FEATURES

AD5308: Eight Buffered 8-Bit DACs in 16-Lead TSSOP
AD5318: Eight Buffered 10-Bit DACs in 16-Lead TSSOP
AD5328: Eight Buffered 12-Bit DACs in 16-Lead TSSOP
Low Power Operation: 1.4mA (max) @ 3 V
Guaranteed Monotonic By Design over All Codes
Power-Down to 120 nA @ 3 V, 400 nA @ 5 V
Double-Buffered Input Logic
Buffered/ Unbuffered Reference Input Options
Output Range: 0-2 $\mathbf{V}_{\text {REF }}$
Power-On-Reset
Programmability
Individual-channel Powerdown
Simultaneous Update of Outputs (LDAC)
Low Power, SPI ${ }^{\text {m }}$, QSPI ${ }^{\text {m }}$, MICROWIRE ${ }^{\text {m }}$ and DSPCompatible 3-Wire Serial Interface
On-Chip Rail-to-Rail Output Buffer Amplifiers
Temperature Range $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$

APPLICATIONS

Portable Battery-Powered Instruments Digital Gain and Offset Adjustment Programmable Voltage and Current Sources Optical Networking
Automatic Test Equipment Mobile Comms

FUNCTIONAL BLOCK DIAGRAM

*Protected by U.S. Patent No. 5,969,657; other patents pending.
SPI and QSPI are trademarks of M otorola, Inc.
MICROWIRE is a trademark of N ational Semiconductor Corporation.

AD5308/AD5318/AD5328- SPECIFICATIONS

($\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\text {REF }}=2 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{GND} ; \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$ to GND ; all specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise noted.)

NOTES

${ }^{1}$ See T erminology.
${ }^{2} \mathrm{~T}$ emperature range: B Version: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$; typical at $25^{\circ} \mathrm{C}$.
${ }^{3}$ DC specifications tested with the outputs unloaded unless stated otherwise.
${ }^{4}$ Linearity is tested using a reduced code range: AD 5308 (C ode 8 to 255); AD 5318 (Code 28 to 1023); AD 5328 (C ode 115 to 4095).
${ }^{5} \mathrm{~T}$ his corresponds to x codes. $\mathrm{X}=\mathrm{D}$ eadband Voltage/LSB size.
${ }^{6} \mathrm{G}$ uaranteed by design and characterization; not production tested.
${ }^{7}$ For the amplifier output to reach its minimum voltage, Offset Error must be negative; for the amplifier output to reach its maximum voltage, $\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{DD}} / 2$ and 0 Offset plus G ain Error must be positive.
${ }^{8}$ Interface Inactive. All DAC s active. DAC outputs unloaded.
${ }^{9}$ All 8 DACS powered down.
Specifications subject to change without notice.

AC CHARACTERISTICS ${ }^{1}$

$\left(V_{D D}=2.5 \mathrm{~V}\right.$ to $5.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \boldsymbol{\Omega}$ to $G N D ; \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$ to $G N D ;$ all specifications T_{MN} to $\mathrm{T}_{\mathrm{MAX}}$ unless otherwise noted.)

Parameter ${ }^{2}$	B Version ${ }^{3}$			Unit	Conditions/Comments
	Min	Typ	Max		
Output Voltage Settling T ime					$\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}$
AD 5308		6	8	$\mu \mathrm{S}$	1/4 Scale to 3/4 Scale C hange (40 Hex to C 0 Hex)
AD 5318		7	9	$\mu \mathrm{S}$	$1 / 4$ Scale to $3 / 4$ Scale C hange (100 Hex to 300 Hex)
AD 5328			10	$\mu \mathrm{S}$	1/4 Scale to 3/4 Scale C hange (400 H ex to C 00 Hex)
Slew R ate		0.7		V/ $/ \mathrm{S}$	
M ajor-C ode C hange G litch Energy		12		nV sec	1 LSB C hange Around M ajor C arry
D igital F eedthrough		0.5		nV sec	
D igital Crosstalk		0.5		nV sec	
A nalog Crosstalk		1		nV sec	
D AC-to-D AC Crosstalk		3		nV sec	
M ultiplying B andwidth		200		kHz	$\mathrm{V}_{\text {REF }}=2 \mathrm{~V} \pm 0.1 \mathrm{~V}$ p-p. U nbuffered M ode
T otal H armonic D istortion		-70		dB	$\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$ p-p. Frequency $=10 \mathrm{kHz}$

