DATA SHEET

mos integrated circuit μ PD17P203A, 17P204

4-BIT SINGLE-CHIP MICROCONTROLLER WITH STATIC RAM AND 3-CHANNEL TIMER FOR INFRARED REMOTE CONTROLLER

DESCRIPTION

NEC

 μ PD17P203A and μ PD17P204 are variations of μ PD17203A and μ PD17204 respectively and are equipped with a one-time PROM instead of an internal mask ROM.

 μ PD17P203A and μ PD17P204 are suitable for evaluating a program when developing μ PD17203A and μ PD17204 systems respectively because the program can be written by the user.

When reading this document, also refer to the μ PD17203A and μ PD17204 Data Sheets.

FEATURES

- 17K architecture: General-purpose register format
- Pin-compatible (except for PROM programming function): μPD17P203A with μPD17203A

μPD17P204 with μPD17204

- Internal one-time PROM: 4096 x 16 bits (μPD17P203A) 7936 x 16 bits (μPD17P204)
- Static RAM: 16 Kbits (μPD17P203A) 8 Kbits (μPD17P204)
- Power supply voltage: 2.9 to 5.5 V (at $T_A = -20$ to $+75^{\circ}C$, fx = 4MHz) 2.0 to 5.5 V (at $T_A = -20$ to $+75^{\circ}C$, fxT = 32kHz)

The features of each product is shown in the following table:

ltem	μPD17P203A-001	μPD17P203A-002	μPD17P203A-003	μPD17203A
Item	μPD17P204-001	μPD17P204-002	μPD17P204-003	μPD17204
Pull-up resistor of RESET pin		Not provided		
Pull-up resistor of P0A and P0B pins	Dusuidad	Dussidad	Not provided	On request
Main clock oscillator circuit	Provided	Provided		(mask option)
Subclock oscillator circuit		Not provided Provided		

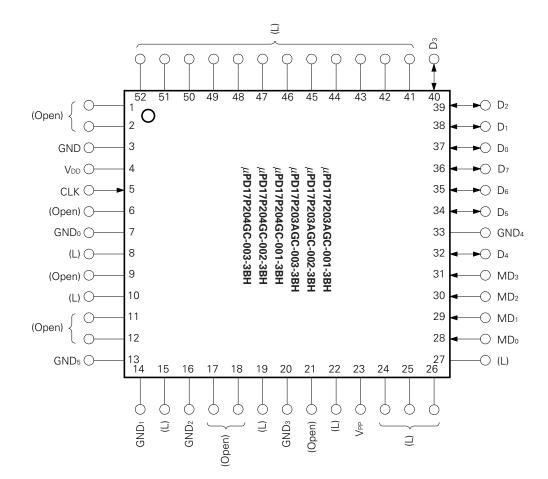
 μ PD17P203A and μ PD17P204 are different from μ PD17203A and μ PD17204 respectively in the power supply voltage and the operating ambient temperature. Therefore, use μ PD17P203A and μ PD17P204 only for the system evaluation.

This document explains μ PD17P204 as a typical product where no specification is made.

The information in this document is subject to change without notice.

ORDERING INFORMATION

Part Number	Package
μPD17P203AGC-001-3BH	52-pin plastic QFP (14 $ imes$ 14 mm)
μ PD17P203AGC-002-3BH	52-pin plastic QFP (14 $ imes$ 14 mm)
μ PD17P203AGC-003-3BH	52-pin plastic QFP (14 $ imes$ 14 mm)
μ PD17P204GC-001-3BH	52-pin plastic QFP (14 $ imes$ 14 mm)
μ PD17P204GC-002-3BH	52-pin plastic QFP (14 $ imes$ 14 mm)
μ PD17P204GC-003-3BH	52-pin plastic QFP (14 $ imes$ 14 mm)

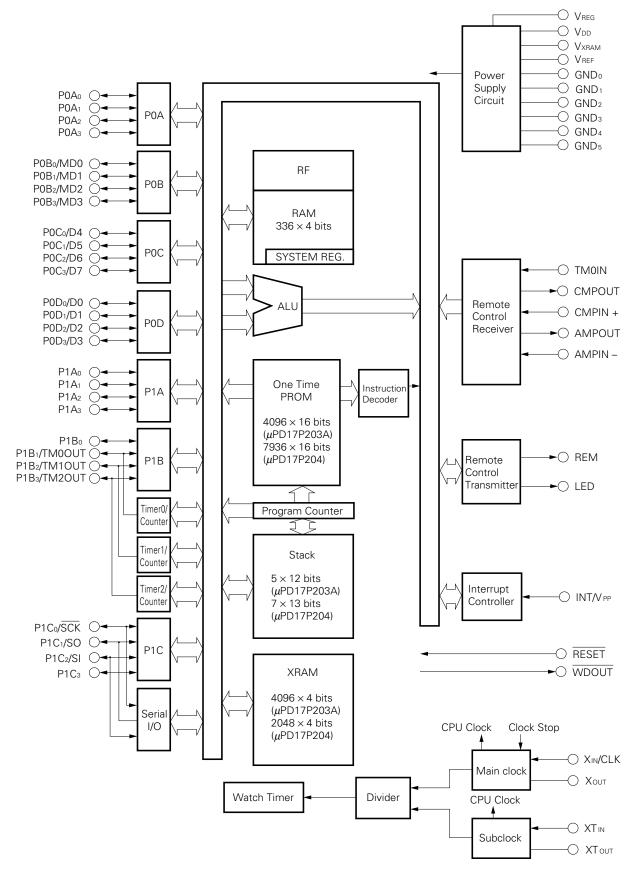

PIN CONFIGURATION (TOP VIEW)

(1) Normal operation mode

27 27 27 27 27 27 27 27 27 27	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	37 - O POD
×in ○ → 5 5 11 17	35 → ○ P0C ₂
V _{DD} → 4 X _{IN} → 5 X _{OUT} → 6 GND ₀ → 7 RESET → 8 WDOUT → 9 XOUT → 9	36
RESET ○ → 8 33 8 3	
XTIN () 10	30 → ○ P0B ₂
XTour O 11	
GND₅ ◯ 13 14 15 16 17 18 19	0 21 22 23 24 25 26 POA ₃
GND1 AMPIN- O GND2 O VREF O VREF O CMPIN+ O	
AMPIN-:Operational amplifier inputAMPOUT:Operational amplifier outputCMPIN+:Comparator inputCMPOUT:Comparator outputGND0-GND5:GroundINT:External interrupt input	RESET:Reset inputSCK:Serial clock input/outputSI:Serial data inputSO:Serial data outputTM0IN:Timer 0 inputTM0OUT:Timer 0 output

