

byte rangel,

“*ingtruction not avaﬂable or hss d:ﬂeréni !eaiures o CePﬂ‘t Barlas

Rexadaclmal
Opcode
Losr
_ 515F

R S

50

'33J3c._'

Ak

00:

40
3328
332

FF..

_ 6061/00FF_
© BO-BECOCE (10
: 6869!00FF :

80-BE
080F"
L ABAE

ik

e
3313E

e
Cag

Cag

4CA54243 .

4D47 4648

LS
St

3301,11,0373

321

011,058,183

mEE
: b?f,'f:f,é?;s?: "

02

Lnad Bd immedlate :
o eeaRn )
©05,152535

3VEOBE
e

Oumut Bd o D o&tputs

= Reset Memory Bit

: .SKip sf Mamory Eitt Ze
P STom) memory immediate.

eXchange RAM ' th A
eXChangg A \mth RAM

leisecuhd byte lur hrst by:e rsngaﬁsea:nnd"_

Dascﬂptlon
ADD RAM to A

: Add lmmadlate, Sk.ip an

.G_arry' S
Add wim carry, Skvp on :
Carry
'Gppy _A.to Bd-
. GopyARAMIoQ
" Copy Bato A :
CleaRa .
© CoMPlementA
iN;Lut"G portsto A -
INput L ports to RAM A
Jump lnleect g _.
JuMpe
S Ju;;m Qitﬁih--Paée
Jump to SubRoutine

s ',}uﬁip__ t:d S_hBR:du':tiqa .Pa'gaf' #

(singfe-byte}

Lcra{} RAM mto A
Load EN Immemata o
L&ad ol ingirect

I No CJPeration :

Output RAM to G_parts

" _RETum then, sxm

Set Carry :
Set Memwy an
SKip it Csrry ig tfue ;
SK&p if A Equals RAM g
SKIg .G Bitis Zero

SKrp e equais Ze)
(alt 4 biis)

; and lneremsn Bd

: Direcuy i
eXchange A with sIQ

i -echange RAM wit A an

#noremeni Bd. i
sXclusive-OFt RAM with.A s




9-41

epiny sJosn Ajlwed S40D



COPS Family User’s Guide

COP400 Programming

Techniques

This chapter provides several examples of
programming techniques for COP400 devices. The
COP420-series/COP444L instruction set is assumed
since it falls between the smaller and larger
instruction sets, respectively, of the COP410L and
the COPA440. For users of the COP410L/COP411L,
Section 3.5 provides information on use of multiple
COP410L instructions to simulate the function of
COP420 instructions not provided for the COP410L.
Users of the COP440 will find all examples relevant
since this device contains all COP420 instructions
as well as several additional instructions.

All examples are given in COPS™ Cross Assembler
language, using COP400 assembler instruction
mnemonics and operand statements. Although, in
the following examples, instruction operands and
ROM page numbers are written using decimal
notation, the programmer may specify these
expressions in hexadecimal notation — the
assembler accepts either format (e.g.,

AISC 13=AISC X'C, Page X'A = Page 10). On
occasion, source code examples contain non-
instruction statements, such as assembler
directives which convey information tc the
assembler necessary for proper program address
altocation and similar assembler related tasks. For
further information on the COPS Cross Assembler
and its use see PDS User's Manual, Chapter 8.

4.1 Program Memory Allocation

Generally, COP420-series program memory may be
thought of as one area of 1024 bytes of ROM with
an address range of 0 to 3FF (hexadecimal).
However, while this concept is convenient in
writing, assembling and debugging major portions
of COP420-series programs, it is necessary, with
respect to a few instructions, to conceptualize
program memory on a 64-word “page” basis.

Specifically, because of the characteristics and
restrictions associated with the JP, JSRP, JID, and
LQID instructions, the programmer must conceive
of program memory as 1024 bytes or words,
organized as sixteen pages, numbered 0- 15
respectively. The following discussion provides
information and examples relating to the “page”
characteristics of each of these unigque
instructions. For information on the machine code
and operations performed by these instructions,
see Section 3.2. Table 4.1 provides a conversion

chart indicating the hexadecimal address
equivalents for each of the 16 “pages’” of ROM.
Note — each page consists of 0 through 3F 4
words.

Table 4.1 Page 16 Hexadecimal Address Table

=

| Hexadecimal Address’

BT e e

JP Instruction

The JP instruction is used to transfer program
control to a ROM location within a page or within a
two-page boundary consisting of “subroutine
pages” 2 or 3.

The following page restrictions apply to the JP
instruction:

* When used in any page other than page 2 or 3, it
can only jump to a word within the current page.

¢ When used in page 2 or 3, it may jump to a word
within page 2 or 3.

* In all cases, it cannot jump to the last word of a
page (word 03F ).

The JP instruction assembly operand normally
consists of a program label or expression
specifying the address of the word to be jumped to.
To specify page boundaries and to ensure correct
placement of the JP and other page-oriented



instructions, the assembler .PAGE directive is used
to specify the beginning of new page boundaries
for program code placement. (See PDS User’s
Manual, Chapter 8) The following are examples of
use of the JP instruction when used outside
subroutine pages 2 and 3

PAGE - PLACE FOLLOWING CODE iN
. PAGE O
LABELY:
JP LABELZ : LEGAL JUMP WITHIN PAGE
LABEL2:
JP LABEL3 :/LLEGAL JUMP TO LAST
. . WORD OF PAGE
JP LABEL4 :/LLEGAL JUMP TO ANOTHER
. PAGE
LABELZ. : THIS INSTRUCTION IN LAST
. WORD OF PAGE 0
- PLACE FOLLOWING CODE
. ON PAGE 17
PAGE 1
LABEL4:

*Note: The .PAGE 1 directive is not necessary — the PDS
Assembler automatically places code in successive
memory locations. After a particutar page is full. code is
automatically placed in successive locations on the
“following page.

The following examples illustrate use of the JP
instruction when in subroutine pages 2 and 3:

.PAGE 2 : START OF “SUBRQUTINE"
LABELT: ; PAGE 2 CODE
JP LABEL3 ; LEGAL JUMP TO PAGE 3
. . LOCATION
JP LABEL2 ;/LLEGAL JUMP TO LAST
. WORD OF PAGE
LABELZ: : LAST WORD OF PAGE 2
.PAGE 3 : START OF PAGE 3 CODE
JP LABEL4 ;ILLEGAL JUMP TO PAGE
: QUTSIDE PAGE20R 3
LABELS:
JP LABEL1 ; LEGAL JUMP TO PAGE 2
. . LOCATION
JP LABEL3 ; LEGAL JUMP WITHIN PAGE
.PAGE 4 . START OF PAGE 4 CODE
LABEL4:
JP LABELY ;/LLEGAL JUMP TO PAGE 2

; (MAY ONLY BE DONE WHEN
. IN PAGE 20R 3)

9-43

JSRP Instruction

The JSRP instruction is another page-oriented
instruction which transfers program control to a
word located within “subroutine” page 2 only. its
primary purpose is to allow a single-byte jump to a
subroutine in page 2 from any program location
other than from page 2 or 3. As explained in
Section 3.2, JSRP pushes the subroutine-save stack
to allow a return to the next program instruction
following the subroutine call. The restrictions with
the JSRP instruction are as follows:

e JSRP cannot be used to jump to a subroutine

when in pages 2 or 3. (The double-byte JSR
instruction can be used for this purpose.)

apiny sJosn Ajwed Sd0D

JSRP cannot be used to jump to a subroutine
located at the last word of page 2. (A JSR can
also be used for this purpose.)

Examples of use of the JSRP instruction:

.PAGE 0
LABELT: . PAGE 0 SUBROUTINE
RET : RETURN FROM SUBROUTINE
JSRP ADD . LEGAL CALL TO PAGE 2
JSRP sus L ILLEGAL CALL TO PAGE 3
PAGE 2 ; START OF PAGE 2 CODE
ADD: : START OF ADD SUBROUTINE
RET
JSRP LABEL1 :J/LLEGAL CALL FROM PAGE 2
.PAGE 3 : START OF PAGE 3 CODE
SUB: . SUBTRACT SUBROUTINE
RET

Subroutine Pages 2 and 3

The special characteristics of the JP and JSRP
instructions facilitate the use of pages 2 and Jas
subroutine pages. Programmers should cansider
dedicating these pages to the recursive program
subroutine for the following reasons:

* A single-byte JSRP can be used to transfer
program control to a page 2 subroutine.

o When in pages 2 or 3, a single-byte JP can be
used to jump to either of these pages.

The following code exemplifies the use of the JP
and JSRP instructions to transfer program control
to and within pages 2 and 3 as follows. Note that
in this example the ADD subroutine jJumps to
MEMOVE {Memory Move) routine before returning.

E



COPS Family User's Guide

Thus, subroutines may share a common “return’
subroutine, jumped to from page 2 or 3 with a
single-byte JP instruction.

PAGE 0

JSRP ADD : CALL ADD SUBROUTINE

.PAGE 2 . START OF PAGE 2 CODE
ADD: . ADD SUBROUTINE

JP MEMOVE ; JUMP TO MEMOVE

. i "RETURN" ROUTINE (NO

: . "PUSH" OF STACK)}

-PAGE 3 i START OF PAGE 3 CODE
MEMOVE: ; MEMORY MOVE ROUTINE

RET  RETURN TO MAIN PROGRAM

; (POP STACK)

JID Instruction

The JID (Jump Indirect) instruction is another page-
oriented instruction. For a machine operation
description, see Section 3.2, JID is an indirect ROM
addressing instruction which transfers program
control to a new ROM location based upon the
contents of a ROM “pointer.” The paging features
and restrictions associated with the JiD instruction
are as follows:

* JID first jumps to a ROM pointer based upon the
contents of A and RAM.

* JID then transfers program control to the ROM
word specified by the contents of the ROM
pointer.

* The ROM pointer and the indirect address
jumped to must be within the same 4-page ROM
“block” as the JID instruction. Specifically, for
purposes of this instruction, the sixteen pages
of ROM are divided into 4 blocks as follows:

Block Pages
1 0-3
2 4-7
3 8-11
4 12-15

For example, if the JID instruction is located in
page 5, the ROM pointer and the indirect address
to which program control is transferred must be
within block 2 (pages 4-7). For an example of the
use of the JID instruction in a simple keyboard
decode routine, see Section 5.8.

LQID Instruction

The LQID instruction is an indirect data output
instruction. It loads the 8-bit Q register with the

9-44

8-bit contents of a particular ROM iocation pointed
to by A and RAM. For an explanation of the
machine operations associated with this
instruction, see Section 3.2. The paging restrictions
associated with this instruction are similar to those
associated with the JID instruction, as follows:

* For purposes of the LQID instruction as with the
JID instruction, ROM is divided into 4-page ROM
“blocks” {pages 0-3, 4-7, 8- 11 and 12-15).

¢ The ROM location containing the LQID “lookup”
data must be within the same ROM block as the
LQID instruction.

For example, a LQID instruction located in page 9
must access ROM data located in pages 8 through
11.

Additional Restrictions Associated with
JP, JSRP, JID and LQID Instructions

As already mentioned, the ROM address register (P)
Increments its value when executing an instruction
to peint to the next memaory instruction,
automatically “rolling over” to the next page after
executing an instruction located in the last word of
a page. It is important to realize, however, that P is
incremented prior to the execution of the current
instruction. This characteristic has important
consequences for JP, JSR, JID and LQID
instructions which are located in the last word of g
page. Specifically, these instructions will operate
on the incremented value of P which, because of
the increment-before-execution COP feature, wiil
point to the first word of the next page.
Consequently, if any of these instructions are
placed in the last word of a page, the program will
treat them as residing on the first word of the
following page. Given the paging restrictions
associated with these instructions, the following
operations and restrictions are associated with thz
following placements of these instructions:

* A JPin the last word of a page wili go to any
location in the foliowing page (except the last
word). A JP in the last word of page 1 will be
able to go to any location {except the last word)
of page 2 or 3 since it is treated as a JPin page
2. Furthermore, a JP in the last word of page 3
will not go to a location within page 2 or 3, but,
instead, will go to a location within page 4.

* A JSRP instruction is not allowed to reside in
the last word of page 1, since it will be treated
as an illegal use of JSRP in page 2. A JSRP in
the last word of page 3, however, is allowed,
since it will be treated as a JSRP outside of
pages 2 or 3, namely in page 4.

* A LQID or JID instruction located in the last
word of the last page of a particular ROM block
(last word of page 3, 7, 11 or 15) will lookup data
or transfer program control, respectively, to a
focation within the next 4 page ROM biock.



As is evident from the above, these characteristics
are not necessarily restrictions, provided the
programmer intentionally uses these instructions o
operate in the above manner. For example, a JP on
the last word of page 1, unlike other page 1JP
instructions, will be able to transfer program
control to the two-page subroutine pages 20r 3,
provided the operand specifies a location within
page 2 or 3. Similarly, a LQID or JID located in the
last word of the last page of a ROM block will
allow data lookups on or indirect program control
transfers to locations within the next ROM block,
provided the lookup data or address pointers are
placed in the appropriate locations within the next
ROM block.

Use ot Assembler .PAGE Directive

Because of the above paging restrictions,
programmers are advised to place .PAGE
assembler directives at the beginning of each page
of code. Although portions of the program may not
contain page-related instructions, this practice will
facilitate placement of program “patches” or other
modifications required during the program debug
phase, these often involving page-related
instructions. This practice is also a convenient, if
not necessary, documentation toot, dividing the
assembler output listing into a COPS™ page
format. Finally, since the COPS Cross Assembler
places program memory words into successive
locations without regard to COPS pages, the use of
a .PAGE directive is a simple means ot reserving
program memory Space at the end of a page during
initial program code generation, often used later for
program additions. An alternative means of
reserving program memory space anywhere within
a page is by use of an assembler assignment
statement which references the assembler location
pointer — the pointer is referenced by a period
(.""). For more information on the assignment
statement, see PDS User's Manual, Section 8.4. An
example and explanation of its use in referencing
the assembler location counter (.} is contained in
Section 4.5 of this manual

4.2 Data Memory Allocation and Manipulation

An important step which should occur prior to
writing a COPS™ program is the aliocation of
program data {registers, flags, counters, etc.) 1o
specific areas of program memory (RAM). This
process is referred to as “creating a RAM map"”
and, although the map will undoubtedly change as
programming continues, construction of an initial
RAM map will make the ensuing programming
process significantly easier.

As explained in Section 2.8, the COP420-series has
4 data memory registers, numbered 0 through 3,
consisting of 16 4-bit digits. Frequently accessed
data should be stored In locations which are able
to be pointed to by loading the B register with a
single-byte LBI instruction. These locations consist
of digit numbers 0 and 9 through 15 in any data
memory register. These areas are indicated by the
diagonal-lined areas of Figure 4.1, It requires a
doubie-byte LB instruction to load the B register to
access the other digits in data memory registers,
thus requiring an extra program memory word.
Single-bit flags and digit counters should be
located in these diagonal-lined regions since they
tend to be frequentiy accessed in most programs.