NOTES
${ }^{1}$ Guaranteed by design and characterization; not production tested.
${ }^{2}$ See T erminology.
${ }^{3} \mathrm{~T}$ emperature range: B Version: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$; typical at $25^{\circ} \mathrm{C}$.
Specifications subject to change without notice.

TIMING CHARACTERISTICS ${ }^{1,2,3}$

$\left(\mathrm{V}_{D D}=2.5 \mathrm{~V}\right.$ to 5.5 V ; all specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise noted.)

Parameter	B Version Limitat T $_{\text {MIN }}, \mathbf{T}_{\text {MAX }}$	Unit	Conditions/C omments

${ }^{1}$ Guaranteed by design and characterization; not production tested.
${ }^{2}$ All input signals are specified with $\mathrm{tr}=\mathrm{tf}=5 \mathrm{~ns}\left(10 \%\right.$ to 90% of $\left.\mathrm{V}_{\mathrm{DD}}\right)$ and timed from a voltage level of $\left(\mathrm{V}_{\mathrm{IL}}+\mathrm{V}_{\text {IH }}\right) / 2$.
${ }^{3}$ See Figures 2 and 3.

Specifications subject to change without notice.

NOTES

1. ASYNCHRONOUS LDAC UPDATE MODE.
2. SYNCHRONOUS LDAC UPDATE MODE.

Figure 1. Serial Interface Timing Diagram
ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
$V_{D D}$ to GND -0.3 V to +7 V Digital Input Voltage to GND -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Reference Input Voltage to GND -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$\mathrm{V}_{\text {OUT }} A-\mathrm{V}_{\text {OUT }} \mathrm{D}$ to $G N D \ldots$.
Operating Temperature Range
Industrial (B Version) $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature ($T_{\text {J }}$ max) $150^{\circ} \mathrm{C}$
16-Lead TSSOP Package

Power Dissipation $\quad\left(T_{j} \max -T_{A}\right) / \theta_{J A}$
θ_{JA} Thermal Impedance $150.4^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering
Peak T emperature $220+5 /-0^{\circ} \mathrm{C}$
Time at Peak Temperature 10 sec to 40 sec
NOTES
${ }^{1}$ Stresses above those listed under Absolute M aximum Ratings may cause permacional sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{2}$ T ransient currents of up to 100 mA will not cause SCR latch-up.

ORDERING GUIDE

M odel	Temperature Range	Package D escription	Package Option
AD 5308BRU	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (T SSOP)	RU-16
AD 5318BRU	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (T SSOP)	RU -16
AD 5328BRU	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (T SSOP)	RU-16

CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD 5308/AD 5318/AD 5328 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