CMPIN+	: Comparator input	SI	: Serial data input
CMPOUT	: Comparator output	SO	: Serial data output
GND0-GND5	: Ground	TM0IN	: Timer 0 input
INT	: External interrupt input	TM0OUT	: Timer 0 output
LED	: Remote controller transmission	TM10UT	: Timer 1 output
	output indicator	TM2OUT	: Timer 2 output
P0A0-P0A3	: I/O port 0A	Vdd	: Power supply
P0B0-P0B3	: I/O port 0B	Vreg	: Voltage regulator output
P0C0-P0C3	: I/O port 0C	Vref	: Reference voltage output
P0D0-P0D3	: I/O port 0D	Vxram	: Static RAM (XRAM) power supply
P1A0-P1A3	: I/O port 1A	WDOUT	: Overrun detection output
P1B0-P1B3	: I/O port 1B	XIN, XOUT	: Main clock oscillation use
P1C0-P1C3	: I/O port 1C	XTIN, XTOUT	: Subclock oscillation use
REM	: Remote controller transmission		
	output		

(2) PROM programming mode



Caution	Those enclosed in parentheses indicate the processing of the pins not used in PROM
	programming mode.

L : Ground these pins through a resistor (470Ω). Open: Do not connect anything to these pins.

CLK: PROM clock inputMD0-MD3: PROM mode selectionD0-D7: PROM data I/OVod: Power supplyGND, GND0-GND5: GroundVPP: Program power supply

BLOCK DIAGRAM

* *

CONTENTS

1	. I	PIN FUNCTIONS	7
		1.1 NORMAL OPERATION MODE	
		1.2 PROM PROGRAMMING MODE	
		1.3 PIN I/O CIRCUITS	
		1.4 PROCESSING OF UNUSED PINS 1	
		1.5 NOTES ON USING RESET AND INT PINS 1	13
2		DIFFERENCES BETWEEN MASK ROM PRODUCTS AND ONE-TIME PROM PRODUCTS	4
			•
3		ONE-TIME PROM (PROGRAM MEMORY) WRITING, READING,	
	4	AND VERIFICATION 1	5
	;	3.1 OPERATION MODE FOR WRITING, READING,	
		AND VERIFICATION OF PROGRAM MEMORY 1	15
	;	3.2 PROGRAM MEMORY WRITE PROCEDURE 1	
	:	3.3 PROGRAM MEMORY READ PROCEDURE 1	17
4	. I	ELECTRICAL SPECIFICATIONS 1	8
5	. I	PACKAGE DRAWINGS 2	23
6	. I	RECOMMENDED SOLDERING CONDITIONS 2	24
A	PP	ENDIX A. MICROCONTROLLERS FOR LEARNING REMOTE CONTROLLER	25
A	PP	ENDIX B. DEVELOPMENT TOOLS	26

1. PIN FUNCTIONS

1.1 NORMAL OPERATION MODE

Pin No.	Symbol	Function	Output Format	(1/2 At Reset
1	LED	Outputs NRZ signal in synchronization with infrared remote controller signal. Remains low while remote control carrier is output	CMOS push-pull	High-level outpu
2	REM	Outputs active-high infrared remote control signal	CMOS push-pull	Low-level output
3	Vxram	Supplies power to XRAM	_	-
4	Vdd	Positive power	_	-
5 6	Xin Xout	Connect 4-MHz ceramic oscillator for main clock oscillation	_	(Oscillation stop
7	GND₀	Ground	_	-
8	RESET	Inputs low-active system reset signal. While this pin remains low level, oscillation of main clock stops. Pull-up resistor can also be connected by mask option (μPD17P203A-001 and μPD17P204-001 only).	_	_
9	WDOUT	Outputs signal for detecting overrun. This pin outputs a low-level when an overflow in the watchdog timer or an overflow/underflow in the stack is detected. Connect this pin to the RESET pin.	N-ch open drain	High impedance
10 11	XTin XTout	Connect 32-kHz crystal oscillator across these pins. When option not using subclock is selected, main clock is divided and is supplied to watch timer.	-	(Oscillation)
12	Vreg	Outputs signal from voltage regulator for subclock oscillator circuit. Connect external 0.1-µF capacitor.	-	_
13	GND₅	Ground	_	-
14	GND1	Ground of operation amplifier	_	-
15	AMPIN-	Inverted input of operational amplifier	_	Input
16	GND2	Ground of operational amplifier	_	-
17	AMPOUT	Output of operational amplifier	_	Output
18	Vref	Outputs reference voltage of $1/2V_{DD}$. Connect external 0.1- μ F capacitor.	-	-
19	CMPIN+	Non-inverted input of comparator. Output of this comparator can be obtained from CMPOUT.	-	Input
20	GND₃	Ground of operational amplifier	_	-

Remark GND₁-GND₃ are the ground pins of the operational amplifier.

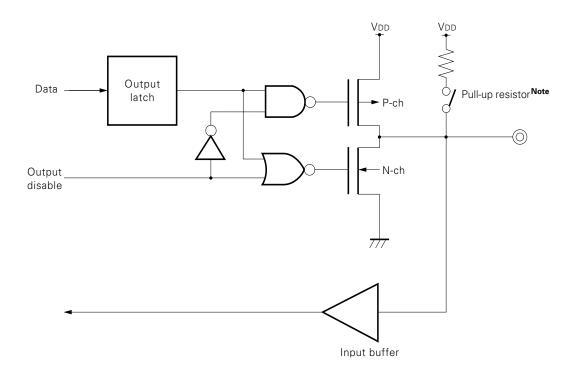
Keep all these pins at the same potential to stabilize the operation of the operational amplifier.