The memotry reference instructions LD, X, XDS, and
XIS allow the programmer to modify the data
memory register address without using an LBI
instruction. All of these instructions may modify
the upper two bits of B (Br — RAM register-select)
by specifying an *'r” operand field which is
exclusive-ORed with the current value of Br. This
feature allows the programmer o toggle back and
forth between any of the four COP420 data memory
registers. For example, data jocated within the data
memory locations marked with shaded boxes in
Figure 4.1 can be easily swapped back and forth
using the LD and X instructions. They can also be
added to or subtracted from each other easily.

apiny sJasn Ajwed Sd0D



COPS Family User's Guide

The automatic data memory digit address
increment and decrement features associatad with
the XIS and XDS instructions and their skip
condition features facilitate the shifting, adding,
and subtracting of the contents of data memory,
Data that needs to be shifted should be located in
adjacent digit locations (for example, the dotted-
box locations in Figure 4.1). Data that needs to be
added, subtracted, or shifted should be iocated in
areas adjacent to the XIS or XDS skip boundaries.
The dotted locations in Figure 4.1 are against the
XIS boundary at digit 15. This allows the
programmer to take advantage of the skip feature
of the XIS instruction.

The following examples illustrate several of the
principles discussed above., The notation M(N;,N,)
indicates a particular data memory digit M, where
N1 =register number and Nj =digit number.

« MOVE M(3.0) TO M(1.,0)

LBI 3.0 +3TOBR: 0 TO BD (SINGLE-BYTE
VLBED=0)

LD 2 :M(3.0)TOA;1TOBFI3»P2=1)

X TATO M(1,0)

- MOVE MEMORY REGISTER 1 TO MEMORY REGISTER 0
P M{1.15) - M(1,0) TO M(0,15) - M(0.0)

LBt 1,15 ; 1TO BR, 15 TO BD (SINGLE-BYTE

; LBN
MV1i: LD 1 ' M(1,15) TO A; 0 TO BR

XDS 1 s ATO M(0,15), 1 TO BR; BD -1 TO
: BD; CONTINUE TO MOVE NEXT
i LOWER DIGIT UNTIL BD GOES
; PAST 0 AND SKIPS

JP MV1 » HERE IF NO SKIP

+ LEFT SHIFT DOTTED AREAS OF FIGURE 4.1
1 0 TO M(0,12) ~ M(0,12) ~ M(0.13) = M(0,14) — M(0,15) TO A

CLRA ;0TO A
LB 012  ;0TOBR 12TOBD
LSHFT XIS i M0,12) TO A; 0 TO M(0,12)
JP LSHFT ; EXCHANGE A INTO BD, LEFT
i SHIFT NEXT RIGHER DIGIT UNTIL
; “BD" GOES PAST 15 AND SKIPS

4.3 Subroutine Techniques

Any section of program code used repeatedly
within the main program should be coded as a
subroutine, preferably on ““subroutine pages” 2 or 3
for the reasons discussed above. Subroutines are
jumped to or “calleq” by the JSRP or JSR {double-
byte) instruction, both of which “push’ the stack,
saving the next memory location address after the
subroutine call in the SA subroutine-save register.
The other subroutine-save registers are
correspondingly pushed. Subroutine nesting on the
COP420-series is permitted to 3 levels, since this
device contains 3 subroutine-save registers.

9-46

Subroutines should terminate with a RET or RETSK
instruction, both of which “pop” the subroutine
stack, with the program return address in SA being
placed in the program counter register. The other
subroutine-save registers are aiso popped. The
contents of SC, which is the bottom-most
subroutine-save register, are retained in SC in
addition to being placed in SB.

't is convenient to think of a subroutine as a
program module. The programmer should make its
interface to the calling program as clearly defined
and as simple as possible. The interface (including
data memory registers, entry points, etc., used by
the subroutine) should be documented fully by
comments to the code.

Subroutine examples presented in this chapter
often use the double-byte JSR instruction to call
subroutines since no restrictions are associated
directly with its use. When writing an actual
program, programmers should use the more
efficient single-byte JSRP instruction as well as
use the double-page boundaries of subroutine
pages 2 and 3 for placement of subroutine code (as
discussed above) for efficient single-byte jumps
while in these pages using the JP instruction.

It is often useful to define muitiple-entry points for
a single subroutine. The successive-skip feature of
the LBl instruction often facilitates this technique.
For example, see Register Move Routines, Section
4.4,

The RETSK instruction allows the programmer to
use an alternate return to the main program
(skipping the first program instruction encountered
upon return) based upon tests or computations
made within the subroutine itself. Example:

.PAGE 0
JSRP  ADD ; CALL ADD SUBROUTINE
; RETURN HERE IF RESULT < 9
; RETURN HERE iF RESULT > 9
PAGE 2 i START PAGE 2 CODE
ADD: ADD ; ADD SUBROUTINE — ADDS TWO
i BCD DIGITS; RESULT TO A
AISC 7  OVERFLOW AND SKIP IF RESULT
, ;> 9
RET ; RETURN WITHOUT SKIP {RESULT
. ;€9
RETSK ; RETURN THEN SKIP (RESULT > 9)



4.4 Utility Routines

Programmers often build a library of basic routines
which are usefu! in numerous applications. This
and the following sections provide examples of
several such “‘utility” routines.

Register Move Routine

It is often necessary to move data from one
memory register to another. The following are
examples of this type of routine. Note that the
routines may be easily modified to perform moves
in the opposite direction (e.g., from register 1to 0)
or to include a move of register 110 2.

ADJACENT MEMORY MOVE RQUTINE

- ADJACENT MEMORY REGISTER MOVE, MULTIPLE ENTRY POINT SUBROUTINE
- MOVOT1: MOVE MEMORY REGISTER 0 TO REGISTER 1 ENTRY POINT

- MOV2T3: MOVE MEMORY REGISTER 2 TO REGISTER 3 ENTRY POINT

; ROUTINE MOVES DIGITS 15 THROUGH 0

: PREVIOUS CONTENTS OF A AND B ARE LOST

MOVOT1: LBI 0,15 ; POINT TO M(0,15)

MOV2T3: LB! 2,15 - NOTE LBl SUCCESSIVE SKIP FEATURE

MOV: LD 1 : TRANSFER M TO A; EXCLUSIVE-OR 1 WITH BR
XDS ¥ . EXCHANGE A WITH M; EXCLUSIVE-OR 1 WITH BR; DECREMENT 80
JP MOV . JUMP TO “MOV" [F MORE DIGITS TO MOVE
RET - RETURN WHEN XDS SKIPS (LAST DIGIT MOVED)

DATA MEMORY SHIFT AND ROTATE RCQUTINES

: MULTIPLE ENTRY POINT SUBROUTINE TO RIGHT SHIFT MEMORY REGISTER 0, 1, 2, OR 3 ONE DIGIT POSITION
; ZEROS ARE SHIFTED iNTO DIGIT 15

; PREVIOUS CONTENTS OF A AND B ARE LOST

1 RSHO: RIGHT SHIFT REGISTER @ ENTRY POINT

: RSH1: RIGHT SHIFT REGISTER 1 ENTRY POINT

: RSH2: RIGHT SHIFT REGISTER 2 ENTRY POINT

- RSH3: RIGHT SHIFT REGISTER 3 ENTRY POINT

RSHO: LBl 0,15 ; POINT TO DIGIT 15 IN APPROPRIATE REGISTER
RSH1: LBI 1,15 . NOTE LB! SUCCESSIVE SKIP FEATURE
RSH2: LB! 2,15
RSH3: L8l 315
CLRA ; ZEROS IN FIRST DIGIT (DIGIT 15)
SHFTR: xXps ; SHIFT RIGHT™
JP SHFTR ; CONTINUE UNTIL ENTIRE REGISTER SHIFTED
RET : RETURN WHEN FINISHED (“XDS" SKIiPS)

*NOTE THAT THE ABdVE ROUTINE CAN SHIFT THE REGISTERS ONE DIGIT TO THE LEFT USING THE “XI§" INSTRUCTION IN PLACE OF
“XDS" AND STARTING AT DIGIT 0.

: MULTIPLE ENTRY POINT SUBROUTINE TO LEFT SHIFT THE BITS OF A MEMORY DIGIT
: UPON ENTRY, B MUST POINT TO THE DIGIT TO BE SHIFTED

: ZEROS ARE SHIFTED IN FROM THE RIGHT

1 PREVIOUS CONTENTS OF A ARE LOST

: LEF1; SHIFT DIGIT LEFT 1 BIT ENTRY POINT

. LEF2: SHIFT DIGIT LEFT 2 BITS ENTRY POINT

: LEF3: SHIFT DIGIT LEFT 3 BITS ENTRY POINT

LEF3: LD ;DIGITTO A

ADD : ADD DIGIT TO ITSELF

X : SKIFTED DIGIT TO MEMORY
LEF2: LD

ADD

LEF1: LD
ADD

RET

9-47

apiny sJasn Ajjwed Sd0D



COPS Family User’s Guide

» MULTIPLE ENTRY POINT SUBROUTINE TO LEFT ROTATE THE BITS OF A MEMORY DIGIT
; UPON ENTRY, B MUST POINT TO THE DIGIT TO BE ROTATED

; PREVIOUS CONTENTS OF A ARE LOST

; LROY: ROTATE DIGIT LEFT 1 BIT ENTRY POINT

; LRO2: ROTATE DIGIT LEFT 2 BITS ENTRY POINT

; LRO3: ROTATE DIGIT LEFT 3 BITS ENTRY POINT (SAME AS RIGHT ROTATE 1)

LOR3: JSR LRO1 ; ROTATE 1, THEN 2 MORE
LORZ: JSR LRO1
LOR1: LD ; DIGIT TO A
ADD ; ADD DIGIT TO ITSELF
X ; EXCHANGE M WITH A
AISC 8 : WAS MEMORY 8IT3 ON?
RET : NO, RETURN
SMB 0 ; YES, WRAP AROUND BITO
RET

ACCUMULATOR SHIFT ROUTINE:

i SUBROUTINE TO LEFT SHIFT BITS OF A BY USING THE SiO REGISTER (SIO MUST BE ENABLED AS A SERIAL SHIFT REGISTER)
; St MUST BE CONNECTED TO LOGIC 0" (GROUND)

; ZEROS ARE SHIFTED IN FROM THE RIGHT

+ LETAT: LEFT SHIFT A 1 BIT ENTRY POINT

i LFTA2: LEFT SHIFT A 2 BITS ENTRY POINT

i LFTA3: LEFT SHIFT A 3 BITS ENTRY POINT

LFTAY: XAS ;A TO SIO
LFT2: XAS ; 81O TO A (SO SHIFT RIGHT 1 BIT)
RET
LFTA2: XAS ; ATO SIO
LFT3: JP LFT2 i DELAY 1 INSTRUCTION CYCLE TIME — SIO SHIFT RIGHT 1 MORE BIT
LFTA3: XAS ATO SIO
JpP LFT3 ; DELAY 1 INSTRUCTION CYCLE TIME — S| SHIFT RIGHT 2 MORE BITS

CLEAR DATA MEMORY ROUTINE:

; SUBROUTINE TO CLEAR ALL RAM
; CLEAR REGISTERS 3 THROUGH 0 IN SUCCESSION, THEN RETURN

CLRAM: LBl 3,15 ; START BY CLEARING REGISTER 3
CLR: CLRA ;0TOA
XDs i EXCHANGE WITH DIGIT 15, DECREMENT DIGIT
JP CLR ; CONTINUE UNTIL DIGIT 0 GLEARED
XABR ;BRTO A
AISC 15 ; REGISTER 0 CLEARED?
RET ; YES, RETURN
XABR i NO, REPLACE BR -1 [NTO BR
JP CLR » CLEAR NEXT REGISTER

4.5 Timing Considerations

Programmers must often synchronize programs is more efficient for longer delays, but destroys the
with external events (“‘real-time" programming). previous contents of A. Another method is to use a
Such programs must be balanced with raspect to “scratch-pad” counter in data memory using the
the execution times of the various branches taken XAD instruction. For example, assuming the use of
by the program. To ensure equal execution times, a counter in M(3,15);

program timing delays are added. There are XAD 315 ; COUNTER TO A; A TO M(3.15)
numerous ways of introducing tlming delays, the AISC 1 ; ADD 1 TO COUNTER UNTIL IT
simplest but least efficient involving the use of JP -1 ; OVERFLOWS*

NOPs. Obviously these are appropriate for only the  XAD i RESTORE A THEN CONTINUE
shortest delays. '

A i ) : N
counting loop, such as “Note: The above timing code axample shows

CLRA the use of a special assembler symbol in the

AISC 1 operand of the JP instruction. Namely, the

JP =1 ; ADD 1 TO A UNTIL A d of the JP instructi ther th
CONTINUE: | . OVERFLOWS" operand of the instruction, rather than

using a program label, references the

9-48



assembler location counter {which equals the
address of the current program address). The
“ signifies the assembler location counter
and the value of the operand equals the
location counter minus the number of memory
bytes to the right of the *." sign. Use of the
“ jocation pointer symbol for transfer of
control instructions facilitates coding in
avoiding the need to create unique program
labels to reference memory addresses.

Larger delays may be implemented by using multi-
digit RAM counters. Another technique is calling
unrelated subroutines which change registers or
memory locations not currently in use or whose net
effect on memory is null. An example of the latter
technique is illustrated below.

JSR LRO3
JSR LRO1

. LEFT RQTATE 3 BITS
; LEFT ROTATE 1 MORE BIT

This combination of subroutines only affects A,
while maintaining the integrity of data in the
rotated memory digit.

4.6 BCD Arithmetic Routines

BCD data manipulation routines are essential in
applications which interface with human operators
of a microcomputer system. They are easily

translated to and from codes used by decimal
displays and keyboards. The COP400 series
instruction set and internal architecture has been
designed to perform BCD routines efficiently. The
following routines are examples of simple BCD
data manipulation routines.

Unsigned BCD Integer Add and Subtract Routines

The following programs present unsigned BCD
integer add and subtract subroutines. Data is
stored in data memory registers 0 and 1 and is 13
digits long, occupying memory digits 0 through 12,
respectively. The most significant BCD digit is in
memory digit 12. The techniques used to
manipulate the contents of memory address
register B are common to many arithmetic routines.
The LD and XIS instructions transfer data between
memory and A. After the transfer they modify B.