AD5308/AD5318/AD5328

PIN FUNCTION DESCRIPTIONS

Pin No.	Mnemonic	Function
1	$\overline{\text { LDAC }}$	Active low control input that transfers the contents of the input registers to their respective DAC registers. Pulsing this pin Iow allows any or all DAC registers to be updated if the input registers have new data. This allows simultaneous update of all DAC outputs. Alternatively this pin can be tied permanently low.
2	$\overline{\text { SYNC }}$	Active Low C ontrol Input. This is the frame synchronization signal for the input data. When SYNC goes low, it powers on the SCLK and DIN buffers and enables the input shift register. D ata is transferred in on the falling edges of the following 16 clocks. If $\overline{\text { SYNC }}$ is taken high before the 16th falling edge, the rising edge of SYNC acts as an interrupt and the write sequence is ignored by the device.
3	$V_{D D}$	Power Supply Input. These parts can be operated from 2.5 V to 5.5 V , and the supply should be decoupled with a $10 \mu \mathrm{~F}$ capacitor in parallel with a $0.1 \mu \mathrm{~F}$ capacitor to GND.
4	$\mathrm{V}_{\text {OUt }} \mathrm{A}$	Buffered Analog Output Voltage from DAC A. The output amplifier has rail-to-rail operation.
5	$\mathrm{V}_{\text {OUT }} \mathrm{B}$	Buffered Analog Output Voltage from DAC B. The output amplifier has rail-to-rail operation.
6	$V_{\text {OUT }} \mathrm{C}$	Buffered Analog Output Voltage from DAC C. The output amplifier has rail-to-rail operation.
7	$V_{\text {OUT }}$ D	Buffered Analog Output Voltage from DAC D. The output amplifier has rail-to-rail operation.
8	$V_{\text {Ref }} A B C D$	Reference Input Pin for DACs A, B, C and D. It may be configured as a buffered or unbuffered input to the four DACs, depending on the state of the BUF control bits. It has an input range from 0.25 V to $\mathrm{V}_{\mathrm{DD}} / 2$ in unbuffered mode and from 1 V to $\mathrm{V}_{\mathrm{DD}} / 2$ in buffered mode.
9	$V_{\text {REF }} \mathrm{EFGH}$	Reference Input Pin for DACSE, F, G and H. It may be configured as a buffered or unbuffered input to the four DACs, depending on the state of the BUF control bits. It has an input range from 0.25 V to $\mathrm{V}_{\mathrm{DD}} / 2$ in unbuffered mode and from 1 V to $\mathrm{V}_{\mathrm{DD}} / 2$ in buffered mode.
10	$\mathrm{V}_{\text {OUT }} \mathrm{E}$	Buffered Analog Output Voltage from DAC E. The output amplifier has rail-to-rail operation.
11	V out F	Buffered Analog Output Voltage from DAC F. T he output amplifier has rail-to-rail operation.
12	$\mathrm{V}_{\text {OUT }} \mathrm{G}$	Buffered Analog Output Voltage from DAC G. The output amplifier has rail-to-rail operation.
13	$\mathrm{V}_{\text {OUt }} \mathrm{H}$	Buffered Analog Output Voltage from DAC H. The output amplifier has rail-to-rail operation.
14	GND	Ground reference point for all circuitry on the part.
15	DIN	Serial Data Input. This device has a 16-bit shift register. D ata is clocked into the register on the falling edge of the serial clock input. The DIN input buffer is powered down after each write cycle.
16	SCLK	Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. D ata can be transferred at rates up to 30 MHz . The SCLK input buffer is powered down after each write cycle.

PIN CONFIGURATION

AD5308/AD5318/AD5328

TERMINOLOGY

RELATIVE ACCURACY
For the DAC, relative accuracy or integral nonlinearity (INL) is a measure of the maximum deviation, in LSBs, from a straight line passing through the endpoints of the DAC transfer function. T ypical INL versus C ode plots can be seen in TPCs 1, 2, and 3.

DIFFERENTIAL NONLINEARITY

Differential Nonlinearity (DNL) is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of ± 1 LSB maximum ensures monotonicity. This DAC is guaranteed monotonic by design. T ypical DNL versus C ode plots can be seen in TPCs 4, 5, and 6.

OFFSET ERROR

This is a measure of the offset error of the DAC and the output amplifier. (See Figures 4 and 5.) It can be negative or positive. It is expressed in mV .

GAIN ERROR

This is a measure of the span error of the DAC. It is the deviation in slope of the actual D AC transfer characteristic from the ideal expressed as a percentage of the full-scale range.