7

★

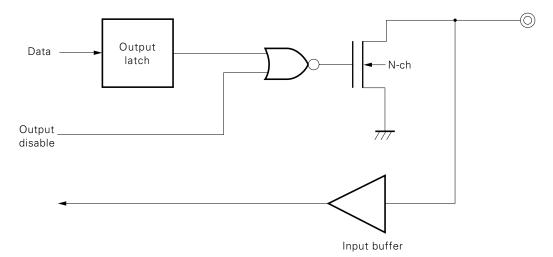
Pin No.	Cumhal	Function	Output Format	(2/2) At Reset
21	Symbol CMPOUT	Comparator output. Externally connect CMPOUT and TM0IN when using microcontroller as teaching remote controller	Output Format	Output
22	TMOIN	Clock input to timer 0. Input clock is sampled by internal clock and then input to envelope signal generator circuit, as well as to timer 0. By using timer 0 with timer 1, frequency of clock input to this pin can be measured.	_	Input
23	INT	External interrupt signal input pin	_	Input
24 to 27 28 to 31	P0A0 to P0A3 P0B0 to P0B3	Constitute 4-bit I/O port, which can be set in input or output mode in 4-bit units. Pull-up resistor can be connected by mask option (μ PD17P203A-001, -002 and μ PD17P204-001, -002 only). When one or more of these pins goes low in standby mode standby mode is released.	CMOS push-pull	Input
32 34 to 36	POCo POC1 to POC3	Constitute 4-bit I/O port, which can be set in input or output mode in 4-bit units.	N-ch open drain	Input
33	GND4	Ground	_	_
37 to 40	P0D₀ to P0D₃	Constitute 4-bit I/O port, which can be set in input or output mode in 4-bit units.	N-ch open drain	Input
41 to 44	P1A₀ to P1A₃	Constitute 4-bit I/O port, which can be set in input or output mode in bitwise. Pull-up registor can be connected through program.	N-ch open drain	Input
45 46	P1B₀ P1B₁/ TM0OUT	Port 1B or timer output • P1B ₀ -P1B ₃ - 4-bit I/O port		
47 48	P1B ₂ / TM1OUT P1B ₃ / TM2OUT	 Can be set in input/output mode in bitwise Pull-up resistor can be connected through program TM0OUT-TM2OUT Timer output 	N-ch open drain	Input (P1B₀-P1B₃)
49 50 51 52	P1C0/SCK P1C1/SO P1C2/SI P1C3	 Port 1C or serial interface I/O P1C₀-P1C₃ 4-bit I/O port Can be set in input/output mode in bitwise SCK, SO, SI SCK: serial clock I/O SO : serial clock data output SI : serial clock data input 	CMOS push-pull	Input (P1C₀-P1C₃)

Caution For "A" standard products, note that standby mode is released when one or more of P0C and P0D pins goes high in standby mode.

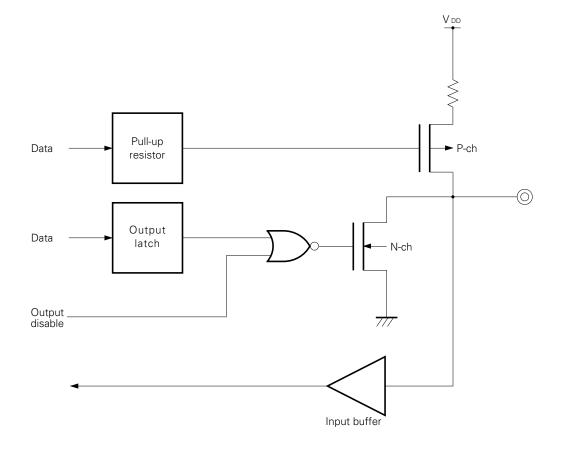

Pin No.	Symbol	Function	Output Format	At Reset
3	GND			
7	GND ₀			
13	GND₅			
14	GND1	Ground	-	-
16	GND ₂			
20	GND₃			
33	GND4			
4	Vdd	Positive power	-	-
5	CLK	Address updating clock input	-	Input
23	Vpp	Supplies program voltage. Apply 12.5V to this pin	_	_
28 to 31	MD ₀ to MD ₃	Selects PROM programming mode	_	Input
32, 34 to 36	D4 to D7	8-bit data I/O	CMOS push-pull	Input
37 to 40	D ₀ to D ₃			

1.2 PROM PROGRAMMING MODE

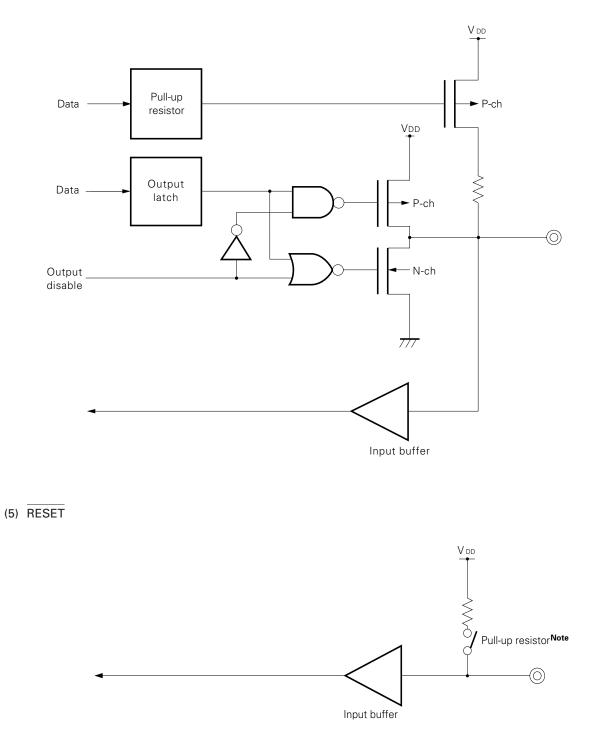
1.3 PIN I/O CIRCUITS


This section shows the I/O circuits of the μ PD17P204 pins in simplified schematic diagrams.

(1) P0A0-P0A3, P0B0/MD0-P0B3/MD3



Note *μ*PD17P203A-001, -002 and *μ*PD17P204-001, -002 only.


(2) P0C₀/D4-P0C₃/D7, P0D₀/D0-P0D₃/D3

(3) P1A0-P1A3, P1B0-P1B3/TM2OUT

(4) P1C₀/SCK-P1C₃

★ 1.4 PROCESSING OF UNUSED PINS

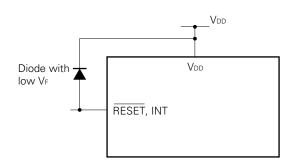
The following are recommended to process unused pins.