LD 1 causes a “1" to be exclusive-ORed with Br.
Since, in these routines, Br is always equal to 1
when the LD 1 instruction operates upon it, Bris
always changed to 0. {LD 1 causes Br to point to
memory register 0.) Similarly, XIS 1 also changes Br
to point to memory register 0, as well as
incrementing the value of Bd to point to the next
higher memory digit. Thus, Br “flip-flops’’ between
registers 1 and 0 while Bd “walks-up” the digits of
the registers.

epiny sJasn Ajjwed sd0d

- SUBROUTINE TO DO UNSIGNED BCD INTEGER ADD OF R1 AND RQ, RESULT TO RO
: EACH INTEGER OCCUPIES MEMORY DIGITS 0 (LOW ORDER) THROUGH 12 (HIGH ORDER)

- ON RETURN, C =1 INDICATES OVERFLOW
- PREVIOUS CONTENTS OF A AND B ARE LOST
; ENTRY POINT: BCDADD

BCDADD: LBI 1.0 : POINT TO LOW ORDER DIGIT, REGISTER 1
RC S INITIALIZE C TO 0" (NO CARRY)
ADDL: LD 1 - MOVE R1 DIGIT TO A, POINT TO SAME DIGIT IN RO
AISC 6 . ADD BCD CORRECTION FACTOR OF 6 TO A
ASC . ADD RO DIGIT TO R1 DIGIT
ADT - RESTORE BCD VALUE IF BCD CORRECTION NOT NECESSARY
XIS 1 - MOVE SUM DIGIT TO RO: POINT TO R1, NEXT HIGHER DIGIT
CBA ;BDTOA
AISC. 3 ; LAST DIGITS ADDED?
JP ADDL . NO, ADD NEXT HIGHER DIGITS
RET . YES, RETURN

- SUBROUTINE TO DO UNSIGNED BCD INTEGER SUBTRACT
- MINUEND IS IN RO, SUBTRAHEND IS IN R1
; DIFFERENCE 1S PLACED IN RO

 MINUEND, SUBTRAHEND AND DIFFERENCE DIGITS EACH OCCUPY MEMORY DIGITS 0 (LOW ORDER) THROUGH 12 (HIGH ORDER)
- ON RETURN: C =1 INDICATES NO BORROW, C=0 INDICATES BORROW

. PREVIOUS CONTENTS OF A AND B ARE LOST
; ENTRY POINT: BCOSUB

BCDSUB: LBl 1,0 - POINT TO LOW ORDER DIGIT IN R1
SC S INITIALIZE C TO 1" {NO BORROW)
SUB: LD 1 - LOAD R1 DIGIT TO A, POINT TO SAME DIGIT IN R0
CASC ; SUBTRACT R1 DIGIT FROM RO DIGIT
ADT : BCD ADJUST IF BORROW (C=0)
XIS 1 . PLACE DIFFERENCE DIGIT IN RO, POINT TO NEXT HIGHER DIGIT IN R1
CBA ,BDTOA
AISC 3 - HIGH ORDER DIGITS (12) SUBTRACTED?
JP SuUB - NO, SUBTRACT NEXT HIGHER DIGITS

RET ; YES, RETURN



COPS Family User's Guide

BCD integer Multiply Routine

This routine will multiply the contents of data
memory register 2 with register 1, piacing the result ,

in register 2 (digits 0-12). It also calls the BCD add il
routine (“BCDADD") given above. Note that a loop- e * S
counter is contained in M(0,13) which causes the
program to return after all 12 digits have been
multiplied. Also note the alternate-return feature of

page 3 subroutine TMZEROQ (Test Memory Digit = Q).
A tlowchart for the routine is given in Figure 4.2.

s

" RIGHT SHIFT
M2.0)-1—-m2.0) | M{0,n) = M(0.n—1),
00— M{0,12), M(D,0) + A

: RIGHT SHIFT
'] REGO + REGT —~REGD } M(2.n) — M{Z.n—1),
D—~M{2,12),M{2,0)~ A

M{0,13) + 1 -~ M(0,13)

; TWO-LEVEL BCD INTEGER MULTIPLY SUBROUTINE

; 12 DIGIT BCD INTEGER CONTAINED IN REGISTER 1, DIGITS 0 - 12 {LOW ORDER TO HIGH ORDER) MULTIPLIED BY 12 DIGIT BCD
i INTEGER CONTAINED IN REGISTER 2, DIGITS 0 - 12 {LOW ORDER TO HIGH ORDER), RESULT TO REGISTER 2

i MULTIPLICATION OF DIGITS PERFORMED 8Y MULTIPLE ADDITIONS OF REGISTER 1 ACCORDING TO VALUE OF REGISTER 2

; DIGITS

; DIGIT ADDITION RESULTS TEMPORARILY STORED IN RO AND CONSECUTIVELY RIGHT SHIFTED INTO RESULT REGISTER 2, HIGH
; ORDER DIGIT

; ENTRY POINT: MULT

: SUBROUTINES CALLED: RSHRO, RSHR?2, CLR, DEC 1, INC 1, TMZERO, BCDADD

MULT: L8l 0,13 i POINT TO M(0,13)
JSR CLR ; CLEAR REGISTER 0, DIGITS 13- 0
MULT]: LBl 20 ; POINT TO M{2,0)
JSR TMZERC i 15 M(2,0)=07
JpP NOTZ ; NO, JUMP TO NOTZ
JSR RSHRO i YES, RIGHT SHIFT REGISTER 0, DIGITS 12 - 0
JSR RSHR2 ; RIGHT SHIFT REGISTER 2, DIGITS 12 - 0
LBI 0,13 i POINT TO LOOP COUNTER
LD ; LOOP COUNTER TO A
AISC 3 ; IS COUNTER > 12
JP -+2 i NO, CONTINUE
RET i YES, ALL DIGITS MULTIPLIED, RETURN
JSR INC1 ; CONTINUE, INCREMENT LOOP COUNTER DIGIT
JpP MULT1 ; MULTIPLY NEXT HIGHER ORDER DIGITS
NOTZ: JSR DEC1 ; DECREMENT M(2,0)
JSR BCDADD ; ADD RC, DIGITS 0 - 12, TO Rt, DIGITS 0 - 12, RESULT TO RO
JP MULT? ; JUMP BACK TO MULT 1

i MULTIPLE ENTRY PQINT SUBROUTINE TO RIGHT SHIFT DIGITS 12 - 0 OF REGISTEROOR 2
+ ON RETURN A CONTAINS LOW ORDER REGISTER DIGIT

» RBHRO: RIGHT SHIFT DIGITS OF REGISTER 0 ENTRY POINT

i R8HR2: RIGHT SHIFT DIGITS OF REGISTER 2 ENTRY POINT

RASHRO: LBI 0,12 ; POINT TO HIGH ORDER DIGIT, REGISTER 0
RSHR2; LB 212 ; POINT TO HIGH ORDER DIGIT, REGISTER 2
RSH: XDS i SHIFT RIGHT DIGITS 12 - 0 {N REGISTER
JP RSH
RET

9-50



: SUBROUTINE TO CLEAR ALL DIGITS TO THE RIGHT AND INCLUSIVE OF A HIGH-ORDER DIGIT OF A REGISTER
: ON ENTRY, B MUST POINT TO THE REGISTER AND HIGH ORDER DIGIT NUMBER

CLR: CLRA
XDS
JP CLR

RET

; CLEAR REGISTER. STARTING WITH HIGH ORDER DIiGIT

; RETURN WHEN DIGIT 0 CLEARED

. MULTIPLE ENTRY SUBROUTINE TO EITHER DECREMENT OR INCREMENT BY 1 THE VALUE OF A MEMORY DIGIT

; ON ENTRY, B MUST POINT TO THE DIGIT TO BE OPERATED
, DEC1: ENTRY POINT TO DECREMENT A DIGIT
. INC1: ENTRY POINT TO INCREMENT A DIGIT

UPON

DECT: CLRA
COMP 15 TO A
ADEX: ADD ; ADD MEMORY DIGIT TO A
X ; EXCHANGE BACK TO MEMORY
RET  RETURN
INC1: CLRA
AISC 1 J1TOA
JP ADEX ; ADD AND EXCHANGE WITH MEMORY DIGIT

; SUBROUTINE TO TEST MEMOCRY DIGIT EQUAL TO ZERC

; ON ENTRY, B MUST POINT TO MEMORY DIGIT TO BE TESTED
; ON RETURN, SKIP FIRST INSTRUCTION IF MEMORY DIGIT EQUAL TO ZERO

; NORMAL RETURN {F MEMORY BIGIT NOT EQUAL TO ZERQ

TMZERO: CLRA ;0TO A
SKE ; DIGIT =ZERQ?
RET  NO, NORMAL RETURN
RETSK ; YES, RETURN THEN SKiP

4.7 Simple Display Loop Routine

The following routine is a simple LED display ioop
routine. It illustrates the use of LEI and LQID
instructions, both designed to facititate the
outputting of segment data to a multiplexed
disptay. As explained in Section 3.2, LEI Instruction
description, setting bit 2 of the EN register enables
Q latch {segment) data to the L {/O ports; resetting
EN, disables the L I/O ports, providing segment
blanking for the LED display. ENjy is set and reset,
respectively, by the LEI 4 and LEI O instructions.

As explained in Sections 3.2 and 4.1, LQID loads
the 8-bit Q register with the contents of a ROM
location pointed to by A and M (ROM “lookup’” data
must be within the same 4-page ROM block as the
LQID instruction). in this example, since A is
always equal to 0 at the time of the LQID
instruction, the ROM data accessed by this
instruction must be within the first 16 words of the
first page of the ROM block in which the LQID
instruction is located as pointed to by the 4-bit
contents of M {(Pg and Pg remain the same, P;-P4
equal “0"). For example, if, as is the case for the
following routine, LQID is in page 5, it will lookup
data within one of the first 16 locations of page 4.
The value of the contents of the memory digit
pointed to by the B register at the time of the LQID
instruction determines which one of the 16 words
is accessed (e.g., if M=2, word 2 is loaded into Q).

9-51

Due to these considerations, page 4, words 0-9
should equal the 8-bit, seven-segment decode
iookup data for the BCD digits 0-9 respectively. (In
this example the low-order bit — decimal point —
of each lockup data word is reset, signifying that
the decimal point is off.) ROM seven-segment
decode lookup data is placed in ROM memory
locations by the Assembler WORD directive. (See
PDS User's Manual, Section 8.4))

Another feature of this routine is the dual function
of Bd. lts value may be output directly to the D
outputs to select one of 16 digits of the
muitiplexed display (assuming the D outputs are
connected to a 1-0f-16 decoder/driver device). Also,
its value is used to select one of 16 RAM digits
whose contents are used by the LQID instruction to
access the segment data to be output to the
selected digit. To facilitate coding (by avoiding the
need to change the value of Bd after its contents
are output to D to select or display digit), RAM digit
locations should correspond to the digit of the
display. In other words, RAM digits 0-15 should
contain, respectively, the LQID pointers to segment
data for display digits 0-15. This technigue, used
below, allows Bd to first enable the appropriate
display digit and then, without its value being
changed, to point to the RAM digit used to access
the segment data for the same display digit.

apiny sJasn Ajwed Sd0D



COPS Family User's Guide

; SEVEN-SEGMENT DECODE DATA TABLE:
 ROM BITS 17 - 10 =SA - §G, D.P. (DECIMAL POINT) BITS, RESPECTIVELY

LOCKUP:

.PAGE

WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD

4 ; PLACE LOOKUP DATA |N WORDS 0 - 9, PAGE 4
X'FC ;=0 {SEVEN-SEGMENT DECODE HEX VALUES)
X'60 (=1

X'DA =2

XF2 =3

X'66 =4

X'Bé ;=5

X'BE ;=6

X'EQ =7

X'F4 ;=8

X'F6 ;=9

i NEXT FIVE LOCATIONS CAN BE USED FOR SPECIAL ALPHABETICAL DISPLAY
; CHARACTER DATA

: BEGIN CODE FOR DISPLAY LOOP

DSPLY:
LOOF:

PAGE
LBI
CLRA
LEI
oBD
LQID
LEI
CBA
AISC
JP
CAB
JP

5 ; PLACE FOLLOWING CODE ON PAGE 5

0,15 ; POINT TO HIGH ORDER RAM DIGIT, BD =15
; A=0 FOR LOOKUP

0 ; BLANK SEGMENTS (EN2 = 0)

; OUTPUT DIGIT VALUE
; LOOKUP DATATO Q

4 ; OUTPUT SEGMENT DATA (EN2=1)
;BDTO A

15 ; DECREMENT A

.+3 ; JUMP 3 WCRDS WHEN FINISHED
; A(BD-1)TO BD

LoOP ; DISPLAY NEXT LOWER DIGIT

; CONTINUE WHEN FINISHED

9-52



4.8 Interrupt Service Routine

As explained in Section 3.2, LE! Instruction
description, setting bit 1 of the EN register enables
the COP420-series and COP444L N, input as an
interrupt input, responding to low geing pulses.
Upon the occurrence of an interrupt signal, the
subroutine stack is pushed and program control is
transferred to the last word of page 3 (address
0FF,g). The following routine contains code which
may be placed at the beginning and end of the
interrupt service routine to save the contents of A,
C and B, freeing them for use by the interrupt
routine. At the end of the routine the previous
contents of A, C and B are restored for use by the
main program. it should be noted that the main
program need only enable INy as an interrupt input
once; thereafter, the interrupt service routine, itself,
re-enabies interrupt servicing (LEI 1 instruction
before return).

apiny sJasn Ajjwes S409

: INTERRUPT SERVICE ROUTINE TO SAVE AND RESTORE THE CONTENTS OF A, C AND B (BR AND BD) IN MEMORY REGISTER 0,
; DIGITS 0 - 2.

. AUTOMATIC ENTRY TO LAST WORD OF PAGE 3

; ON RETURN, IN1 INPUT RE-ENABLED AS INTERRUPT INPUT

INTSER: NOP : FIRST INTERRUPT ROUTINE INSTRUCTION MUST BE A NOP (LOCATION X'FF)
XAD Q.0 ; SAVE A IN M(0,0)
CBA ,BDTO A
XAD 01 ; SAVE BD IN M(0,1)
XABR BRTO A
SKC ; CARRY =17
AISC 8 , NO, SET A3
XAD 0.2 ; SAVE C AND BR IN M(0,2)

; PERFORM INTERRUPT ROUTINE

LD 0.2 » M(0,2) (C AND BR) TO A

RC . RESET CARRY

AISC 8 ; A3 SET (SAVED CARRY = 0)7

sC ; NO, RESTORE CARRY =1

XABR . RESTORE BR

LDD 0.1 s MO (BD) TO A

CAB ; RESTORE BD

L0D 0.0 , M{0,0) TO A, RESTORE A

LEI 1 ; ENABLE INTERRUPT (SET IN1)

RET ; RETURN FROM INTERRUPT SERVICE ROUTINE

4.9 Timekeeping Routine

The following multileve! subroutine counts time in number: 218.478 Hz {3.58 MHz divided by 16, divided
a 12-hour format. It relies on the COP420 system by 1024). Consequently, the timekeeping calling
oscillator, itself {controiled by an inexpensive routine must execute a SKT instruction at least
3.58 MHz color TV crystal), and the COP420 internai once approximately each 218 Hz to ensure that
time-base counter for a real-time base, rather than each SKT overflow is detected.

on a 60Hz external input. The subroutine is entered
each time the SKT instruction skips, indicating
time-base counter overflow. As explained in Section
3.2, SKT Instruction description, overfiow frequency
is dependent upon the frequency of the
COPS™Msystem osciilator. This frequency equals
the oscillator frequency, first divided by 16 by the
instruction cycle divider, then by 1024 by the
internal 10-pit time-base counter. in this case the
SKT overfiow frequency will equal a fractional

As indicated above, using an inexpensive TV
crystal results in a fractional SKT frequency.
Program cormpensation techniques, therefore, must
be employed to derive an integer which may be
used by the program in counting seconds, the
basic timekeeping units.

9-53



COPS Family User’s Guide

This routine derives this integer and utilizes it 1o
keep accurate time in the following manner:

* A 2-digit binary “SKT"” counter in RAM is
initialized to different values at different times
during the course of an hour so that the total
counts for the hour equat an integer which
corresponds to the 218.478 Hz SKT frequency.

* Every odd second in the range of 0-59 seconds,
the SKT counter is set to 218, decremented by 1
each time the SKT instruction skips. When
decremented to 0, a 2-digit BCD “seconds”
counter in RAM is incremented by 1. (The
seconds counter overflows every 60 counts to a
2-digit BCD “minute’” counter. The minutes
counter overtlows every 80 counts to a 1-digit
“hours” counter.)

* Every even second in the range of 0-59 seconds
the SKT counter is set to 219 and decremented
by 1, as above, each time the SKT pulse occurs.

* Every minute in the range of 0-59 minutes, the
SKT counter is set to 218 and decremented as
above.