OFFSET ERROR DRIFT

This is a measure of the change in offset error with changes in temperature. It is expressed in (ppm of full-scale range) $/{ }^{\circ} \mathrm{C}$.

GAIN ERROR DRIFT

This is a measure of the change in gain error with changes in temperature. It is expressed in (ppm of full-scale range) $/{ }^{\circ} \mathrm{C}$.

DC POWER-SUPPLY REJECTION RATIO (PSRR)

This indicates how the output of the DAC is affected by changes in the supply voltage. PSRR is the ratio of the change in $\mathrm{V}_{\text {OUT }}$ to a change in $V_{D D}$ for full-scale output of the DAC. It is measured in $\mathrm{dBs} . \mathrm{V}_{\mathrm{REF}}$ is held at 2 V and $\mathrm{V}_{D D}$ is varied $\pm 10 \%$.

DC CROSSTALK

This is the dc change in the output level of one DAC in response to a change in the output of another DAC. It is measured with a full-scale output change on one D AC while monitoring another DAC. It is expressed in $\mu \mathrm{V}$.

REFERENCE FEEDTHROUGH

This is the ratio of the amplitude of the signal at the DAC output to the reference input when the DAC output is not being updated (i.e., $\overline{\text { LDAC }}$ is high). It is expressed in dBs.

CHANNEL-TO-CHANNELISOLATION

This is the ratio of the amplitude of the signal at the output of one DAC to a sine wave on the reference input of another DAC. It is measured in dBs .

MAJOR-CODE TRANSITION GLITCH ENERGY

M ajor-code transition glitch energy is the energy of the impulse injected into the analog output when the code in the DAC register changes state. It is normally specified as the area of the glitch in nV secs and is measured when the digital code is changed by 1 LSB at the major carry transition (011 . . . 11 to 100 . . . 00 or 100 . . 00 to 011 . . . 11).

DIGITAL FEEDTHROUGH

Digital feedthrough is a measure of the impulse injected into the analog output of a DAC from the digital input pins of the device but is measured when the DAC is not being written to the (SYNC held high). It is specified in nV secs and is measured with a fullscale change on the digital input pins, i.e., from all 0 s to all $1 s$ or vice versa.

DIGITAL CROSSTALK

This is the glitch impulse transferred to the output of one DAC at midscale in response to a full-scale code change (all Os to all $1 s$ and vice versa) in the input register of another DAC. It is measured in standalone mode and is expressed in nV secs.

ANALOG CROSSTALK

This is the glitch impulse transferred to the output of one DAC due to a change in the output of another DAC. It is measured by loading one of the input registers with a full-scale code change (all Os to all 1 s and vice versa) while keeping $\overline{\text { LDAC }}$ high. T hen pulse LDAC low and monitor the output of the DAC whose digital code was not changed. The area of the glitch is expressed in nV secs.

DAC-TO-DAC CROSSTALK

This is the glitch impulse transferred to the output of one DAC due to a digital code change and subsequent output change of another DAC. This includes both digital and analog crosstalk. It is measured by loading one of the D AC s with a full-scale code change (all 0 s to all 1 s and vice versa) with $\overline{\text { LDAC }}$ low and monitoring the output of another DAC. The energy of the glitch is expressed in nV secs.

MULTIPLYING BANDWIDTH

The amplifiers within the DAC have a finite bandwidth. The multiplying bandwidth is a measure of this. A sine wave on the reference (with full-scale code loaded to the DAC) appears on the output. T he multiplying bandwidth is the frequency at which the output amplitude falls to 3 dB below the input.

TOTAL HARMONIC DISTORTION

T his is the difference between an ideal sine wave and its attenuated version using the DAC. T he sine wave is used as the reference for the DAC, and the THD is a measure of the harmonics present on the DAC output. It is measured in dBs .