Pin	Recommended Connection
INT, TMOIN	Connect to VDD or GND
P0A0-P0A3, P0B0-P0B3	Input: Connect each pin to VDD through resistor Output: Open (high-level output)
P0C0-P0C3, P0D0-P0D3 P1A0-P1A3, P1B0-P1B3	Input: Connect each pin to VDD or GND through resistor Output: Open (low-level output)
P1C₀-P1C₃	Input: Connect each pin to V_{DD} or GND through resistor Ouput: Open
LED	Open
REM	Open
WDOUT	Connect to GND
Xin	
Хоит	Connect to VDD
XTIN	Connect to GND
ХТоит	Connect to VREG
AMPIN-	Connect to GND or AMPOUT
AMPOUT, CMPOUT	Open
CMPIN+	Connect to GND
Vref	Open

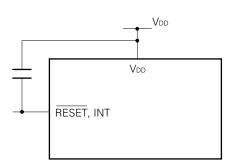
Table 1-1. Processing of Unused Pins

*

1.5 NOTES ON USING RESET AND INT PINS (NORMAL OPERATION MODE ONLY)


In addition to the functions shown in **1**. **PIN FUNCTIONS**, the RESET and INT pins also have a function to set a test mode (for IC testing) in which the internal operations of the μ PD17P204 are tested.

When a voltage higher than V_{DD} is applied to either of these pins, the test mode is set. This means that, even during normal operation, the μ PD17P204 may be set in the test mode if a noise exceeding V_{DD} is applied.


For example, if the wiring length of the RESET or INT pin is too long, noise superimposed on the wiring line of the pin may cause the above problem.

Therefore, keep the wiring length of these pins as short as possible to suppress the noise; otherwise, take noise preventive measures as shown below by using external components.

 Connect diode with low VF between VDD and RESET/INT pin

Connect capacitor between VDD and RESET/INT pin

2. DIFFERENCES BETWEEN MASK ROM PRODUCTS AND ONE-TIME PROM PRODUCTS

The μ PD17P203A and μ PD17203 are identical in the CPU functions and internal hardware peripherals except for that the μ PD17P204 is provided with a PROM, which can be written by the user, in the place of the mask ROM of the μ PD17P204. The only differences between the two microcontrollers are therefore the program memory and mask option. The relation between the μ PD17P204 and μ PD17204 is the same as the relation between the μ PD17P203A and μ PD17P203A and μ PD17P203A and μ PD17P204 is slightly different from the μ PD17203A and μ PD17204 respectively in electrical characteristics, such as supply voltage and supply current. The following shows the differences between μ PD17P203A and μ PD17203A; μ PD17P204 and μ PD17204.

For the CPU functions and internal hardware peripherals of the μ PD17203A and μ PD17P204, therefore, refer to the Data Sheet of the μ PD17203A and μ PD17204.

Product	μPD17P203A-001	μPD17P203A-002	μPD17P203A-003	μPD17203A
Program memory		 One-time PROM 0000H-0FFFH 4096x16 bits 		• Mask ROM • 0000H-0FFFH • 4096x16 bits
Pull-up resistor of RESET pin		Not provided		On request (mask option)
Pull-up resistor of P0A and P0B pins	Provided	Provided Provided	Not provided	
Main clock oscillator circuit	FIOVIded			
Subclock oscillator circuit		Not provided	Provided	
V _{pp} pin, PROM program pins		Provided		Not provided
Power supply voltage (T _A = -20 to 75°C)	$V_{DD} = 2.9$ to 5.5 V (at 4MHz) ^{Note}		V _{DD} = 2.2 to 5.5 V (at 4MHz)	
Package	52-pin plastic QFP			

Product	μPD17P204-001	μPD17P204-002	μPD17P204-003	μPD17204
Program memory		• One-time PROM • 0000H-1EFFH • 7936x16 bits		• Mask ROM • 0000H-1EFFH • 7936x16 bits
Pull-up resistor of RESET pin		Not provided		
Pull-up resistor of P0A and P0B pins	Provided	Provided	Not provided	On request (mask option)
Main clock oscillator circuit	FIOVIDED	FTOVIded		
Subclock oscillator circuit		Not provided	Provided	
V _{pp} pin, PROM program pins	Provided		Not provided	
Power supply (T _A = -20 to 75°C)	$V_{DD} = 2.9 \text{ to } 5.5 \text{ V} (at 4MHz)^{Note}$		V _{DD} = 2.2 to 5.5 V (at 4MHz)	
Package	52-pin plastic QFP			

Note For details on the power supply voltage, refer to 4. ELECRICAL SPECIFICATIONS.

3. ONE-TIME PROM (PROGRAM MEMORY) WRITING, READING, AND VERIFICATION

The program memory of 4096 x 16 bits (μ PD17P203A) and 7936 x 16 bits (μ PD17P204) one-time PROM are provided.

The following table lists the pins to be used for this PROM writing, reading or verification.

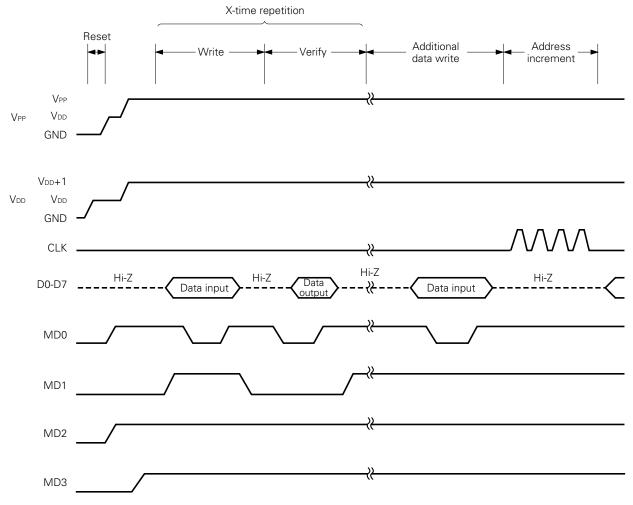
In PROM mode, no address input pin is used. Instead, the address is updated by the clock for input from the CLK pin.

Pin Name	Function
Vpp	Applies program voltage.
CLK	Inputs address update clock.
MD0-MD3	Selects operation mode.
D0-D7	Inputs and outputs 8-bit data.

3.1 OPERATION MODE FOR WRITING, READING, AND VERIFICATION OF PROGRAM MEMORY

If +6 V is applied to the V_{DD} and +12.5 V to the V_{PP} pin after μ PD17P204 has been placed in the reset status for a fixed time (V_{DD} = 5V, RESET = 0V), μ PD17P204 enters program memory write, read, or verify mode. The MD0 to MD3 pins are used to set the operation modes listed in the following table. Leave the pins not used for program memory writing, reading, or verification open or ground through pull-down resistors.

