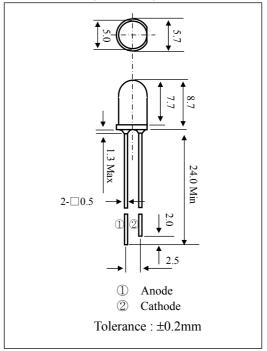
OPE5585

The **OPE5585** is GaAlAs infrared emitting diode that is designed for high power, low forward voltage and high speed rise / fall time.

This device is optimized for speed and efficiency at emission wavelength 850nm and has a high radiant efficiency over a wide range of forward current. This device is packaged T1-3/4 plastic package and has narrow beam angle with lensed package and cup frame. Especially this device is suited as the emitter of data transmission without cable.

FEATURES

- High speed: 25ns rise time
- 850nm wavelength
- Narrow beam angle
- Low forward voltage
- High power and high reliability
- Available for pulse operating


APPLICATIONS

- Emitter of IrDA
- IR Audio and Telephone
- High speed IR communication
- IR LANs
- Available for wireless digital data transmission

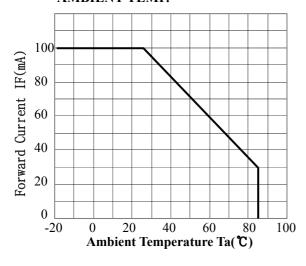
- Condition : 5°C~35°C,R.H.60%
- Terms: within 3 months from production date
- Remark : Once the package is opened, the products should be used within a day. Otherwise, it should be keeping in a damp proof box with desiccants.
- * Please take proper steps in order to secure reliability and safety in required conditions and environments for this device.

DIMENSIONS (Unit: mm)

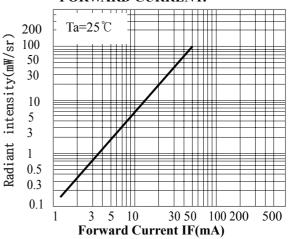
(Ta=25°C)

MAXIMUM RATINGS

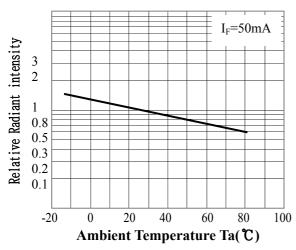
MAXIMUMIKATINGS			(1a-25C)
Item	Symbol	Rating	Unit
Power Dissipation	P_{D}	150	mW
Forward current	I_{F}	100	mA
Pulse forward current *1	I_{FP}	1.0	A
Reverse voltage	V_R	4.0	V
Operating temp.	Topr.	-25~ +85	°C
Soldering temp. *2	Tsol.	260.	°C
υ1			

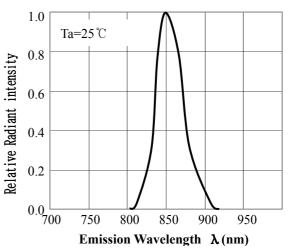

 $^{^{*1}}$.Duty ratio = 1/100, pulse width=0.1ms.

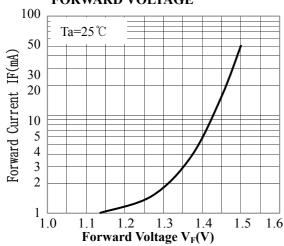
ELECTRO-OPTICAL CHARACTERISTICS (Ta=25°C) Symbol Conditions Min. Max. Unit Тур. Forward voltage V_{F} $I_F=50mA$ 1.5 2.0 V Reverse current $V_R = 4V$ 10 μA I_R f=1MHzCapacitance Ct 20 pF mW/sr Radiant intensity Ie $I_F=50mA$ 40 100 Peak emission wavelength $\lambda_{\,p}$ $I_F = 50 \text{mA}$ 850 nm Spectral bandwidth 50% $I_F=50$ mA 45 Δλ nmHalf angle Δθ $I_F=50$ mA ±10 deg. Optical rise & fall time(10%~90%) 25/13 tr/tf $I_F=50$ mA ns I_F=50mA DC Cut off frequency 14 MHz +10mA p-p

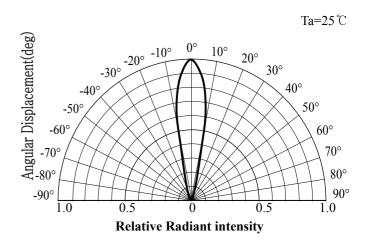

^{*2.}Lead Soldering Temperature (2mm from case for 5sec.).

^{3. 10}logPo(fc MHz)/Po(0.1 MHz)=-3


• FORWARD CURRENT Vs. AMBIENT TEMP.


 RADIANT INTENSITY Vs. FORWARD CURRENT.


• RELATIVE RADIANT INTENSITY Vs. AMBIENT TEMP.


• RELATIVE RADIANT INTENSITY Vs. EMISSION WAVELENGTH.

• FORWARD CURRENT Vs. FORWARD VOLTAGE

• ANGULAR DISPLACEMENT VS RELATIVE RADIANT INTENSITY