Figure4. Transfer Function with Negative Offset

$$
\left(V_{R E F}=V_{D D} / 2\right)
$$

Figure 5. Transfer Function with Positive Offset $\left(V_{R E F}=V_{D D} / 2\right)$

AD5308/AD5318/AD5328

FUNCTIONAL DESCRIPTION

The AD 5308/AD 5318 /AD 5328 are octal resistor-string DAC s fabricated on a CM OS process with resolutions of 8,10 , and 12 bits respectively. Each contains eight output buffer amplifiers and is written to via a 3 -wire serial interface. They operate from single supplies of 2.5 V to 5.5 V and the output buffer amplifiers provide rail-to-rail output swing with a slew rate of $0.7 \mathrm{~V} / \mu \mathrm{s}$. DACsA, B, C and D share a common reference input, namely $V_{R E F} A B C D$. DACs E, F, G and H share a common reference input, namely $\mathrm{V}_{\text {REF }} E F G H$. E ach reference input may be buffered to draw virtually no current from the reference source or may be unbuffered to give a reference input range from 0.25 V to $\mathrm{V}_{\mathrm{DD}} / 2$. The devices have a power-down mode in which all DACs may be turned off individually with a high-impedance output.

Digital-to-Analog Section

The architecture of one DAC channel consists of a resistor-string DAC followed by an output buffer amplifier. The voltage at the $\mathrm{V}_{\text {REF }}$ pin provides the reference voltage for the corresponding DAC. Figure 6 shows a block diagram of the DAC architecture. Since the input coding to the DAC is straight binary, the ideal output voltage is given by:

$$
V_{\text {OUT }}=\frac{V_{\text {REF }} \times D}{2^{N}}
$$

where
$D=$ decimal equivalent of the binary code that is loaded to the DAC register;

$$
\begin{aligned}
& \text { 0-255 for AD } 5308 \text { (8 Bits) } \\
& \text { 0-1023 for AD } 5318 \text { (10 Bits) } \\
& \text { 0-4095 for AD } 5328 \text { (12 Bits) } \\
& \text { N = DAC resolution }
\end{aligned}
$$

Figure 6. Single DAC Channel Architecture

Resistor String

The resistor string section is shown in Figure 7. It is simply a string of resistors, each of value R. The digital code loaded to the DAC register determines at which node on the string the voltage is tapped off to be fed into the output amplifier. T he voltage is tapped off by closing one of the switches connecting the string to the amplifier. Because it is a string of resistors, it is guaranteed monotonic.

DAC Reference Inputs

There is a reference pin for each quad of DACs. The reference inputs are buffered, but can also be configured as unbuffered. Theadvantage with thebuffered input is the high impedance it presents to the voltage source driving it. H owever, if the unbuffered mode is used, the user can have a reference voltage
as low as 0.25 V and as high as $\mathrm{V}_{\mathrm{DD}} / 2$ since there is no restriction due to headroom and footroom of the reference amplifier.

Figure 7. Resistor String
If there is a buffered reference in the circuit (e.g., REF 192), there is no need to use the on-chip buffers of the AD 5308/ AD 5318/AD 5328. In unbuffered mode the input impedance is still large at typically $22 \mathrm{k} \Omega$.

Output Amplifier

T he output buffer amplifier is capable of generating output voltages to within 1 mV of either rail. Its actual range depends on the value of $\mathrm{V}_{\text {REF }}$, the gain of the output amplifier, offset error, and gain error.

With a gain of $2(\mathrm{G}$ ain bit $=1)$, the output range is 0.001 V to 2 $\mathrm{V}_{\text {Ref }}$. Because of clamping, however, the maximum output is limited to $V_{D D}-0.001 \mathrm{~V}$.

T he output amplifier is capable of driving a load of $2 \mathrm{k} \Omega$ to GND or V_{DD}, in parallel with 500 pF to $G N D$ or V_{DD}. The source and sink capabilities of the output amplifier can be seen in the plot in T PC 11.
The slew rate is $0.7 \mathrm{~V} / \mu \mathrm{s}$ with a half-scale settling time to $\pm 0.5 \mathrm{LSB}$ (at 8 bits) of $6 \mu \mathrm{~s}$.