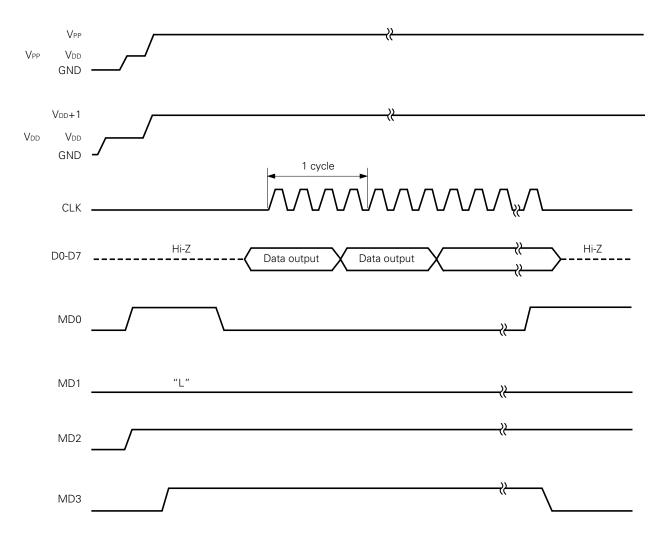
	Ope	rating Mod	Operating Made					
Vpp	Vdd	MD0	MD1 MD2 MD3		MD3	Operating Mode		
	H			Н	L	н	L	Program memory address 0 clear mode
12 5 \/	V +6 V L H	Н	Н	Write mode				
+12.5 V	+12.5 V +6 V		L	н	Н	Read/verify mode		
			х	Н	Н	Program inhibit mode		


x: L or H

3.2 PROGRAM MEMORY WRITE PROCEDURE

The program memory write procedure is as follows. High-speed program memory write is possible.

- (1) Ground the unused pins through pull-down resistors. The CLK pin must be low.
- (2) Supply 5 V to the VDD pin. The VPP pin must be low.
- (3) After waiting for 10 microseconds, supply 5 V to the V_{PP} pin.
- (4) Operate the MD0 to MD3 pins to set program memory address 0 clear mode.
- (5) Supply 6 V to the V_DD pin and 12.5 V to the V_PP pin.
- (6) Set program inhibit mode.
- (7) Write data in 1-millisecond write mode.
- (8) Set program inhibit mode.
- (9) Set verify mode. If data has been written connectly, proceed to step (10). If data has not yet been written, repeat steps (7) to (9).
- (10) Write additional data for (the number of times data was written (X) in steps (7) to (9)) times 1 milliseconds.
- (11) Set program inhibit mode.
- (12) Supply a pulse to the CLK pin four times to update the program memory address by 1.
- (13) Repeat steps (7) to (12) to the last address.
- (14) Set program memory address 0 clear mode.
- (15) Change the voltages of V_DD and V_PP pins to 5 V.
- (16) Turn off the power supply.


Steps (2) to (12) are illustrated below.

3.3 PROGRAM MEMORY READ PROCEDURE

- (1) Ground the unused pins through pull-down resistors. The CLK pin must be low.
- (2) Supply 5 V to the V_DD pin. The V_PP pin must be low.
- (3) After waiting for 10 microseconds, supply 5 V to the V_{PP} pin.
- (4) Operate the MD0 to MD3 pins to set program memory address 0 clear mode.
- (5) Supply 6 V to the V_DD pin and 12.5 V to the VPP pin.
- (6) Set program inhibit mode.
- (7) Set verify mode. Data of each address is sequentially output each time a clock pulse is input to the CLK pin four times.
- (8) Set program inhibit mode.
- (9) Set program memory address 0 clear mode.
- (10) Change the voltages of V_{DD} and V_{PP} pins to 5 V.
- (11) Turn off the power supply.

Steps (2) to (9) are illustrated below.

4. ELECTRICAL SPECIFICATIONS

ltem	Symbol	Conditions	;	Ratings	Unit
Supply voltage	Vdd			-0.3 to +7.0	V
Input voltage	Vi			-0.3 to V _{DD} + 0.3	V
	Іон1	DEM nin	Peak value	-30	mA
	Іон2	REM pin	Effective value ^{Note}	-20	mA
	Іонз		Peak value	-7.5	mA
High-level output current	Іон4	1 pin (except for REM pin)	Effective value ^{Note}	-5.0	mA
	Іон5		Peak value	-22.5	mA
	Іоне	Total (except for REM pin)	Effective value ^{Note}	-15.0	mA
	Iol1	1	Peak value	7.5	mA
	IOL2	1 pin	Effective value ^{Note}	5.0	mA
Low-level output current	Іоіз	Tetel	Peak value	30	mA
	Iol4	Total	Effective value ^{Note}	20	mA
Operating ambient temperature	TA			–20 to +75	°C
Storage temperature	Tstg			-40 to +125	°C

Note Effective value = Peak value $x \sqrt{Duty}$

Caution Even if one of the parameters exceeds its absolute maximum rating even momentarily, the quality of the product may be degraded. The absolute maximum rating therefore specifies the upper or lower limit of the value at which the product can be used without physical damages. Be sure not to exceed or fall below this value when using the product.

RECOMMENDED OPERATING RANGE (TA = -20 to +75°C)

ltem	Symbol	Conditions		TYP.	MAX.	Unit
	V_{DD1} When the system clock is fx = 4 MHz, T _A = -20 to 55°C		2.7	3.0	5.5	V
Supply voltage	V _{DD2} When the system clock is fx = 4 MHz		2.9	3.0	5.5	V
Supply voltage	Vdd3	When the system clock is $fx = 6 \text{ MHz}$, T _A = -20 to 50°C	4.75	5.0	5.5	V
	Vdd4	When the system clock is fXT = 32 kHz	2.0	3.0	5.5	V
Main clock oscillation frequency	fx		1.0	4.0	8.0	MHz
Subclock oscillation frequency	fхт			32.768		kHz

$\textbf{CAPACITANCE}~(T_{\text{A}}=25^{\circ}\text{C},~\text{V}_{\text{DD}}=0~\text{V})$

ltem	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	CIN	INT, RESET pins			10	pF
	CPIN	Other than INT, $\overline{\text{RESET}}$ pins			10	pF