* Every hour, the SKT counter is set to 199 and
decremented as above.

The above compensation techniques result in a
timekeeping routine which is accurate at the end of
each hour. {During the hour, inaccuracy is
extremely small.) The basis for the above
compensation scheme is as follows:

219 — COUNTER

218 —~ COUNTER

COUNTER

9-54

* Using a 3.58MHz crystal resuiting in a
218.478 Hz SKT frequency, an SKT integer count
of 786,521 is obtained each hour (218.478 x 3600
seconds/hour).

* Using the above compensation scheme, the
same number of “SKT" counts (786,521) is
required to increment the time by 1 hour. This
follows since 392,400 counts are required by the
“0dd"” seconds compensation (30 x 60 x 218
counts); 381,060 by the “‘even” seconds
compensation (29 x 60 x 219 counts); 12,862 by
the “minutes” compensation (59 x 218 counts)
and 199 by the “hours” compensation —
resulting in a total hours count of 786,521.

A flowchart and a RAM map for this routine are
provided in Figure 4.3. Note that an assembler
assignment statement is used in the assembler
source code to equate the address of low order
digits of the RAM SKT counter and seconds
counter with the symbols “COUNT"” and “SECS,”
respectively. This provides ciearer documentation
of the program since an instruction referencing the
seconds counter, for instance, can use the word
“SECS” instead of a numerical value in the
operand field (i.e., LBI SECS). For further
information on the assignment statement, see PDS
User’s Manual, Section 8.4. Also note that the
program initializes the SKT counter to 218, 219 and
199, respectively, by loading its two digits with the
following binary equivalent pairs (high-order value,
low-order value): 13, 10; 13, 11; and 12, 7.

0 — MINS

HRS + 1 — HRS |




This subroutine is coded to reside on subroutine
page 2. The source code provided below also
illustrates the use of the PDS Assembler .LOCAL
directive and local symbol labels. Specifically, the
program begins and ends with a .LOCAL directive,
making the memory addresses between them a
local region. Within this local region, local symbols
{labels whose first character is a "$"”) will be
defined only within the local region — they will not
conflict with labels appearing in other portions ot
program source code. This relieves the programmer
from worry about duplicate label definitions,
allowing the subroutine or other utility program to
be included or added to different programs,
regardless of the labels used by these other
programs.

In effect, therefore, utility programs or commonly
used subroutines may be coded in this manner and

placed in separate “utility” files on a disk. They
can then be added or included, when needed, to
main programs at a later date. For an example of a
program which includes this “TIMEKP"” subroutine
{using the assembler INCLD directive), see Figure
5.18.

Local symbols must begin with a “$” and be
unique within the particular local region in the first
4 characters following the "'$." The programmer
may, as is done in this example, use local labels
with more than four characters for convenience
and, although not "‘recognized" by the assembler,
these extra characters wiil be printed out on the
assembler output listing. Note: The label of the
starting address of a local utility routine must be a
long (regular) label, since it will be referenced by a
portion of the program outside of the local region
(e.g., “TIMEKP” is not a local label).

- PAGE 2 SUBROUTINE TO KEEP TIME iN A 12-HOUR FORMAT USING A 3.58 MHZ TV CRYSTAL

apinn sJasn Ajlweyd sS40

: 2-DIGIT “SKT" COUNTER CONTAINED IN M(2,15) - M(2.14): HIGH- TO LOW-GRDER
: 1-DIGIT BINARY HOURS COUNTER IN M{2.13)

. 2-DIGIT BCD MINUTES COUNTER IN M(2,12) - M(2.11): HIGH- TO LOW-ORDER

. 2-DIGIT BCD SECONDS COUNTER IN M(2,10) - M(2.9) HIGH- TO LOW-ORDER

- ENTRY POINT: TIMEKP; ENTRY UPON SKT INSTRUCTION OVERFLOW

: SUBROUTINES CALLED: ING2

.PAGE 2 ; PAGE 2 SUBROUTINE
.LOCAL . CREATE LOCAL REGION FOR LOCAL SYMBOLS
$COUNT =214 - ASSIGN “COUNT" = ADDRESS OF LOW-ORDER SKT COUNTER DIGIT
$SECS =29 - ASSIGN "SECS" = ADDRESS OF LOW-ORDER SECONDS COUNTER DIGIT
TIMEKP:
LBI $COUNT . POINT TO LOW-ORDER DIGIT OF SKT COUNTER
LD : LOAD DIGITTO A
AISC 15 :DIGIT=0? (A=DIGIT - 1)
JP SHIGHST : YES, TEST HIGH-ORDER DIGIT
X : NO. EXCHANGE DIGIT -1 INTO M
RET T RETURN UNTIL NEXT SKT OVERFLOW
$HIGHTST: XIS . REPLACE DIGIT N COUNTER. INCREMENT BD .
JP TIMEKP +1 - JUMP BACK AND TEST HIGH-ORDER DIGIT — IF ALREADY TESTED AND =0.
. SKIP AND CONTINUE
LBI $SECS : POINT TO LOW-ORDER SEGS DIGIT
JSR $INC2 - INCREMENT SECS COUNTER
JP $TSEC . SECS < 60, TEST SECS FOR ODD OR EVEN
STH 0 - SECS = 60. 0 TO HIGH-ORDER DIGIT, POINT TO LOW-ORDER MINS DIGIT
JSR $INC2 - INCREMENT MINS COUNTER
JP $C218 s MINS < 60. SET COUNTER =218
STH 0 - MINS =60, 0 TO HIGH-ORDER DIGIT. POINT TO HOURS DIGIT
LD . LOAD HOURS DIGIT TO A
AISC 1 - {INCREMENT HOURS
X . PLACE {N M. PREVIOUS HRS TQ A
AISC 4 CHOURS » 127
JP $C199 i NO, SET COUNTER = 189
ST 1 : YES, SET HOURS =1
$C199: LBl $COUNT T POINT TO LOW-ORDER COUNTER DIGIT
STH 7 . SET COUNTER = 199 (BINARY 12.7}
STH 12
RET : RETURN UNTIL NEXT SKT OVERFLOW
$TSEC: LBl $SECS - POINT TO LOW-ORDER SECS DIGIT
SKMBZ Q . SECS 0DB?
JP $C218 . YES, SET COUNTER = 218 (BINARY 13.10)
$C219: LBl SCOUNT - NO. POINT TO LOW-CRDER COUNTER DIGIT
STH 11 - SET COUNTER =212 (BINARY 13.11)
$C21X STI13
RET
$C218: LBI COUNT : POINT TO LOW-ORDER COUNTER DIGIT
ST 10 : SET COUNTER =218
JP $C21X L JUMP TO ~C21X" THEN RETURN

9-55




COPS Family User's Guide

. SUBROUTINE TO INCREMENT A 2-DIGIT BCD RAM COUNTER
-GN ENTRY. B MUST POINT TO LOW-ORDER DIGIT GF COUNTER

. ENTRY POINT: INC2

- NORMAL RETURN IF 2-DIGIT VALUE LESS THAN 60
- RETURN THEN SKIP |F 2-DIGIT VALUE EQUAL TO 60
- BOTH RETURNS EXIT WITH B8 POINTING TO HIGH-ORDER DIGIT

$INC2:
sC
CLRA
AISC
ASC
ADT
XIS
CLRA
AISC
ASC
ADT

LD
AISC
RET
RETSK
LOCAL

4.10 String Search Routine

CINITIALIZE C TO 1 TO ADD TO LOW-ORDER DIGIT
. ZERG TO A

. BCD ADJUST RESULT IF NECESSARY

JtF RESULT > 9, LOW ORDER DiGIT =0

. PLACE INCREMENTED DiGIT IN M, POINT TO HIGH-ORDER DIGIT
. ZERO TO A
. ADD CARRY. IF PROPAGATED FROM LOW-ORDER DIGIT TQ HIGH-ORDER DIGIT

: BCD RESULT IF NECESSARY

P REPLACE DIGIT INM

: LOAD HIGH-ORDER DIGIT INTO A

» HIGH-ORDER DIGIT =6 (COUNT = 60)7?
. NO, NORMAL RETURN

. YES, RETURN THEN SKIP

. END LOCAL REGION

It is often necessary to search data memory for a character tests, using the simple character test
string of characters. The following routine searches instructions provided below containing modified
register 0 for a match with three contiguous 4-bit LDD instructions whose operands specify the
characters, “X,” “Y,” and “Z.”” Note that a match additional characters to be matched. Also, the code

with more than three characters is easily
accommodated by providing for additional

may be easily modified to search through more
than one RAM register for a match.

; SUBROUTINE TO SEARCH STRING OF DATA MEMORY CHARACTERS FOR A MATCH WITH “X,” “Y,” AND “Z" CONTIGUOUS

, CHARACTERS

; 16 4-BIT CHARACTERS ASSUMED STORED IN M(0,15) THROUGH M(0,0)

PUXTY AND 2 CHARACTERS ASSUMED STORED N AND ASSIGNED VALUES OF M(1,15) THROUGH M(1,13), RESPECTIVELY
» NORMAL RETURN IF NO MATCH
: RETURN THEN SKIP iF MATCH OCCURS WITH THE ACCUMULATOR CONTAINING THE DIGIT NUMBER OF “'X"

X=1,15
¥=1,14
Z=1,13

SEARCH:
LBI
LOOKX:
LDD
SKE
JP
XDSs
JP
NOX:
LD
XDS
JP
RET
LOOKY:
LBD
SKE
JP
XDs
JP
RET
LOOKZ:
LDD
SKE
JP
OBA
AISC
RETSK

0,15

NOX

LOOKY

LOOKX

LOOKX

LOOKX

LOOKX

; POINT TO M(0,15)

XTOA

1 X FOUND?

T NO, JUMP TO X

; YES, POINT TO NEXT LOWER DIGIT

; LOOK FOR Y MATCH, IF AT M{(0,0) SKIP AND NORMAL RETURN — NO MATCH

; DECREMENT DIGIT POINTER
; LOOK AGAIN FOR X MATCH, IF AT M(0,0), SKIP AND NORMAL RETURN — NO
; MATCH .

VY TO A

. Y FOUND?

» NO, TRY AGAIN

. YES, POINT TO NEXT LOWER DIGIT

; LOOK FOR Z MATCH, {F AT M{0,0), SKIP AND NORMAL RETURN — NO MATCH

JZTOA

. £ FOUND?

; NO, TRY AGAIN

; YES, MATCH COMPLETE, COPY Z DIGIT ADDRESS TO A
; ADD 2 TO A TO EQUAL X DIGIT ADDRESS

; RETURN THEN SKIP — MATCH FOUND

9-56



4.11 Programming Techniques for the
. COP421-Series, COP410L and COP411L

COP421-Series Programming

Since the COP421-series differs from the COP420-
series only in not having the iIN;-INg inputs, the
foregoing programming considerations and
examples for the COP420-series are, for the most
part, relevant to COP421-series programming.
However, due to its lack of IN inputs, the COP421-
series does not include the ININ instruction, and its
INIL instruction inputs only CKO intc A (when CKO
is programmed as a general-purpose input). The
following are the results of these COP421
differences:

1. MICROBUS™ interface programming is not
available since IN3-!Ng cannot be mask-
programmed as WR, CS, and RD, raspectively.
Also, Gy cannot be mask-programmed as a
“ready” output to facilitate “handshaking” with
a host CPU over the MICROBUS™ bus. The
COP421 may still, however, function as a CPU
peripheral component, relying on more general,
programmed I/O technigues.

2. Due to the iack of IN inputs, other bidirectional
(/O pins must be used as general purpose input
pins when implementing a programmed input
operation.

3. A hardware interrupt utilizing IN4 is not possible.
{Setting EN, has no effect on the operation of
any COP421.) Any interrupt servicing must be
accomplished using software interrupt
techniques. (The routine provided in Section 4.8
is inapplicable to the COP421-series.)

4. A software interrupt cannot rely on the inputting
and testing of the IL; or ILg latches associated
with IN5 and INg inputs. Software interrupts,
therefore, require that the interrupt signal be tied
to one of the non-latched input pins. As a result,
the input interrupt signal must be input and
tested at least once during each “low” and
“high’ pulse occurring during each period of the
signal. For example, if the interrupt signal is a
50% duty cycle, 6B0Hz square wave, it must be
tested at least twice every Y%o second.

COP410L/COP411L Programming

Since the COP410L/COP411L, as with the COP421-
series, does not have IN inputs, the above
programming considerations relating to the
COP421 apply as well as to COP410U/COP411L
programming. Also, since, as discussed below,
other hardware logic elements are not included in
the architecture of the COP410L, the following
additional considerations apply to COP410L
programming:

1. The COP410L/COP411L has one-half the ROM
and RAM of the COP420-series and COP421-
series. ROM, therefore, consists of 512 x 8-bit

9-57

words, limiting program code to eight pages
(pages 0-7). RAM consists of a 32 x 4-bit RAM,
organized as four RAM registers (0-3) consisting
of 8 4-bit digits (9-15,0). The LBI register
reference instruction should, therefore, contain a
“d" field equal to 9-15 or 0. Since al! LBls will
reference RAM digits 9-15 or 0, all LBIs are
single-byte instructions, occupying one word in
program memory. A field restriction occurs with
respect to the memory reference XAD
instruction: only an XAD 3,15 instruction is valid,
limiting its use to referance a RAM
“scratch-pad” digit contained in M(3,15) only.

2. The COP410L/COP411L has 2 subroutine save

registers, SA and SB. Only two levels of
subroutine nesting, therefore, are allowed. The
programmer should also realize that since LQID
pushes and pops the stack in performing the
operation associated with this instruction, only 7
level of subroutine nesting should be in effect at
the time of the execution of this instruction.
(Otherwise the second level of previous
subroutine nesting will be disrupted — the
previous contents of SB will be lost.)

3. Since the COP410L/COP411L does not have an

internal divide-by-1024 time-base counter, the
SKT instruction is not available. “Real-time”
routines, such as 12-hour timekeeping and the
like, must rely on external time-base inputs in
order to derive a time-bhase for such routines
(e.g., external 50/60Hz input for time-of-day
routines).

4. Certain deleted or altered instructions have

already been mentioned: INIL, ININ, and SKT are not
available; LBls must have a “‘d” field

equal to 9-15 or 0, and XAD's

operand must equal 3,15. The following
instructions have also been deleted from the
COP410L/COP411L instruction set. To the right
of each of the following deleted instructions,
where appropriate, alternative
COP410L/COP411L instructions are shown
which, when executed in succession, will
perform the same or similar operation as the
deleted instruction:

Alternative
Deleted COP410L/COP411L
Instructions instructions

LDD LBI. LD
CASC COMP. ASC

ADT AISC 10. NOP
CQMA INL

Gl OoMG
XABR

SKT

ININ

INIL

For further information on deleted or altered
COP410L/COP411L instructions and the operations
performed by the alternative instructions given
above, see Section 3.4.

apiny sJasn Ajjlwed SdOD



COPS Family User's Guide

COP400 /O Techniques

This chapter provides information and examples
pertaining to hardware and software interfacing
techniques for the COP400 Microcontrollers. The
information contained in this chapter is derived, in
large part, from material already provided in
previous chapters, particularly Chapter 2. The
reader should refer to this chapter when reading
the following material to obtain a complete picture
of the COP400 series I/Q characteristics and
capability.

The following text provides /O examples for the
COP420 specifically. The /0 capability of the other
members of the COP420-series (e.g., COP420L and
COP420C), the COP444L and other, less inclusive
devices, the COP410L and COP411L, are
summarized in Table 5.1.