POWER-ON RESET

The AD 5308/AD5318/AD 5328 are provided with a poweron reset function, so that they power up in a defined state. T he power-on state is:

- N ormal Operation
- Reference Inputs U nbuffered
- GAIN bits not set-up
- Output Voltage Set to 0 V
- LDAC bits set to "LDAC High"

Both input and DAC registers are filled with zeros and remain so until a valid write sequence is made to the device. This is particularly useful in applications where it is important to know the state of the DAC outputs while the device is powering up.

AD5308/AD5318/AD5328

SERIAL INTE RFACE

The AD 5308/AD 5318/AD 5328 are controlled over a versatile 3-wire serial interface that operates at clock rates up to 30 M H z and is compatible with SPI, QSPI, MICROWIRE and DSP interface standards.

Input Shift Register

The input shift register is 16 bits wide. D ata is loaded into the device as a 16-bit word under the control of a serial clock input, SCLK. The timing diagram for this operation is shown in Figure 2.
The $\overline{\text { SYNC }}$ input is a level-triggered input that acts as a frame synchronization signal and chip enable. D ata can only be transferred into the device while $\overline{\text { SYNC }}$ is low. T o start the serial data transfer, $\overline{\text { SYNC }}$ should be taken low, observing the minimum $\overline{\text { SYNC }}$ to SCLK falling edge setup time, t_{4}. After $\overline{\mathrm{SYNC}}$ goes low, serial data will be shifted into the device's input shift register on the falling edges of SCLK for 16 clock pulses.
T o end the transfer, $\overline{\text { SYNC }}$ must be taken high after the falling edge of the sixteenth SCLK pulse, observing the minimum SCLK falling edge to $\overline{\mathrm{SYNC}}$ rising edge time, t_{7}.
After the end of serial data transfer, data will automatically be transferred from the input shift register to the input register of the selected DAC. If SYNC is taken high before the 16th falling edge of SCLK, the data transfer will be aborted and the DAC input registers will not be updated.
D ata is loaded M SB first (Bit 15). The first bit determines whether it is a DAC Write or a C ontrol F unction.

DAC Write

Here, the 16 -bit word consists of 1 control bit and 3 address bits followed by 8,10 , or 12 bits of DAC data, depending on the device type. In the case of a DAC Write, the M SB will be a ' 0 '. The next three address bits determine whether the data is for DAC A, DAC B, DAC C, DAC D, DAC E, DAC F, DAC G or DAC H. The AD 5328 uses all 12 bits of DAC data. The AD 5318 uses ten bits and ignores the two LSBs. The AD 5308 uses eight bits and ignores the last four bits. As good programming practice, these ignored LSB's should be set to ' 0 '. The data format is straight binary, with all zeros corresponding to 0 V output and all ones corresponding to full-scale output.

Table I. Address Bits for the AD53x8

A2 (Bit 14)	A1 (Bit 13)	A0 (Bit 12)	DAC Addressed
0	0	0	DAC A
0	0	1	DAC B
0	1	0	DAC C
0	1	1	DAC D
1	0	0	DAC E
1	0	1	DAC F
1	1	0	DAC G
1	1	1	DAC H

Control Functions

In the case of a C ontrol Function the M SB (Bit 15) will be a ' 1 '. This is followed by two control bits, which determine the mode. There are four different control modes, each of which is described below. T he write sequences for these modes are shown in Table 2.
(1)Reference Mode: This mode determines whether the reference for each group of DACs is buffered or unbuffered. The gain of the output amplifier must be set to $2 \mathrm{~V}_{\text {REF }}$. To setup the reference of both groups, set the control bits to (00), set the GAIN bits, set the BUF bits and clear the RESERVED bits.
BU F: C ontrols whether the reference of a group of DACs is buffered or unbuffered. The reference of the first group of $\operatorname{DACs}(A, B, C, D)$ is controlled by setting bit 2, and the second group of DACs (E, F, G, H) is controlled by setting bit 3.