DC CHARACTERISTICS

(VDD = Vxram = 3 V, Ta = -20 to $+75^{\circ}$ C, fx = 4 MHz, fxt = 32 kHz)

ltem	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
	VIH1	RESET,	INT pins	2.4		3.0	V
High-Level Input Voltage	VIH2	Other than RESET, INT pins		2.1		3.0	V
	VIL1	RESET,	INT pins	0		0.6	V
Low-Level Input Voltage	VIL2	Other th	nan RESET, INT pins	0		0.9	V
	Іін1	INT VIH = 3 V				0.2	μA
	Іін2	TM0IN	VIH = 3 V			0.2	μA
High-Level Input Current	Іінз	RESET	Vih = 3 V			0.2	μA
	Іін4	P0A-P0D	VIH = 3 V			0.2	μA
	Іінь	P1A-P1C	VIH = 3 V			0.2	μA
	lil1	INT	$V_{IL} = 0 V$			-0.2	μA
	IIL2	TM0IN	$V_{IL} = 0 V$			-0.2	μA
	IIL3	RESET	$V_{IL} = 0 V$, w/o pull-up resistors			-0.2	μA
	IIL4	RESEI	Vı∟ = 0 V, w/pull-up resistors	-30	-60	-120	μA
Low-Level Input Current	IIL5		$V_{IL} = 0 V$, w/o pull-up resistors			-0.2	μA
	IIL6	P0A,P0B	VIL = 0 V, w/pull-up resistors	-8	-15	-30	μA
	IIL7	P0C,P0D	$V_{IL} = 0 V$			-0.2	μA
	lil8	P1A-P1C	$V_{IL} = 0 V$, w/o pull-up resistors			-0.2	μA
	IIL9		Vı∟ = 0 V, w/pull-up resistors	-30	-60	-120	μA
	Іон1	P0A,P0B	Vон = 2.7 V	-0.6	-2.0	-4.0	mA
	Іон2	P1C	Vон = 2.7 V		-2.0	-4.0	mA
High-Level Output Current	Іонз	REM	Vон = 1 V		-15.0	-25.0	mA
	Іон4	LED	Vон = 2.7 V	-0.3	-1.0	-2.0	mA
	Іон5	CMPOUT	Vон = 2.7 V	-0.3	-1.0	-2.0	mA
	Iol1	P0A,P0B,P1C	Vol = 0.3 V	0.5	1.5	2.5	mA
	Iol2	P0C,P0D,P1B	Vol = 0.3 V	0.5	1.5	2.5	mA
Low Lovel Output Current	Іоіз	P1A	Vol = 0.3 V	1.5	4.5	7.5	mA
Low-Level Output Current	Iol4	REM	Vol = 0.3 V	0.5	1.5	2.5	mA
	Iol5	LED,WDOUT	Vol = 0.3 V	0.5	1.5	2.5	mA
	Iol6	CMPOUT	Vol = 0.3 V	0.5	1.5	2.5	mA
VREF Output Voltage	VREF	C = 0.1	uF, R = 82 KΩ	0.8	1.1	1.6	V
	Idd1	Operation	Generates both XT and X	0.5	2.0	4.0	mA
Supply Current	IDD2	mode	Generates XT only		400	600	μA
Supply Current	Іддз	HALT	Generates both XT and X			2.0	mA
	IDD4	mode	Generates XT only		20	30	μA
VDAM Complex C	Ixram1	Operati	on mode, V _{XRAM} = 3 V	3.0	5.0	7.0	μA
XRAM Supply Current	IXRAM2	HALT m	node, Vxram = 3 V, Ta = 25°C		0.2	1.0	μA

XRAM LOW SUPPLY VOLTAGE DATA HOLDING CHARACTERISTICS

 $(T_A = -20 \text{ to } +75^{\circ}C, \text{ Vdd} \leq \text{Vxramdr})$

ltem	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data Holding Voltage	VXRAMDR		1.3		5.5	V

DC PROGRAMMING CHARACTERISTICS

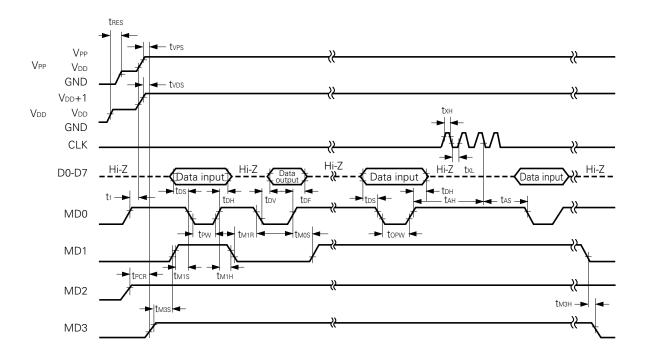
 $(T_A = 25^{\circ}C, V_{DD} = 6.0 \pm 0.25 \text{ V}, V_{PP} = 12.5 \pm 0.3 \text{ V})$

ltem	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
High Lovel Input Voltage	VIH1	Other than CLK	0.7 Vdd		Vdd	V
High-Level Input Voltage	VIH2	CLK	Vdd -0.5		Vdd	V
Low-Level Input Voltage	VIL1	Other than CLK	0		$0.3 V_{\text{DD}}$	V
Low-Level input voltage	VIL2	CLK	0		0.4	V
Input Leakage Current	L	VIN = VIL or VIH			10	μA
High-Level Output Voltage	Vон	Іон = −1 mA	Vdd -1.0			V
Low-Level Output Voltage	Vol	IoL = 1.6 mA			0.4	V
VDD Supply Current	ldd				30	mA
VPP Supply Current	I PP	$MD0 = V_{IL}, MD1 = V_{IH}$			30	mA

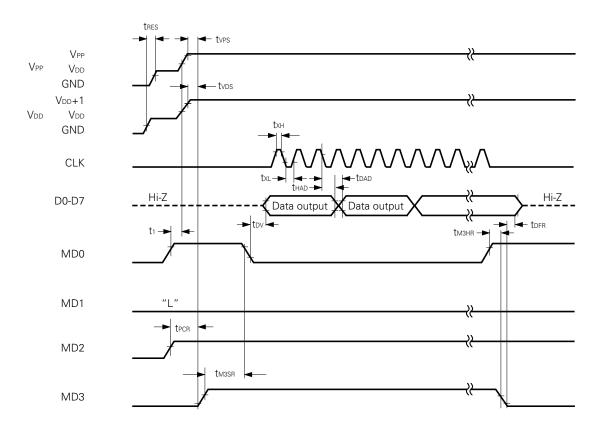
Cautions 1. VPP must not exceed +13.5 V, including the overshoot.