5.1 Hardware Interfacing Techniques
COP420 110

Figure 5.1 depicts the /O lines associated with the
COP420. As indicated, there are 24 1O lines. The
following discussion provides information on the
capabilities of the mask-programmable {/O options
associated with the COP420. These optional
configurations are shown in Figure 5.2.

COP420 Inputs
COP420 inputs may be programmed either with a

depletion-load device to V¢ or floating (Hi-Z input).

All inputs are TTLUCMOS compatible. Hi-Z inputs
should not be left floating; they should be
connected to the output of a “*high” and “low”
driving device if active or to V¢ or ground if
unused. Inputs may also be optionally programmed
for higher trip levels for interfacing to non-TTL
sources (e.g., keyboards, switches).




COPA420 Outputs

Standard Output: The N-channe! device to ground
is good at sinking current and is compatible with
the sinking requirements of 1 TTL load (1.6mA at
0.4V); it will meet the “low” voltage requirements of
CMC3 logic. All output options use this device
(device #1), as illustrated in Figure 5.2, for current
sinking. The depletion-load device to V¢ provides
low sourcing capability (100.A at 2.4V). While this
device meets the sourcing requirements of TTL
logic and will go to Vg to meet the “*high' voitage
requirements of CMOS logic, an external resistor to
Ve may be required to interface to other external
devices reqguiring higher sourcing capability. A
standard output may be connected directly to the

L peNeRAL AN
| PuRRDSE

azmnscném
mlemnaia b LATCHE
7 "--§§§“§'§ <: i Y IR sme Ty
o :uurgrs g e M - countER
SOf—rin SERIAL OUT - GiP/OUT
L GENERRL ik o
rmfgggg_‘_ i SERIAL N COUNT N
e SERIALCLOCK S BR 0BT

. Figure 5,1 COP420 VO Lines

. a2 Standard Output

CURISABLE Cn o gl

d. Stax\dafd L Qutpm o
':. :_EISA&E Hn e “ VCS e

g TRISTATE' Push-Pull (L Output)

B OpenDram Outpul
L " DISABLE . e :

" g, Open-Drain L Output

Vi

h 1nput with Load

base of an external transistor for current sourcing
since the depletion-load device's current capability
is limited to a safe operating area. Figure 5.3
provides a summary of the characteristics of the
COP420 Standard Output.

Open-Drain Qutput: The CCP420 open-drain output
uses the same enhancement mode device to
ground as the standard output with the same
current sinking capability. As its name implies, this
output configuration does not contain a toad device
to Ve, allowing various external puliup techniques
as required by the user’s application.

t!mipn G 2AVOuT

(fsmn % 84 VoyT

Standard Output .
ik e chamel Se gate :
TiGhod at smkmg Eurrent
: -LOW sourcmq b ex:temal resisiors may be needed :

celiDirecfantertace tc: cstandded TTL - fanoutof.ong ©
: Imns;%tor :
TEMOS

. fDepleuon lead ouipm wHI goito V“ e '

Figure 53 'COP{@:Sta-nﬁatd Output Characteristics

DISABLE

{415 DEPLETION DEVIGE} ==
“f. LED (L Output)

C 1 Hi-Z Input -

 Figure 52 copazo O Options.

9-59

apiny sJosn Ajjweq4 S0



COPS Family User's Guide

Push-Pull Qutput: The COP420 push-pull output
differs from the standard output configuration in
having an enhancement mode device in parallel
with the depletion-toad device to Vg, providing
greater current sourcing capability and faster rise
and fall times when driving capacitive loads. This
option is available for the COP420 SO and SK
outputs, often tied to the highly capacitive clock
lines of external shift registers to provide
adcitional external /O for the COP420. (For an
example, see Figure 5.20.) If a push-pull output is
interfaced to an external transistor, a limiting
resistor must be placed in series with the base of
the transistor to avoid excessive source current
flow out of the push-pull output.

Figure 5.4 surnmarizes, in interconnect form, the
information provided above relevant to the
capabilities of the push-pull, open drain and
standard outputs, as well as the Hi-Z and load
device input configurations.

For an example of use of the SK output, configured
as a push-pull output to drive the clock lines of an
external shift register, see Figure 5.10.

LED Direct Drive Output: The COP420 LED direct
drive output differs from the standard output
configuration in two basic ways:

1. Its depletion-load device to Vg is paralleled by
an enhancement mode device to Vg to allow for
the greater current sourcing capacity required by
the segments of an LED display. Source current
is clamped to prevent excessive source current
flow.

2. This configuration can be disabled under
program contro! by resetting bit 2 (EN») of the
enable register to provide simplified display
segment blanking. However, while both
enhancement mode devices are turned off in the
disabled mode, the depletion-load device to Vg
will still source up to 0.125mA when this output
is turned off. (This is not a worst case pull-up for
keyboard input loads).

For an exampie of use of the L /O ports, using this
option, to directly drive the segments of a LED and
VF display, respectively, see Figures 5.11 and 5.12.

TRI-STATE® Push-Pull Output

This COP420 output was designed to meet the
specifications of National's MICROBUS™,
outputting data over the data bus to a host CPU. [t
has TRI-STATE® !ogic to disable both
enhancement mode devices to free the
MICROBUS™ data lines for COP420 input
operation. Figure 5.13 shows an interconnect
between a host CPU and the COP420 over the
MICROBUS™ using this L output option.

9-60

COP420 /0 Summary

Figures 5.5 through 5.9 provide diagrams of the
internal logic and a summary of the hardware and
software features associated with the COP420 11O
ports.

Interconnect Examples

Figures 5.10 through 5.14 provide interconnect
diagrams illustrating several schemes for
interconnecting the COP420 to external devices.
Several of these interconnect diagrams, with minor
variations, are used in providing software /O
techniques in the final sections of this chapter.

copdze




apIny sJosn Ajwey 40D

. C D Ou(puts
1 Four generat purpose oukputs loaded from’ B 1085) o
0 e L mstruclion) Sl i : . B
o LATCH g o
& ey B Sxandard (as shown) or Opendram omputs
b G
- o8t npufs - .
e ¥ Four general purpose NO tines loaded fram fremory mey ]
OMG instrisction or loaded wn!h fmmedlale cfa!a Yyby OGI :
S _mstrvchon : :
=] LATCH 2. Readinputsinty’ accumulamr ANG mstrucuon) test indivl-
: :' “dually (SKGBstzrucuan} cottectively (SKG2Z mstruchon)_
i f i tor zefo ' —+seg G latch 0. T ‘when using as mput ;
_ Pl e de Siandard ta$ shbwm ot open dfam outputs
G
ST
mﬁ SSKBZ, 2
&n SKGBZ.
" Figure 5.6 COP420 D and G Port Characteristics .
vee . . L-TRE STATE' InputsiQutputs
2 -VEC
S n : T 77 1 Eight TRE STATE inputsioutputs, loaded with Q latén data :
o EN2 :D"_—‘l _' - R by setting EN, or direct input of L pori'data to M and A_ e
. : s D B : - {iNL instructienl; Q tateh Ioaded from: A arnd M by CAMG .
: 0 EN?I o - instruction and'read into:M.and A_ by COGMA instruction;
LIMITER . 2L ports “TRISTATED with. EN; =0 (if output “contains
_ S : Lol . denlenon»!oad device to Vco igL = 0 2mA a0V m)
: T o e : o 3. At output options available: :
i o a. Standard.: - :
: Sl b. Open:Drain -
EE e Push-Puit
L & LED Direct Dme {as shown)
i L &. TRE-STATE Push-Pull
5 ' - . : . .
! s
1 T
CaMA N

' Figure 5.7 COP420 L O Port Characteristics




COPS Family User's Guide

i S0 5y
<4 SHIFT REGISTER
OR COUNTER

e

POWER-ON

@ 5.9 COP420 CKO, OKI, RESET Characteristics.

9-62




74185 S pARRLLELIN. -
7415165 % SERIALOUT

o] mcRoPROCESSOR ¥ 5l

COP420

740164 : ;éE%{AL‘ W
T4L5164 L pRRALLEL OUT-

apiny sJosn Ajjwed S4d09

i zUSE} L Bus fer dat :
L lNi \'cs; :ead strobe (B

MM5450

”ss&&aftﬁw

COP420 ='§'rm&w¥uamz aive o}
- NON-MULTIPLEXED LEﬁs} 1

| CURRENT ADAUST

8-DIGIT
SMALL LED DMSPLAY

COP4z0

Lp-L7

01
£OPA20 g

60-G3 LI
D0-D3}::

. Figure 514 COP420 Add-On RAM

eom UsE Bsma TYPE uatonm/umvm
S NoT aenem;a wrra COPAZEL.. :

F ure511 cumm LED Bis fa s slem
is; i ” ¥ COP400 /0 Comparison Table

Tabie 5.1 provides a comparison table of the /O
capabilities of COP400 series devices. It should be

S ISEGM:ENﬁ'

: i e e understood that this is a partial listing of COP400
copt ol M e devices, since more inclusive parts (the COP440
-t S 088654 e and its related devices) as well as other devices
L ' will be available in the near future. For complete
= Vg -36V information on the listed devices, as well as other
RN members of the COP400 Microcontrolier famity,
copaz0 VF DISPLAY EERONEE consult the appropriate data sheets.
' -':/tfmme'z_rs' e 5.2 Software I/0 Techniques
Do-03 —;2» oS8! :Ei‘; _ The following sections of this chapter provide
T P 30V several software I/O examples and techniques for

: e i S _ interfacing the COP420 to external IO, including
: '!.-Tig'dré 512 c:OPﬂén:VF 'Dis'p'ia:)} S&Stem program code necessary to service these
ST e e e e T peripherals.

9-63



National
Semiconductor

COP420/COP421/COP422 and

COP320/CO P321ICOP322

Single-Chip N-Channel Microcontrollers

General Description

The COP420, COP421, COP422, COP320, COP321 and
COP322 Single-Chip N-Channel Microcontroilers are
members of the COPS™ family, fabricated using N-
channel, silicon gate MOS technology. They are complete
microcomputers containing all system timing, internal
logic, ROM, RAM and I/O necessary to implement dedi-
cated control functions in a variety of applications. Fea-
tures include single supply operation, a variety of output
configuration options, with an instruction set, internal
architecture and I/0 scheme designed to facilitate key-
board input, display output and BCD data manipulation.
The COP421 is identical to the COP420, except with 19
/O lines instead of 23; the COP422 has 15 1/O lines. They
are an appropriate choice for use in numerous human
interface control environments. Standard test procedures
and reliable high-density fabrication techniques provide
the medium to iarge volume customers with a customized
Controller Oriented Processor at a low end-product cost.

The COP320 is the extended temperature range version
of the COP420 (likewise the COP321 and COP322 are
the extended temperature range versions of the COP421/
COP422). The COP320/321/322 are exact functional
equivalents of the COP420/421/422.

Features

Low cost

Powerful instruction set

1k x 8 ROM, 64 x 4 RAM

23 110 lines (COP420, COP320)

True vectored interrupt, pius restart

Three-level subroutine stack

4.0us instruction time

Single supply operation

Internal time-base counter for real-time processing

Internal binary counter register with MICROW|RE™
compatible serial /O capability

General purpose and TRI-STATE® outputs
TTL/CMOS compatible in and out

LED direct drive cutputs

MICROBUS™ compatible

Software/hardware compatible with other members
of COP400 family

Extended temperature range device COP320/COP321/
COP322 (-40°C to +85°C)

22€d00/12€d02/02€d0D ‘22vd0I/12¥d0I/02¥d 0D

Vo GNﬂ

b

II‘\’IE BASE

— -

IDW?DE BY 1024

CLOCK
GENERATOR

IT DIVIDER H
INSTRUCTION CLOCK {SYNCH

RESET 1

LOGIC

ADDAESS

DICIT ADDRESS |

8 PROGRAM MEMOIRY
Thx B ROM ~’ ;

¢
+ f‘"

INSTRUCTION sa 1w
DECODE CONTROL el |

SKiP LOGIC 8 )

. DATAMEMORY  FEG | oy
k2 6454 RAM ADDR SR 1 =D
N 2 4
— M3t 11 1
i B J . t
y
o %
~I— ¢ o RECISTER b

BUFFER oy

3

| MICROWIRE i/0

Ls:n; S10z SIey Stag

SERIAL | 0 REGISTER
a

¥

a
REGISTER 3
3

COPQZG COR3Z5 Okl Y ]

F Wi

G
REGISTER

{ 1 DAIVERS

A 4

BUFFER 61

=

r Tttt + 5 & + 7
,

‘

5 6 7 ] 12

70 1w le hs

izt INp® INPT ENgT L7 g s kg i3

13 e 1s

Lz L Lo *Not available on COP322/CCP422.

Figure 1. COP420/COP421/COP422, COP320/COP321/COP322 Block Diagram

2-23



r;ug—. 1 28 f—o0 Gvo— 1 24 D0 K0 — 1 20 — GND
KO—ef 2 27 D1 CKo—2 23 p—D1
cKI—] 3 26 p—02 CKi=—]3 22 e D2 K2 It ?z
RESET— ¢ 25 |03 FESET ~] 4 21 p—p2 RESET —{ 3 B—
L7=—15 24 p——G3 L7 = § 20— 63 L7—3 17 —G3
16— 6 23 p——=¢2 T L 19 }—52 L6—s5 16 {— G2
L5=—q ? 22 —=G1 1517 18 p—1G1 L5 —— § 15 — SK
L4 = 8 21 p—G0 Lg—8 17 oo GO -
N e 8 20 o 1N3 vee— 9 18 |—5K =7 W=
INz—] 10 19 f—1N0 L= 10 15 p—350 voe —4 & B3
veg—q 11 18 f—asK 12— 11 14 f—s5i w—]e 12— 10
B—z 17 =30 L1 12 13 =10 2= 10 1b—u
L2=——1 13 16 p—S5I
11— 14 15 —10
COP420, COP320 COP421, COP321 ) COP422, COP322

Order Number COP420N, COP320N  Order Number COP42IN, COP 321N Order Number COP422N, COP322N
NS Package N28A NS Package N24A NS Package N20A

Figure 2. Connection Diagrams

COP420/COP421/COP422, COP320/COP321/COP322

Pin Description Pin Description
Ly-Lg 8 bidirectional /O ports with TRI-STATE® SK Logic-controlled clock (or general
Ga-Go 4 bidirectional I/O ports purpose output)
Ds- Dy 4 general purpose outputs CKI System oscillator input

_ . CKO System oscillator output (or general
IN3-INg gng:;)neral purpose inputs (COP420/320 purpose input or RAM power supply)
Si Serial input (or counter input) RESET System reset input
S0 Serial output (or general purpose output) Vee Power supply

GND Ground

l‘* INSTRUCTION CYCLE TIME (:c)_—l
-—l tPD1 ' —wf  |e—tepg I
ik ; VoH | voL 7 , \ [ 7

IN3-INp, |<— 1SETUP ——| |-— tHOLD
G3-Gp, L7-Lg, .
CKO &SI . X X ,
INPUTS l-—tpm —} =< tPDO
G3-Gp. D3-0g,
L7-Lg, 50, SK L VoH VoL
oUTPUTS

Figure 3. Input/Output Timing Diagrams (crystal divide by 16 mode)

— ke— two

CKI CKl r

— | *\1 |- tsvneo |
CKD \ Qt 47 \ 5i
(INPUT) .
' th—# o — tPpD

Figure 3A. Synchronization Timing Figure 3B. CKO Qutput Timing

2-28



tRR

| (IN2) s
;
/'[ (IN1) RD \\
‘\ ~ ICSR —»|=—tRD —>
{L7-Lg} B7-Dg

o

Figure 4. MICROBUSTM Read Operation Timing

{ 15w W wWes—

: (iN2) <5 :
| 1w

| (N3 WR A 4

g —| WD je—

E iLy-Lg) D7-Dp _)(

. .w. .