0 : U nbuffered Reference
1: Buffered Reference
GAIN: The 2 GAIN bits (bit 4 and bit 5) must be set to ' 1 ' to give an output range of $0-2 \mathrm{~V}_{\text {REF }}$
RESERVED: These bits (bit 0 and bit 1) are reserved for possible future use, and must be cleared to ' 0 '.

Figure 8. AD5308 Input Shift Register Contents

Figure 9. AD5318 Input Shift Register Contents

Figure 10. AD5328 Input Shift Register Contents

AD5308/AD5318/AD5328

(2) LDAC Mode LDAC M ode controls $\overline{\text { LDAC, }}$ which deterimnes when data is transfered from the input registers to the DAC registers. There are three options when updating the DAC registers, as shown in table 3 below.

Table III. LDAC Mode

Bit	Bit	Bit	Bits	Bit	Bit	
$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2} \ldots \mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	Description
1	0	1	$x \ldots .$.	0	0	$\overline{\text { LDAC }}$ Low
1	0	1	$x \ldots \ldots$	0	1	LDAC High
1	0	1	$x \ldots \ldots$	1	0	LDAC Single U pdate
1	0	1	$x \ldots .$.	1	1	Reserved

$\overline{\text { LDAC }}$ Low: (00) This sets $\overline{\text { LDAC }}$ permanently low, thus allowing the DAC registers to be updated continuously. $\overline{\text { LDAC }} \mathrm{H}$ igh: (01) This sets $\overline{\text { LDAC }}$ permanantly high. The DAC registers are latched, and the input registers may change without affecting the contents of the DAC registers. This is the default option for this mode.
LDAC Single U pdate: (10) This causes a single pulse on $\overline{\text { LDAC, }}$ thus updating the DAC registers once.
Reserved: (11) Reserved.
(3) Power-Down Mode: T heindividual channels of the AD 5308/A D 5318/AD 5328 can be powered down seperately. The control mode for this is (10). On completion of this write sequence, the channels that have been set to ' 1 ' are powered down.
(4) Reset Mode: This mode consists of two possible reset functions, as outlined in T able 4.

Table IV. Reset Mode

Bit $\mathbf{1 5}$	Bit $\mathbf{1 4}$	Bit $\mathbf{1 3}$	Bit $\mathbf{1 2}$	Bit	Description
1	1	1	0	$x \ldots . . \mathbf{0}$	
1	1	1	1	$x \ldots . x$	D AC D ata Reset

DAC Data Reset: On completion of this write sequence, all DAC Registers and Input Registers are filled with zeros. D ata and C ontrol Reset: This function carries out a D AC D ata Reset and also resets all the Control Bits (GAIN ; BUF; RESERVED; LDAC; Powerdown Channels) to their power-on conditions. N ote that the Reference M ode must be re-setup after this mode prior to another D AC write.

Low Power Serial Interface

T o minimize the power consumption of the device, the interface only powers up fully when the device is being written to, i.e., on the falling edge of $\overline{\text { SYNC. The SCLK and DIN input }}$ buffers are powered down on the rising edge of SYNC.

LOAD DAC INPUT (LDAC) FUNCTION

Access to the DAC registers is controlled by both the $\overline{\text { LDAC }}$ pin and the LDAC mode bits. The operation of the LDAC Function can be likened to the configuration shown in Fig. 11.

Figure 11. LDAC Function
If the user wishes to update the DAC through software, then the $\overline{\text { LDAC }}$ pin should be tied high and the LDAC mode bits set as required. Alternatively, if the user wishes to control the DAC through hardware, i.e. the $\overline{\text { LDAC }}$ pin, then the LDAC mode bits should be set to 'LDAC High'.