2. Apply VDD before VPP and disconnect it after VPP.

AC PROGRAMMING CHARACTERISTICS

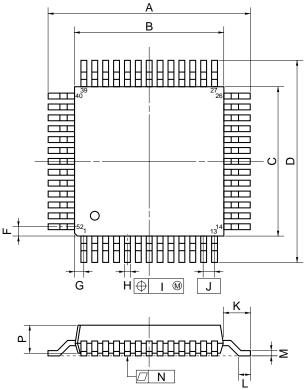

 $(T_A = 25^{\circ}C, V_{DD} = 6.0 \pm 0.25 \text{ V}, V_{PP} = 12.5 \pm 0.3 \text{ V})$

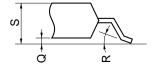
ltem	Symbol	Note 1	Conditions	MIN.	TYP.	MAX.	Unit
Address Setup Time ^{Note 2} (vs.MD0↓)	tas	tas		2			μs
MD1 Setup Time (vs. MD0↓)	t мıs	toes		2			μs
Data Setup Time (vs. MD0↓)	tos	tos		2			μs
Address Hold Time ^{Note 2} (vs.MD0↑)	tан	tан		2			μs
Data Hold Time (vs. MD0↑)	tdн	tdн		2			μs
MD0 $\uparrow \rightarrow$ Data Output Float Delay Time	tdf	t df		0		130	ns
VPP Setup Time (vs. MD3↑)	tvps	tvps		2			μs
V₀₀ Setup Time (vs. MD3↑)	tvds	tvcs		2			μs
Initial Program Pulse Width	tew	tpw		0.95	1.0	1.05	ms
Additional Program Pulse Width	topw	topw		0.95		21.0	ms
MD0 Setup Time (vs. MD1 [↑])	tмos	tces		2			μs
MD0 $\downarrow \rightarrow$ Data Output Delay Time	tdv	tdv	MD0 = MD1 = VIL			1	μs
MD1 Hold Time (vs. MD0↑)	tм1н	tоен	t	2			μs
MD1 Recovery Time (vs. MD0↓)	tm1R	tor	tм1н + tм1к≥ 50 μs	2			μs
Program Counter Reset Time	t PCR	-		10			μs
CLK Input High-/Low- Level Width	tхн,tхL	-		0.125			μs
CLK Input Frequency	fx	-				4.19	MHz
Initial Mode Set Time	tı	-		2			μs
MD3 Setup Time (vs. MD1 [↑])	tмзs	-		2			μs
MD3 Hold Time (vs. MD1↓)	tмзн	-		2			μs
MD3 Setup Time (vs. MD0↓)	tмзsr	-	When data is read from program memory	2			μs
Address ^{Note 2} \rightarrow Data Output Delay Time	t DAD	tacc	When data is read from program memory			2	μs
$Address^{Note 2} ightarrow Data$ Output Hold Time	thad	tон	When data is read from program memory	0		130	ns
MD3 Hold Time (vs. MD0↑)	tмзнк	-	When data is read from program memory	2			μs
MD3 $\downarrow \rightarrow$ Data Output Float Delay Time	t dfr	-	When data is read from program memory	2			μs
Reset Setup Time	tres			10			μs


Notes 1. These symbols are the corresponding μ PD27C256 (maintenance product) symbols.

2. The internal address is incremented by 1 at the third falling edge of CLK (with four clocks constituting as one cycle). The internal address is not connected to any pin.

PROGRAM MEMORY WRITE TIMING


PROGRAM MEMORY READ TIMING


*

5. PACKAGE DRAWINGS

52 PIN PLASTIC QFP (14)

detail of lead end

Each lead centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	17.2±0.2	0.677±0.008
В	14.0±0.2	$0.551^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.2±0.2	0.677±0.008
F	1.0	0.039
G	1.0	0.039
Н	0.40±0.10	$0.016\substack{+0.004\\-0.005}$
I	0.20	0.008
J	1.0 (T.P.)	0.039 (T.P.)
K	1.6±0.2	0.063±0.008
L	0.8±0.2	$0.031\substack{+0.009\\-0.008}$
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$
Ν	0.10	0.004
Р	2.7	0.106
Q	0.125±0.075	0.005±0.003
R	5°±5°	5°±5°
S	3.0 MAX.	0.119 MAX.
		5000 400 2BU 2

S52GC-100-3BH-2

* 6. RECOMMENDED SOLDERING CONDITIONS

Soldering must be performed under the following conditions.

For details of recommended conditions for surface mounting, refer to information document "Semiconductor device mounting technology manual" (IEI-1207).

For other soldering methods, please consult with NEC personnel.

Table 6-1. Soldering Conditions of Surface Mount Type

```
μPD17P203AGC-001-3BH: 52-pin plastic QFP (14 × 14 mm)

μPD17P203AGC-002-3BH: 52-pin plastic QFP (14 × 14 mm)

μPD17P203AGC-003-3BH: 52-pin plastic QFP (14 × 14 mm)

μPD17P204GC-001-3BH : 52-pin plastic QFP (14 × 14 mm)

μPD17P204GC-002-3BH : 52-pin plastic QFP (14 × 14 mm)

μPD17P204GC-003-3BH : 52-pin plastic QFP (14 × 14 mm)
```

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	 Package peak temperature: 235°C, Time: 30 seconds max. (210°C min), Number of times: 2 max., Days: 7 days^{Note} (after that, prebaking is necessary for 20 hours at 125°C) <caution></caution> (1) Start second reflow after device temperature (which has risen because of first reflow) has returned to room temperature. (2) Do not clean flux with water after first reflow. 	IR35-207-2
VPS	 Package peak temperature: 215°C, Time: 40 seconds max. (200°C min), Number of times: 2 max., Days: 7 days^{Note} (after that, prebaking is necessary for 20 hours at 125°C) <caution></caution> (1) Start second reflow after device temperature (which has risen because of first reflow) has returned to room temperature. (2) Do not clean flux with water after first reflow. 	VP15-207-2
Pin part heating	Pin temperature: 300°C max., Time: 3 seconds max. (per side of device)	

- **Note** The number of days the device can be stored after the dry pack was opened, under storage conditions of 25°C and 65% RH max.
- Caution Do not use two or more soldering methods in combination (except the pin partial heating method).