! G INTR ‘L

Figure 5. MICROBUSTM Write Operation Timing

Functional Description COP420/COP421/COP422, COP320/COP321/COP322

For ease of reading this description, only COP420 and/or
COP421 are referenced; however, all such references
apply equally to the COP422, COP322, COP320Q and/or
COP321, respectively.

A block diagram of the COP420 is given in figure 1. Data
paths are illustrated in simplified form to depict how the
various logic elements communicate with each other in
implementing the instruction set of the device. Positive
logic is used. When a bit is set, it is a logic “1" (greater
than 2 volts). When a bit is reset, it is a logic “0” (less
than 0.8 volts).

Program Memory

Program Memory consists of a 1,024 byte ROM. As can
be seen by an examination of the COP420/421 instruction
set, these words may be program instructions, program
data or ROM addressing data. Because of the special
characteristics associated with the JP, JSRP, JID and
LQID instructions, ROM must often be thought of as
being organized into 16 pages of 64 words each.

ROM addressing is accomplished by a 10-bit PC
register. Its binary value selects one of the 1,024 8-bit
words contained in ROM. A new address is loaded into
the PC register during each instruction cycle. Unless
the instruction is a transfer of control instruction, the
PC régister is loaded with the next sequential 10-bit
binary count value. Three levels of subroutine nesting
are implemented by the 10-bit subroutine save registers,
SA, SB and SC, providing a last-in, first-out (LIFO)
hardware subroutine stack.

ROM instruction words are fetched, decoded and exe-
cuted by the Instruction Decode, Control and Skip Logic
circuitry.

Data Memory

Data memory consists of a 256-bit RAM, organized as 4

data registers of 16 4-bit digits. RAM addressing is °

implemented by a 6-bit B register whose upper 2 bits (8r)
select 1 of 4 data registers and lower 4 bits (Bd) select 1

of 16 4-bit digits in the selected data register. While the
4-bit contents of the selected RAM digit (M) is usually
loaded into or from, or exchanged with, the A register
(accumulator), it may also be loaded into or from the Q
latches or loaded from the L ports. RAM addressing
may also be performed directly by the LDD and XAD
instructions based upon the 6&bit contents of the
operand field of these instructions. The Bd register also
serves as a source register for 4-bit data sent directly to
the D outputs.

Internal Logic

The 4-bit A register (accumulator) is the source and
destination register for most 1/O, arithmetic, logic and
data memory access operations. It can also be used to
joad the Br and Bd portions of the B register, to load and
input 4 bits of the 8-bit Q latch data, to input 4 bits of the
8-bit L I/0 port data and to perform data exchanges with
the SIQ register.

A 4-bit adder performs the arithmetic and logic func-
tions of the COPA420/421, storing its results in A. It also
outputs a carry bit to the 1-bit C register, most often em-
ployed to indicate arithmetic overflow. The C register, in
conjunction with the XAS instruction and the EN register,
also serves to control the SK output. C can be outputted
directly to SK or can enable SK to be a sync clock each
instruction cycle time. (See XAS instruction and EN reg-
ister description, below.)

Four general-purpose inputs, IN3-INg, are provided; iNy,
IN, and IN3 may be selected, by a mask-programmable
option, as Read Strobe, Chip Select and Write Strobe
inputs, respectively, for use in MICROBUS™ appli-
cations. N

The D register provides 4 general-purpose outputs and
is used as the destination register for the 4-bit contents
of Bd.

The G register conients are outputs to 4 general-purpose
bidirectional 1/Q ports. Gy may be mask-programmed as
an output for MICROBUS™ applications.

22€d09/12£d02/02€d 0D ‘TTYd0II12rd0I/0ZTYd 0D

2-29



COP420/COP421/COP422, COP320/COP321/COP322

The Qregister is an internal, latched, 8-bit register, used
to hold data loaded to or from M and A, as well as 8-bit
data from ROM. Its contents are output to the L /O
ports when the L drivers are enabled under program
control. (See LE| instruction). With the MICROBUS™
option selected, Q can also be loaded with the 8-bit
contents of the L O ports upon the occurence of a
write strobe from the host CPU.

The 8 L drivers,when enabied, output the contents of
latched Q data to the L /O ports. Also, the contents of L
may be read directly into A and M. As explained above,
the MICROBUS™. option allows L /O port data to be
latched into the Q register. L 1/O ports can be directly
connected to the segments of a multiplexed LED display
{using the LED Direct Drive output configuration option)
with Q data being outputted to the Sa-Sg and decimal
point segments of the display.

The SIO register functions as a 4-bit serial-in/serial-out
shift register or as a binary counter depending on the
contents of the EN register. (See EN register description,
below.) Its contents can be exchanged with A, allowing
it to input or output a continuous serial data stream.
SIO may also be used to provide additional parallel 1/0Q
by connecting SO to external serial-in/parallel-out shift
registers. For example of additional parailel output cap-
acity see Application #2.

The XAS instruction copies C into the SKL latch. In the
counter mode, SK is the output of SKL; in the shift
register mode, SK outputs SKL ANDed with the clock.

The EN register is an internal 4-bit register loaded under
program control by the LEl instruction. The state of
each bit of this register selects or deselects the
particular feature associated with each bit of the EN
register (EN3 - ENg).

. The least significant bit of the enable register, ENg,

selects the SIO register as either a 4-bit shift register
or a 4-bit binary counter. With ENg set, SIO is an
asynchronous binary counter, decrementing its value
by one upon each low-going pulse (“1” to “0")
ocurring on the Sl input. Each pulse must be at least
two instruction cycles wide. SK outputs the value of
SKL. The SO output is equal to the value of ENs;. With
ENp reset, SIO is a serial shift register shifting left
each instruction cycle time. The data present at Sl
goes into the least significant bit of S10. SO can be -
enabled to output the most significant bit of SIO
each cycle time. (See 4 below.) The SKoutput becomes
a logic-controlled clock.

. With EN, set the INy input is enabled as an interrupt

input. Immediately following an interrupt, EN, is
reset to disable further interrupts.

. With EN, set, the L drivers are enabled to output the

data in Q to the L I/O ports. Resetting EN, disables
the L drivers, placing the L 1/O ports in a high-
impedance input state.

- ENg, in conjunction with ENg, affects the SO output.

With ENg set (binary counter option sefected) SO will
output the value loaded into ENz. With ENg reset
(serial shift register option selected), setting ENj
enables SO as the output of the SIO shift register,
outputting serial shifted data each instruction time.
Resetting EN3 with the serial shift register option
selected disables SO as the shift register output;
data continues to be shifted through SIO and can be
exchanged with A via an XAS instruction but SO
remains reset to “0.” The table below provides a
summary of the modes associated with EN; and ENy.

Enable Register Modes — Bits EN3 and ENp

EN; ENy Sio SO SK
0 0 Shift Register Input to Shift Register 0 I SKL= 1, SK = CLOCK
IfSKL = 0,8K = 0
1 0 Shift Register Input to Shift Register Serial Qut If SKL = 1, 8K = CLOCK
HSKL =0,8K =0
0 1 Binary Counter Input to Binary Counter 0 HSKL = 1,8K = 1
IfSKL = 0,8K =0
4 1 Binary Counter Input to Binary Counter 1 If SKL =1,8K = 1
IFSKL =0,SK =0




Interrupt

The following features are associated with the Ny

- interrupt procedure and protocol and must be consi- ‘

dered by the programmer when utilizing interrupts.

a. The interrupt, once acknowledged as explained
below, pushes the next sequential program counter
address {PC + 1) onto the stack, pushing in turn the
contents of the other subroutine-save registers to the
next lower level (PC+1 — SA — SB — SC). Any
previous contents of SC are lost. The program counter
is set to hex address OFF (the last word of page 3)
and EN, is reset.

b. An interrupt will be acknowledged only after the
following conditions are met:
1. EN4 has been set.

2. Alow-going puise (1" to *'0”) af least two instruc-
tion cycles wide occurs on the IN4 input.

3. A currently executing instruction has been com-
pleted.

4. Ali successive transfer of control instructions and
successive LBls have been completed (e.g., if the
main program is executing a JP instruction which
transfers program control to another JP instruction,
the interrupt will not be acknowledged-until the
second JP instruction has been executed.

c. Upon acknowledgement of an interrupt, the skip
logic status is saved and later restored upon popping
of the stack. For example, if an interrupt occurs
during the execution of ASG (Add with Carry, Skip on
Carry) instruction which results in carry, the skip
logic status is saved and program control is trans-
ferred to the interrupt servicing routine at hex
address QFF. At the end of the interrupt routine, a
_RET instruction is executed to “pop” the stack and
return program control to the instruction following
the original ASC. At this time, the skip logic is
enabled and skips this instruction because of the
previous ASC carry. Subroutines and LQID instruc-
tions should not be nested within the interrupt ser-
vice routine, since their popping the stack will enable
any previously saved main program skips, interfering
with the orderly execution of the interrupt routine.

d. The first instruction of the interrupt routine at hex
address OFF must be a NOP.

e. A LE! instruction can be put immediately before the
RET to re-enable interrupts.

Microbus™ Interface

The COP420 has an option which allows it to be used as
a peripheral microprocessor device, inputting and out-
putting data trom and to a host microprocessor (uP).
INj, IN, and INs general purpose inputs become
MICROBUS™ compatible read-strobe, chip-select, and
write-strobe lines, respectively. INy becomes RD — a
logic “0” on this input will cause Q latch data to be
enabled to the L ports for input to the uP. IN; becomes
'CS — alogic “0" on this line selects the COP420 as the
uP peripheral device by enabling the operation of the RD
and WR lines and allows for the selection of one of
several peripheral components. IN5 becomes WR —a
logic “0” on this line will write bus data from the L ports
to the Q latches for input to the COP420. Gy becomes

INTR a “ready” output, reset by a write pulse from the
H

uP on the WR line, providing the “handshaking capability
necessary for asynchronous data transfer between the
host CPU and the COP420.

This option has been designed for compatibility with
National’s MICROBUS™ — a standard interconnect
system for 8-bit paralle! data transter between MOS/LSI
CPUs and interfacing devices. (See MICROBUS™
National Publication.) The functioning and timing rela-
tionships between the COP420 signal lines affected by
this option are as specified for the MICROBUS™
interface, and are given in the AC electrical characteris-
tics and shown in the timing diagrams (figures 4 and 5).
Connection of the COP420 to the MICROBUS™ is
shown in Figure 6.

POWER
SUPPLY

CLOCK

Vee GNB g cke
INTERRUPT (INTR} G-
i — 1
0 1 KR
8-81T DATA BUS :
MICROPROCESSOR | neag strose D) | COP420 o
TS = IN
oaTte sraone A | 2 o
1INy - (1] e out
RESET RESET

Figure 6. MICROBUSTM Option Interconnect
Initialization

The Reset Logic, internal to the COP420/421, will initia-
lize (clear) the device upon power-up if the power supply
rise time is less than 1ms and greater than 1pus. if the
power supply rise time is greater than 1ms, the user
must provide an external RC network and diode to the
RESET pin as shown below. The RESET pin is configured
as a Schmitt trigger input. If not used it should be con-
nected to Vgc. Initialization will occur whenever a logic
“0” is applied to the RESET input, provided it stays low
for at least three instruction cycle times.

Upon initialization, the PC register is cleared to 0 (ROM
address 0) and the A, B, C, D, EN, and G registers are
cleared. The SK output is enabled as a SYNC output,

providing a pulse each instruction cycle time. Data

Memory (RAM) is not cleared upon initialization. The
first instruction at address 0 must be a CLRA.

|
vee
_L RESET COPA20/42%
T' GND
‘ 1

RC = 5x POWER SUPPLY RISE TIME

<-TDUCw TMEST
| — 4

Figure 7. Power-Up Clear Circuit

2-31

22€d02/12€d02/02€d0D ‘T2Yd0Q/12¥d0D/02¥d 0D

i/



COP420/COP421/COP422, COP320/COP321/COP322

Oscillator

There are four basic clock oscillator configurations

-available as shown by figure 8.

a. Crystal Controlled Osciilator. CKI and CKO are

_connected to an external crystal. The instruction

cycle time equals the crystal frequency divided by 16
(optional by 8).

b. External Oscillator. CK| is an external clock input
signal. The external frequency is divided by 16
{optional by 8) to give the instruction cycle time. CKO
is now availabie to be used as the RAM power supply
(VR) or as a general purpose input.

¢. RC Controfled Oscillator. CKI| is configured as a
single pin RC controlled Schmitt trigger oscillator.
The instruction cycle equals the oscillation frequency
divided by 4. CKOQ is available for non-timing func-
tions.

d. Externally Synchronized Oscillator. Intended for use
in multi-COP systems, CKQ is programmed to function
as an input connected to the SK output of another
COP420/421 with CKI connected as shown. in this
configuration, the SK output connected to CKO must
provide a SYNC (instruction cycle) signal to CKOQO,
thereby allowing synchronous data transfer between
the COPs using only the SI and SO serial 1/O pins in
conjunction with the XAS instruction. Note that on
power-up SK is automatically enabled as a SYNC out-
put (See Functional Description, Initialization, above).

I Ve OR SENERAL
EXTERNAL PURPOSE INFUT
CLocK PINI I

External Oscillator

Crystal Oscillator

Crystal Osciilator

(Vg OR GENERAL

RC Controiled Oscillator

Crystal Component Values

Value R1(Q) R2 (Q) C (pF)
4MHz 1k M 27
3.58 MHz 1k ™ 27
2.09 MHz 1k 1™ 56

CKO Pin Options

'n a crystal controlled oscillator system, CKQ is used as
an output to the crystal network. As an option CKO can
be a SYNC input as described above. As another option
CKO can be a general purpose input, read into bit 2 of A
(accumuiator) upon execution of an INIL instruction. As
another option, CKO can be a RAM power supply pin
(VR), allowing its connection to a standby/backup power
supply to maintain the integrity of RAM data with mini-
mum power drain when the main supply is inoperative
or shut down to conserve power. Using either option is
appropriate in applications where the COP420/421 sys-
tem timing configuration does not require use of the
CKO pin.

RAM Keep-Alive Option (Not available on COP422)

Selecting CKO as the RAM power supply (Vg) allows the
user to shut off the chip power supply (Vec) and
maintain data in the RAM. To insure that RAM data
integrity is maintained, the foliowing conditions must
be met:

1. RESET must go low before V¢ goes below spec during
power off; Vo must be within spec before RESET goes
high on power up.