Product		μPD17203A	μPD17P203A	μPD17204	μPD17P204	
ROM Capacity		4096 x 16 bits (mask ROM)	4096 x 16 bits (one-time PROM)	7936 x 16 bits (mask ROM)	7936 x 16 bits (one-time PROM)	
RAM Capacity		336 x 4 bits				
Static RAM Capacity		4096 x 4 bits 2048 x 4 bits			4 bits	
Carrier Generator for Infrared Remote Controller		Provided				
Receiver Preamplifier for Infrared Remote Controller		Provided				
I/O Ports		28				
External Interrupt (INT)		1				
Timer		4 channels Watch timer: 1 channel				
Watchdog Timer		Provided (WDOUT output)				
Serial Interface		1 channel				
Stack		5 levels (interrupt nesting: 3 levels) 7 levels (interrupt nesting: 3 levels)				
Standby Function		STOP and HALT modes				
	Main System	4 μs at 4 MHz				
Instruction Execution Time (supply voltage) $T_A = -20$ to $+75^{\circ}C$	Clock	(V _{DD} = 2.2 to 5.5V)) $(V_{DD} = 2.9 \text{ to } 5.5 V^{Note})$ $(V_{DD} = 2.2 \text{ to } 5.5 V)$ $(V_{DD} = 2.3 \text{ to } 5.5 V)$	$(V_{DD} = 2.9 \text{ to } 5.5 V^{Note})$		
	Sub-System Clock	488 μs at 32.768 kHz (V _{DD} = 2.0 to 5.5 V)				
Package		52-pin plastic QFP				

APPENDIX A. MICROCONTROLLERS FOR LEARNING REMOTE CONTROLLER

Note The supply voltage varies depending on the operating ambient temperature. For details, refer to4. ELECTRICAL SPECIFICATIONS.

★ APPENDIX B. DEVELOPMENT TOOLS

The following tools are readily available for μ PD17P203A and μ PD17P204 program development.

Hardware

Name	Outline
In-circuit emulators (IE-17K IE-17K-ET ^{Note 1} EMU-17K ^{Note 2}	The IE-17K, IE-17K-ET, and EMU-17 are in-circuit emulators that can be commonly used with the 17K series products. The IE-17K and IE-17K-ET are connected to the host machine, which is a PC-9800 series product or IBM PC/AT TM , via RS-232-C. The EMU-17K is inserted into an expansion slot of a PC-9800 series product. When these in-circuit emulators are used in combination with a system evaluation board (SE board) dedicated to each model of the device, they operate as the emulator dedicated to that model. A more sophisticated debugging environment can be created by using the man-machine interface software, SIMPLEHOST TM . The EMU-17K has a function that allows you to check the contents of the data memory real-time.
SE board (SE-17204)	The SE-17204 is an SE board for the μ PD17203A, 17P203A, 17204 and 17P204. It may be used alone to evaluated a system, or in combination with an in-circuit emulator for debugging.
Emulation Probe (EP-17203GC)	The EP-17203GC is an emulation probe for the μ PD17203A, 17P203A, 17204 and 17P204. It connects an SE board and the user system. When used with the EV-9200G-52 this probe connects the SE board and the target system.
Conversion socket (EV-9200G-52 ^{Note 3})	The EV-9200G-52 connects the EP-17203GC and the target system.
PROM programmer (AF-9703 ^{Note 4} , AF-9704 ^{Note 4} AF-9705 ^{Note 4} , AF9706 ^{Note 4})	The AF9703, AF9704, AF9705, and AF9706 are PROM programmers that can program the μ PD17P203A and 17P204. When connected with programmer adapter AF-9808A, this PROM programmer can program the μ PD17P203A and 17P204.
Program adapter (AF-9808B ^{Note 4})	The AF-9808A is an adapter for programming the μ PD17P203AGC and 17P204GC and is used in combination with the AF-9703, AF-9704, AF-9705, and AF-9706.

Notes 1. Low-cost model: external power supply type

- 2. This is a product from I.C., Corp. For details, consult I.C.
- **3.** One EV-9200G-52 is supplied with the EP-17203GC. Five EV-9200G-52s are optionally available as a set.
- 4. These are products from Ando Electric. For details, consult Ando Electric.

Software

Name	Outline Machine	Host	-	S dia	Supply	Order Code
	AS17K is an assembler that can be used in common with the 17K series products. When developing the program of the μPD17P203A and 17P204, AS17K is used in combination with a device file (AS17203, AS17204).	PC-9800 series	MS-DOS™		5″ 2DH	μ S5A10AS17K
17K series assembler (AS17K)		FC-9600 Series			3.5″ 2HD	μ S5A13AS17K
		IBM PC/AT	PC DOS™		5″ 2HC	μS7B10AS17K
					3.5″ 2HC	μ S7B13AS17K
	AS17203 is a device file for μ PD17203A, and 17P203A, and it is used in combination with an assembler commonly used for the 17K series (AS17K).		MS-DOS		5″ 2HD	μS5A10AS17203
Device file (AS17203)		PC-9800 series			3.5″ 2HD	μS5A13AS17203
		IBM PC/AT	PC DOS		5″ 2HC	μS7B10AS17203
					3.5″ 2HC	μS7B13AS17203
Device file (AS17204)	AS17204 is a device file for μ PD17204 and 17P204, and it is used in combination with	PC-9800 series	MS-DOS		5″ 2HD	μS5A10AS17204
					3.5″ 2HD	μ S5A13AS17204
	an assembler for the 17K	IBM PC/AT	50.		5″ 2HC	μ S7B10AS17204
	series (AS17K).		PC DOS		3.5″ 2HC	μ S7B13AS17204
Support software (SIMPLEHOST)	SIMPLEHOST is a software package that enables man- machine interface on the Windows TM when a program is developed by using an in- circuit emulator and a personal computer.	PC-9800 series	MS-DOS	Windows	5″ 2HD	μS5A10IE17K
					3.5″ 2HD	μS5A13ΙΕ17Κ
		IBM PC/AT	PC DOS		5″ 2HC	μ S7B10IE17K
					3.5″ 2HC	μS7B13IE17K

Remark The corresponding OS versions are as follows:

OS	Version
MS-DOS	Ver. 3.30 to Ver. 5.00A ^{Note}
PC DOS	Ver. 3.1 to Ver. 5.0 ^{Note}
Windows	Ver. 3.0 to Ver. 3.1

Note Ver. 5.00/5.00A of MS-DOS and Ver. 5.0 of PC DOS have a task swap function, but this function cannot be used with this software. [MEMO]

- NOTES FOR CMOS DEVICES -

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function. [MEMO]

SIMPLEHOST is a trademark of NEC Corporation. MS-DOS and Windows are trademarks of Microsoft Corporation. PC/AT and PC DOS are trademarks of IBM Corporation.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or reexport of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.