2. Vg must be within the operating range of the chip,
and equal to Vg = 1V during normal operation.

3. Vg must be 2 3.3V with Vg off.

I Y
["LJ,- ISYNE|
‘ *A A""V
I
= CK1 CKO cXl It
SK o
CoPezasaz o COPAa20/42i
so 51
S p13
Extetnally Synchronized Oscitiator
RC Contro#led Osciliator
Instruction
Cycle Time
R (kQ) C (pF) (us)

12 100 5+20%
6.8 220 5.3 +23%
8.2 300 8+29%
22 100 86+16%

Mote: 50k® 2 R = 5kQ
360pF = C = 50pF

Figure 8. COP420/421/COP320/321 Oscillator




—

1O Options

I COP420/421 outputs have the following optionél config-
urations, illustrated in Figure 9a:

a. Standard — an enhancement mode device to ground
in conjunction with a depletion-mode device to Vg,
compatible with TTL and CMOS input requirements.
Available on SO, SK, and atl D and G outputs.

b. Open-Drain — an enhancement-mode device to
ground only, allowing external pull-up as required by
the user’s application. Available on SO, SK, and all D
and G outputs.

¢. Push-Pull — An enhancement-mode device to ground
in conjunction with a depletion-mode device paralleled
by an enhancement-mode device to Vec. This configu-
ration has been provided to allow for fast rise and tall
times when driving capacitive loads. Available on SO
and SK outputs only.

" d. Standard L — same as a., but may be disabled.
Available on L outputs only.

e. Open Drain L — same as b., but may be disabled.
Available on L outputs only.

f. LED Direct Drive — an enhancement-mode device to
ground and to Vcg, meeting the typical current
sourcing requirements of the segments of an LED
display. The sourcing device is clamped to limit
current flow. These devices may be turned off under
program control (See Functional Description, EN
Register), placing the outputs in a high-impedance
state to provide required LED segment blanking for a
muitiplexed display.

g. TRI-STATE® Push-Pull — an enhancement-mode de-
vice to ground and Vgg. These outputs are TRI-STATE
outputs, allowing for connection of these outputs to
a data bus shared by other bus drivers.

Ve
frouss
=1
a. Standard Output

DISABLE

d. Standard L Qutput

DISABLE v

g. TRI-STATE® Push-Pull (L Output)

>

b. Open-Drain Output

DISABLE
Hoeim

e. Open-Drain L Output

vee
=4
Y
INPUT {‘

h. Input with Load - i

COP420/COP421 ‘inputs have the following optional

configurations: ]

h. An on-chip depletion load device to Vcc.

i. A Hi-Z input which must be driven to a “1” or "0” by
external components.

The above input and output confi'gurat'tons share com-
mon enhancement-mode and depletion-mode devices.

_Specifically, all configurations use one or more of six

devices (numbered 1-6, respectively). Minimum and
maximum current {loyt and Vgyr) curves are given in
Figure 9b for each of these devices to ailow the
designer to effectively use these I/O configurations in
designing a COP420/421 system.

The SO, SK outputs can be configured as shown in a.,
b., or ¢. The D and G outputs can be configured as
shown in a. or b. Note that when inputting data to the G
ports, the G outputs should be set to ““1.” The L outputs

-can be configured as in d., e., f. or g.

An important point to remember if using configuration
d. or f. with the L drivers is that even when the L drivers

- are disabled, the depletion load device will source a

small amount of current (see Figure 9b, device 2);
however, when the L lines are used as inputs, the
disabied depletion device can not be relied on to source
sufficient current to pull an input to logic “1”.

COP421

If the COP420 is bonded as a 24-pin device, it becomes
the COP421, illustrated in Figure 2, COP420/421 Connec-
tion Diagrams. Note that the COP421 does not contain
the four general purpose IN inputs (IN3-INp). Use of this
option precludes, of course, use of the IN options, inter-
rupt feature, and the MICROBUS™ option which uses
INy-IN3. All other options are available for the COP421.

¢. Push-Pull Output

DISABLE vee
E: ]
— =

|
g

(AIS DEPLETION DEVICE)

f. LED (L Output)

Hi-Z Input

Figure 9a. Input/Output Configurations

2-33

22£d09/12€d02/02€d09 ‘22rd0I/12rd0D/02¥d0D



COP420/COP421/COP422, COP320/COP321/COP322

L Qutput Depletion Load OFF

Output Sink Current ‘ Source Current
15 - -04
ch=&3y(qur——
| LA Voo =45V (MAX) —03
10 I— _ |
3 ’ vcc|=5.3v {MIN) S
g / 502 \
= 5 A A Veec=4.5V (MIN) -
MAX
/ Lo [—\"
[ MIN \
0 0 \
01 2 3 4 5 & 7 1 2 3 q 5 [ 7
VoyT (VOLTS) DEVICE 1
VQuT (VOLTS) DEVICE 2
Standard Qutput Source Current Push-Pull Source Current
- 2.0 -3
-1.75 l
VGe = 8.3V (MAX) ' Vee = 6.3V (MAX)
—15
d ' -2 \ I—
718 N — vee = 6.3V
E N | vee = asv max) z {MIN)
s~ Voo =45V (MIN) 5
S0 \‘ N A M!' = \ H
\ \,< Ve - 6.3V (Mn) -1
-05 PN T | vep =45V
Y k {MAX)
~0.25 : Veg =45V
™~ “MW)
0 0
12 3 4 5 § 1 1 z 31 4 5 § 1
Vour(VOLTS)  pevICE2 VouT (VOLTS)  DEVICE3AND2
LED Qutput Source Current LED Output Direct LED Drive
-2 ~18 .
-18 ! 1 ! 16 -
e \ Vec = 6.3V ax) MAX
| : ) -14 f
—14 } - V.
Vee = 4.5V (MAX -12
F-12 \,/ cc 5. { 1) z VouTt=2.0v 4
£ . \/ \ f ] E-10
b= ¥ t
3 VeE = 4.5V (MIN) 5. Vs
3 \ te =45V 5 s
S \ I ! -2 /
-6 =
-5 , R
. A\ Vee = 63v ) —a b M-
it -2 o v ot
0 ok
' 2 3 4 5 8 7 4 45 5 5.5 ] 65
VouT (VOLTS) DEVICE 4 AND 2 vee (voLTs) DEVICE 4 AND 2
TRISTATE® Output Source Current Input Load Source Current ’
1
. S BIVIMAXT | -om T Voo 8aVIMAX)
| | ~35V {MAX) J ; i |/ Vog=4a.5V (MAX)
: [ | | | /\(cc-n.awwm
g \ \ ! 1I | T _os ///v:c = 4.5V (MIN)
£ 10— 1 - B NG 77 A B 7]
'5 N = D74
=] } K-] t
) N NI\
-5 A -0.25 4
\-5vm) Y/
"\ B3V (M) . \
N |
KA B

61 2 3 4 5 & ?

81 2 3 4 5§ VOUTIVOLTS  DEVICEG

Vour (VOLTS) DEVICE S

Figure 8b, COP420/COP421 Input/OQutput Characteristics

2-34



OUTPUT SINK CURRENT

15

[ voe = 5.5V (MAX)

3\

10

IouT (mA)

[ xvee ; 4.5V lmulm) :;—

veg =5.5V (MIN) _ |

/ VGo = 4.5V (MIN)

en

0 1 2 3 4 5 6

-1.75

1
-
(1)

vout (VOLTS) DEVICE 1

STANDARD OUTPUT SOURCE CURRENT

[ | Veo=5.5V (MAX)

|
-
~n
o

louT (mA)
L
b .

1
ot
~
al

, \ chc — 4.5V (MAX)
N

NN

vee =5.5V \\ Vg =4.5V (MiN)

(MIN) J\\

B MOAN
1 2 3 4 L] 6

VouT (VOLTS)  DEVICE 2

LED OUTPUT SOURCE CURRENT

o
Vgg = 5.5V (MAX)

\ vee = 4.5V (MAX)

\ ,vLc =5.5V (MIN)

Nog =4.5¢ (MIN)

o~

\)

O

0 1 2 3 4 5 6

-15

VouT (VOLTS}  DEVICE 4 AND 2

TRISTATE OUTPUT SOURCE GURRENT

Veo=5.5V
f|

\ veg = 4.5V
P {MAX) l

| ]
\ vee =5.5v
(MIN)_|

l
VGG = 4.5V

L~

\ /\(MlNl

NAYE

MANN

0 1 2 3 4 5 6

vout (VOLTS)  DEVICE 5

L OUTPUT DEPLETION LOAD OFF

SOURCE CURRENT
E -0.4
5-03 \
b=
-0.2 MAX
-0.1
MIN

=30

-2.5

-20

-1.5

louT {mA)

-1.0

-1.0

-0.8

gyt (mA)
&

o 1 z 3 4 5 &
VouT (VOLTS)  DEVICE 2

PUSH PULL SOURCE CURRENT

Ieg = 5.5V
(MAX)

\ e o
VLD

ANV Vs
s\ L/
A

0 1 2 3 4 5 6
VQUT (vOLTS) DEVICE Z AND 3

LED OUTPUT DEVICE LED DRIVE

-14 /
=12

L4
I
g

-8
4
_s "
’o' vouT=2.0V
—‘ T
r
-2 N “*
o ey L}

40 45 50 55 60
Vge (VOLTS)  DEVIGE 4 AND 2

INPUT LOAD SOURCE CURRENT

N\,
\ \<vcc=5.sv (MAX)
NN Ve = 4.5V (MAX)

N

vep =45VN VgE = 5.5V
(WIN N |

0 1 2 3 4 5 6
¥ouT (VOLTS) = DEVICE 6

Figure 9c¢. COP320/COP321 Input/Output Characteristics

22640011264 02/02£d0D ‘Te¢rd0I/12vd02/02Pd0D



COP420/COP421/COP422/COP320/CO P321/COP322 Instruction Set

Table 1is a symbol table providing internal architecture,
instruction operand and operational symbols used in

the instruction set table.

Table 2 provides the mnemonic, operand, machine code,
data flow, skip conditions, and description associated
with each instruction in the COP420/COP421/COP422
instruction set.

Table 2. COP420/421/422/320/321/322 Instruction Set Table Symbols

COP420/COP421/COP422, COP320/COP321/COP322

Symbol Definition Symbol Definition
INTERNAL ARCHITECTURE SYMBOLS INSTRUCTION OPERAND SYMBOLS
A 4-bit Accumulator d 4-bit Operand Field, 0-15 binary (RAM Digit
B 6-bit RAM Address Register Select)
Br Upper 2 bits of B {register address) r 2-bit Operand Field, 0-3 binary (RAM Register
Bd Lower 4 bits of B (digit address) Setect)
C 1-bit Carry Register a 10-bit Operand Field, 0-1023 binary (ROM
D 4-bit Data Output Port Address)
EN 4-bit Enable Register y 4-bit Operand Field, 0~ 15 binary (Immediate
G 4-bit Register to latch data for G I/O Port Data) _
IL Twe 1-bit latches associated with the IN5 or RAM(s) Contents of RAM location addressed by s

INo inputs ROML(t) Contents of ROM location addressed by t
IN 4-bit Input Port
L 8-bit TRI-STATE® 1/O Port OPERATIONAL SYMBOLS
M 4-bit contents of RAM Memory pointed to by

B Register : + Plus
PC 10-bit ROM Address Register {(program - Minus

COUnter) — Hepfaces
Q 8-bit Register to latch data for L /O Port - Is exchanged with
SA 10-bit Subroutine Save Register A _ Is al t
SB  10-bit Subroutine Save Register B = equalto
scC 10 Subroutine Save Register A The one's complement of A
SIO  4-bit Shift Register and Counter ® Exclusive-OR
SK Logic-Controlied Clock Output Range of values

Table 2. COP420/1421/422/320/321/322 Instruction Set
Machine
‘Hex  Language Code
Mnemonic Operand Code (Binary) Data Flow Skip Conditions Description
ARITHMETIC INSTRUCTIONS
ASC 30 [001 110000 A+GC+RAM(B) — A Carry Add with Carry, Skip on
Carry = C Carry
‘ {
ADD 31 lOO 1 1|000 1| A+RAM(B) —~ A None Add RAM to A
ADT 4A 01001010 A+1010—~ A None ‘ Add Ten to A
AISC y 5- lO‘l 0 1[ y | Aty —> A ' Carry Add Immediate, Skip on
' ' Carry (y # 0).
CASC 10 IO G01/0000 A+ RAM(B}+ C — A Carry Complement and Add with
Carry —~ C Carry, Skip on Carry

CLRA 00 W 0—~ A None Clear A
COMP 40 [010 0jo00o A A None One's complement of A to A
NOP 44 [M_Ogm None None No Operation
RC 32 lOO 1 1[00 10 0" —C None Reset C
SC 22 w “1" = C None Set C
XOR 02 IO ooojoo10 A o RAM(B) - A None Exclusive-OR RAM with A




Table 2. COP420/421/422/320/321/322 tnstruction Set {continued)

Hex
Mnemonic Operand Code

Machine
Language Code
(Binary)

Data Flow

Skip Conditions

Description

TRANSFER OF CONTROL INSTRUCTIONS

JiD

JMP

JP

JSRP

JSR

RET

RETSK

FF

6-

49

11111111

0110]00]sss]

az7.0

m 26:0 |
{pages 2,3 only)
or

11 as.
{alt other pages)

10 asp

|0 11 011 olagzgl

a7:0
|01 00|1000|
o1 00i1 001

ROM (PCg.g, AM) - PC7:0 None

a—~ PC

a—~ PCex0

a— PCsp

PC+1—+SA—5SB—~S8C
0010 -+ PCg:g
a— PCS-O

PC+1—+5A—-SB—~SC
a—-PC

SC—+SB—~SA—~PC

SC—~SB—+SA—~PC

None

None

None

None

None

Always Skip on Return

Jump Indirect (Note 3)

Jump

Jump within Page (Note 4)

Jump to Subroutine Page
(Note 5)

Jump to Subroutine

Return from Subroutine

Return from Subroutine
then Skip

MEMORY REFERENCE iNSTRUCTIONS

CAMQ

CQMA

LD

LDD

LQID

RMB8

sMB

rd

W N = O

w N =2 Q

33
3C

3
2C

-5

23

BF

ac
45
42
43

4D
47
46
48

|001 1|001 1|

0011{1100

'|001 1|001 1|
|0010|1100‘

|00| r |0101|

0010/0011
00/r| d t

|1011|1111|

0100|1100

10100|0101l
|0100I0010|
]0100'001 1|

0100{1101
101001101

01000110

|0100|1011|

A=+ Q74
RAM(B) — Qa:0

Q7.4 ~ RAM(B)
Q30— A

RAM(B} —~ A
Brer— Br

RAM(r,d) ~ A

ROM(PCg.8,A,M) = Q
$B —~ SC

0 ~ RAM(B)g

0 —~ RAM(B)

0 -~ RAM(B)2

0 —~ RAM(B)3

1~ RAM(B)o

1 -~ RAM(B)
1> RAM(B)2
1 -~ RAM(B)3

None

None

None

None

None

None

None

Copy A, RAM to Q

Copy Q to RAM, A

Load RAM into A,
Exclusive-OR Br with r

Load A with RAM pointed
to directly by rd

Load Q Indirect (Note 3)

Reset RAM Bit

Set-RAM Bit

2-37

22£d02/128d02/02€d 09 ‘22vd02/12¥d00/02vdOC



COP420/COP421/COP422, COP320/COP321/COP322

Table 2. COP420/421/1422/320/321/322 Instruction Set {continued)

|0 1 00|0001|

carry has occurred
since last test"

Machine
Hex Language Code
Mnemonic Operand Code (Binary) Data Flow Skip Conditions Description
MEMORY REFERENCE INSTRUGCTIONS {continued)
STi y 7- |01 1 1| y | y — RAM(B) None Store Memory Immediate
Bd +1—~Bd and Increment Bd
X r -6 [00] r]o11 ol RAM(B) + A None Exchange RAM with A,
Brer— Br Exclusive-OR Br with r
XAD rd 23 {oo1 0j00 11 RAM(r,d) < A None Exchange A with RAM
pointed to directly by r,d
- l1 Ol r | d |
XDSs r -7 |0 OI r |01 1 1| RAM(B) < A Bd decrements past 0 Exchange RAM with A
Bd~1— Bd and Decrement Bd,
Brer—~ Br Exclusive-OR Br with r
XIS r -4 00| r 010 0[ RAM(B) < A ‘ Bd increments past 15 Exchange RAM with A
Bd+1— 8d and Increment Bd,
Brer— Br Exclusive-OR Br with r
REGISTER REFERENCE INSTRUCTIONS
CAB 50 |0101|0000| A—8Bd None Copy A to Bd
CBA 4E 01 00[1 11 0! Bd—~ A None Copy Bd to A
LBl rd -- 00 r|(d-1) rd—+B Skip until not a LBI Load B Immediate with r,d
(d=0, 9:15) (Note 6)
or
33 l001 1,001 1|
- 10| r d
(any d)
_LEI y 33 |001 1|001 1‘ y = EN None Load EN immediate (Note 7)
6- |0 11 OI y |
XABR 12 |0 001 |0 ot 0, A< Br(0,0— AzAp) None Exchange A with Br
TEST INSTRUCTIONS
SKC . 20 0010|0000 C="1 Skip if C is True
SKE 21 IO 01 0|000 1| A =RAM(B) Skip if A Equals RAM
SKGZ 33 |001 1|001 1| G3:.0=0 Skip if G is Zero (all 4 bits)
21 0010[000 1[
SKGBZ 33 |001 1|001 1| 1st byte Skip if G Bit is Zero
0 01 |0000|0001| Gp=0
1 11 |0001|0001| G1=0
2nd hyte
2 03 [OOOO[OOHI G2=0
3 13 0001/0011 G3=0
SKMBZ 0 01 IOOOOIOOO 1| RAM(B)g=0 Skip if RAM Bit is Zero
1 A1 l0001|0001| RAM(B)1 =0
2 03 |0000|001 1| RAM(B)2 =0
3 13 00010011[ RAM(B)3=0
SKT 49 A time-base counter

Skip on Timer (Note 3)

2-38




Table 2. COP420/421/422/320/321/322 instruction Set (continued)

Machine
Hex Language Code
Mnemonic Operand Code (Binary) Data Flow Skip Conditions . Description
INPUT/OUTPUT INSTRUCTIONS
ING 33 |001 1|001 1| G—A None Input G Ports to A
2A 0010{1010
ININ 33 |001 1|001 1 IN— A ‘ None Input IN Inputs to A (Note 2)
28 |0 01 0|1 000
INIL kil c0110011 IL3, CKO, “0”, ILg = A None input IL Latches to A
29 0010{1001 (Note 3)
INL 33 0011[001 1| L7.4 —~ RAM(B) None Input L Ports to RAM,A
2t 0010[1110 L3 A i
OBD 33 |001 1|001 1| Bd—-D None Output Bd to D Outputs
3E 0011[1110
o]e]] y 33 |001 1|00 1 1' y—~G None Qutput to G Ports Immediate
5- 0101 vy
OMG’ 33 IOO 1 1|00 1 1| RAM(B} ~ G None Cutput RAM to G Ports
3A |0011|101_0|
XAS 4F |0 1 00|1 111 A < SIO, C —~ SKL None Exchange A with SIO
' (Note 3)

Note 1: All subscripts for alphabetical symbols indicate bit numbers unless explicitly defined (e.g., Br and Bd are explicitly defined). Bits are numbered Oto N
where 0 signifies the least significant bit (ow-order, right-most bit). For example, Ag indicates the most significant (left-most) bit of the 4-bit A register.

Note 2= The ININ instruction is not available on the COP421/COP321 and GOP422/COP322 since thege devices do not contain the IN inputs.
Note 3: For additional information on the cperation of the XAS, JiD, LQID, INIL, and SKT instructions, see below.

Note 4: The JP instruction aliows a jump, while in subroutine pages 2 or 3, to any ROM Iocatloﬁ within the two-page boundary of pages 2 or 3. The JP
instruction, otherwise, permits a jump to a ROM location within the current 64-word page. JP may not jump to the last word of a page.

Note 5: A JSRP transfers program control to subroutine page 2 (0010 is loaded into the upper 4 bits of P). A JSRP may not be used when in pages 2 or 3. JSRP
may not jump to the last word in page 2. )

Note 6: LBl is a single-byte instruction ifd = 0,9, 10, 11, 12, 13, 14, or 15. The machine code for the lower 4 bits equals the binary value of the “d” data minus 1,
e.g., to load the lower four bits of B (Bd) with the value @ (10013), the lower 4 bits of the LBl instruction equal 8 (10002). To load 0, the lower 4 bits of the LBI
instruction should equal 15 (11112).

Note 7: Machihe code for operand field y for LEI instruction should equal the binary value to be latched into EN, where a “1” or “0” in each bit of EN
corresponds with the selection or deselection of a particular function associated with each bit. {See Functional Description, EN Register.)

2-39

22€d02/12£d402/02€d 00 ‘_ZZVd 090/12vd00/02¥d02



COP420/COP421/COP422, COP320/COP321/COP322

The following information is provided to assist the user
in understanding the operation of several unique instruc-
tions and to provide notes useful to programmers in
writing COP420/421 programs.

XAS Instruction

' XAS (Exchange A with SIO) exchanges the 4-bit con-

tents of the accumulator with the 4-bit contents of the
SIO register. The contents of SIO will contain serial-in/
serial-out shift register or binary counter data, depending
on the value of the EN register. An XAS instruction will
also affect the SK output. {See Functional Description,
EN Register, above.) If SIQ is selected as a shift register,
an XAS instruction must be performed once every 4
instruction cycles to effect a continuous data stream.

JID Instruction

JID {(Jump Indirect) is an indirect addressing instruction,
transferring program control to a new ROM location
pointed to indirectly by A and M. it loads the lower 8 bits
of the ROM address register PC with the contents of
ROM addressed by the 10-bit word, PCg.g, A, M. PCg and
PCg are not affected by this instruction.

Note that JID requires 2 instruction cycles to execute.

INIL Instruction

INIL (Input IL Latches to A) inputs 2 latches, ILs and ILg
(see figure 10) and CKO into A. The IL3 and ILg latches
are set if a low-going pulse (“1” to *“0”’) has occurred on
the IN3 and INg inputs since the last INIL instruction,
provided the input puise stays low for at least two
instruction times. Execution of an INIL inputs IL; and
ILginto A3 and AOrespectively, and resets these latches
to allow them to respond to subsequent low-going
pulses on the IN3 and INg lines. If CKO is mask
programmed as a general purpose input, an INIL will
input the state of CKO into A2. If GKO has not been so
programmed, a “1” will be placed in A2, A “0” is always
placed in A1 upon the execution of an INIL. The general
purpose inputs IN3~-INg are input to A upon execution of
an ININ instruction. (See table 2, ININ instruction.) INIL
is useful in recognizing pulses of short duration or
pulses which occur too often to be read conveniently by
an ININ instruction.

Note: IL latches are not cleared on reset.

copazg
. - I A
/s m “g/
SET
| LaTCH
L RESET
INIL
Figure 10.

LQID Instruction

LQID (Load Q Indirect} loads the 8-bit Q register with the
contents of ROM pointed to by the 10-bit word PCgy, PCg,
A, M. LQID can be used for table lockup or code conver-
sion such as BCD to seven-segment. The LQID instruc-
tion “pushes” the stack (PC+1 — SA — SB —5C) and
replaces the least significant 8 bits of PC as follows: A
- PGCyy4, RAM(B} — PCj,o, leaving PCq and PCg

unchanged. The ROM data pointed to by the new address’

is fetched and ioaded into the Q jatches. Next, the stack
is “popped” (8C — SB — SA —PC), restoring the saved
vaiue of PC to continue sequential program execution.
Since LQID pushes SB — SC, the previous contents of
8C are lost. Also, when LQID pops the stack, the previ-
ously pushed contents of SB are left in SC. The net resuit
is that the contents of SB are ptaced in SC (SB — SC.
Note that LQID takes two instruction cycle times to
execute.

SKT Instruction

The SKT (Skip On Timer) instruction tests the state of an
internal 10-bit time-base counter. This counter divides
the instruction cycle clock frequency by 1024 and pro-
vides a latched indication of counter overflow. The SKT
instruction tests this latch, executing the next program
instruction if the latch is not set. If the Jatch has been
set since the previous test, the next program instruction
is skipped and the latch is reset. The features associ-
ated with this instruction, therefore, aliow the COP420/
421 to generate its own time-base for real-time proces
sing rather than relying on an external input signal.

For example, using a 2.097 MHz crystal as the time-base

to the clock generator, the instruction cycle clock fre- -

quency will be 131 kHz (crystal frequency + 16) and the
binary counter output puise frequency will be 128 Hz.
For time-of-day or similar real-time processing, the SKT
instruction can call a routine which increments a *‘sec-
onds” counter every 128 ticks.

Instruction Set Notes

a. The first word of a COP420/421 program (ROM ad-
dress 0) must be a CLRA (Clear A) instruction.

b. Aithough skipped instructions are not executed, one
instruction cycle time is devoted to skipping each
byte of the skipped instruction. Thus all program
paths take the same number of cycle times whether
instructions are skipped or executed except JID and
LQID. LQID and JiD take two cycle times if executed
and one if skipped.

¢. The ROM is organized into 16 pages of 64 words
each. The Program Counter is an 10-bit binary
counter, and will count through page boundaries. If a
JP, JSRP, JID or LQID instruction is located in the
last word of a page, the instruction operates as if it
were in the next page. For example: a JP located in
the last word of a page will jump to a location in the
next page. Also, a LQID or JID located in the last
word of page 3, 7, 11 or 15 will access data in the next
group of feur pages.

A

2-40

— . W



S e —

Option List

~ The COP420/421/422 mask-programmable options are as-
signed numbers which correspond with the COP420 pins.

The following is a list of GOP420 options. When specify-
ing a COP421 or COP422 chip, Options 9, 10, 19, 20 and
29 must all be set to zero. When specifying a COP422
chip, Options 21, 22, 27 and 28 must also be zero, and
Option 2 must not be a 1. The options are programmed
at the same time as the ROM pattern to provide the user
with the hardware flexibility to interface to various /O
. components using little or no external circultry.

Option 1=0: Ground Pin — no options available

Option 2: CKO Pin
=0: clock generator output to crystal
(0 not available if option 3=4 or 5)
=1: pin is RAM power supply (Vg) input
{Not available on COP422/COP322)
=2: general purpose input with load device
=3: multi-COP SYNC input
=4: general purpose Hi Z input

Option 3: CKI Input
=0: crystal input divided by 16
. =1: crystal input divided by 8
=2: TTL external clock input divided by 16
=3: TTL external clock input divided by 8
=4: single-pin RC controlled oscillator { +4)
=5: Schmitt trigger clock input (—4)

Option 4: RESET Pin
=0: Load devices to Vg
=1: Hi-Z input

Option 5: Ly Driver _
=0: Standard output (figure 9D}
=1: Open-Drain output (E)
=2:. LED direct drive output (F)
=3: TRI-STATE® push-pull output (G)

Option 6: Lg Driver
same as Option 5
Option 7: Lg Driver
same as Option 5
Option 8: Ly Driver
same as Option 5
Option 9: IN¢ Input
=0: load device to Voo (H)
=1: Hi-Z input (1)
Option 10: IN, Input
same as Option 9

Option 11 =0: V¢ Pin — no options availabie

Option 12: L3 Driver
same as Option 5

Option 13: L Driver
same as Option 5

Option 14: L Driver
same as Option 5

Option 15: Lg Driver
same as Option 6

Option 16: Sl Input
same as Option 9

Option 17: SO Driver
=0: standard output (A)
=1: open-drain output (B}
=2: push-pull output (C)

Option 18: SK Driver
same as Option 17

Option 19: INg Input
same as Option 9

Option 20: INa Input
same as Option 9

Option 21: Gg /G Port
=0: Standard output (A)
=1: Open-Drain output (B)

Option 22: G4 VQ Port
same as Option 21

Cption 23: Gy IO Port
same as Option 21

Option 24: Gj YO Port
same as Option 21

Option 25: Dy Output
=0: Standard output (A)
=1: Open-Drain output (B)

Option 26. D; Output
same as Option 25

Option 27: D4 Output
same as Option 25

Option 28: Dy Output
same as Option 25

Option 29: COP Function
=0: normal operation
=1: MICROBUS™ option

Option 30: COP Bonding

=0: COP420 (28-pin device)
=1: COP421 (24-pin device)
=2: 28- and 24-pin device
=3: COP422 (20-pin device)
=4: 28- and 20-pin device
=5: 24- and 20-pin device
=6: 28-, 24- and 20-pin device

Option 31: IN Input Levels
=0: normal input levels
=1: Higher voltage input leveis
(“0" =1.2V, “1” = 3.6V)

Option 32: G Input Levels
same as Option 31

Cption 33: L Input Levels .
same as Option 31

Option 34: CKO Input Levels
same as Option 31

Cption 35: Sl Input Levels
same as Option 31

2-41

22€d02/12€d02/02ed09 ‘22Yd0/12¥d0D/02Yd0D



COP420/COP421/COP422, COP32OICOP321/COP3’22

TEST MODE {(Non-Standard Operation)

The SO output has been contigured to provide for
standard test procedures for the custom-programmed
COP420. With SO forced to logic *“1,” two test modes
are provided, depending upon the value of S

a. RAM and Internal Logic Test Mode (Sl=1
b. ROM Test Mode (S| =0)

These special test modes shouid not be employed by
the user; they are intended for manufacturing test only.

APPLICATION #1: COP420 General Controller

Figure 8 shows an interconnect diagram for a COP420
used as a general controller. Operation of the system is
as follows:

1. The L7- Ly outputs are configured as LED Direct Drive
outputs, allowing direct connection to the segments
of the display.

‘%VAV

b VR
KD

IMCAD |y vee

BATTERIES] 'CC i

G
£grazo

EVENT

COUNTER s f 10 IN3
INPUT

——
IND |-
4BENER#L @ ?0 )
4 69 10Ny

- The D3-Dg outputs drive the digits of the multiplexed
display directly and scan the columns of the 4 x4
keyboard matrix.

- The IN3-INg inputs are used to input the 4 rows of the
keyboard matrix. Reading the IN lines in conjunction
with the current value of the D outputs allows
detection, debouncing, and decoding of any one of -
the 16 keyswitches.

- CKl is configured as a single-pin oscillator input
allowing system timing to be controlled by a single-
pin RC network. CKO is therefore available for use as
a Vg RAM power supply pin. RAM data integrity is
thereby assured when the main power supply is shut
down (see RAM Keep-Alive Option description). »

. Sl is selected as the input to a binary counter input.
With S10 used as a binary counter, SO and SK can be
used as general purpose outputs.

- The 4 bidirectional G 1/0 ports (G3-Gp) are available
for use as required by the user’s application.

4-0iGIT
LED DISPLAY

1
|
!

4x4
KEYSWITCH

MATRIX

rA"4"a4
rArarars
FArararsd
////_J

L

so*

gy

2 GENERAL DUTPUTS

*8$I, S0 and SK may also be used for serial I/0

Figure 11. COP420 Keyboard/Display interface

2-42