Table II. Control Words for the AD 53×8

AD5308/AD5318/AD5328

U se of the LDAC Function enables double-buffering of the DAC data, and GAIN, BUF and RESERVED bits. There are two ways in which the LDAC Function can operate: Synchronous LDAC: The DAC registers are updated after new data is read in on the falling edge of the 16th SCLK pulse. $\overline{\text { LDAC }}$ can be permanently low or pulsed as in Figure 2. A synchronous $\overline{\mathrm{LDAC}}$: The outputs are not updated at the same time that the input registers are written to. When $\overline{\text { LDAC }}$ goes low, the DAC registers are updated with the contents of the input register.

DOUBLE-BUFFERED INTERFACE

The AD 5308/AD 5318/AD 5328 DAC s all have double-buffered interfaces consisting of two banks of registers: input registers and DAC registers. The input registers are connected directly to the input shift register and the digital code is transferred to the relevant input register on completion of a valid write sequence. The DAC registers contain the digital code used by the resistor strings.
When the $\overline{\text { LDAC }}$ pin is high, or when the LDAC bits are set to (01), the DAC registers are latched and the input registers may change state without affecting the contents of the DAC registers. H owever, when the LDAC bits are set to (00) or when the $\overline{\text { LDAC }}$ pin is brought low, the DAC registers become transparent and the contents of the input registers are transferred to them.
T he double-buffered interface is useful if the user requires simultaneous updating of all DAC outputs. The user may write to seven of the input registers individually and then, by bringing $\overline{\text { LDAC }}$ low when writing to the remaining DAC input register, all outputs will update simultaneously.
These parts contain an extra feature whereby a DAC register is not updated unless its input register has been updated since the last time $\overline{\mathrm{LDAC}}$ was low. N ormally, when $\overline{\mathrm{LDAC}}$ is brought low, the DAC registers are filled with the contents of the input registers. In the case of the AD 5308/A D 5318/A D 5328, the part will only update the DAC register if the input register has been changed since the last time the DAC register was updated, thereby removing unnecessary digital crosstalk.

POWER-DOWN MODE

The AD 5308/AD 5318/AD 5328 have low power consumption, typically dissipating 2.4 mW with a 3 V supply and 5 mW with a 5 V supply. Power consumption can be further reduced when the DACs are not in use by putting them into power-down mode, which is described previously.
When in default mode, all DAC s work normally with a typical power consumption of 1 mA at $5 \mathrm{~V}(800 \mu \mathrm{~A}$ at 3 V$)$. H owever, when all DACs are powered down, i.e. in Power-D own mode, the supply current falls to 400 nA at $5 \mathrm{~V}(120 \mathrm{nA}$ at 3 V$)$. N ot only does the supply current drop, but the output stage is also internally switched from the output of the amplifier making it open-circuit. This has the advantage that the output is threestate while the part is in power-down mode and provides a defined input condition for whatever is connected to the output of the DAC amplifier. The output stage is illustrated in Figure 12.

The bias generator, the output amplifiers, the resistor string, and all other associated linear circuitry are shut down when the power-down mode is activated. H owever, the contents of the
registers are unaffected when in power-down. In fact it is possible to load new data to the input registers and DAC registers during power-down. The DAC outputs will update as soon as the device comes out of Powerdown M ode. The time to exit power-down is typically $2.5 \mu \mathrm{~s}$ for $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ and $5 \mu \mathrm{~s}$ when $V_{D D}=3 \mathrm{~V}$.

Figure 12. Output Stage During Power-Down

AD5308/AD5318/AD5328

MICROPROCESSOR INTERFACING

ADSP-2101/ADSP-2103to AD5308/ad5318/ad5328Interface
Figure 13 shows a serial interface between the AD 5308/AD5318/
AD 5328 and the ADSP-2101/ADSP-2103. The ADSP-2101/
AD SP-2103 should be set up to operate in the SPORT T ransmit Alternate Framing M ode. The ADSP-2101/AD SP-2103 SPORT is programmed through the SPORT control register and should be configured as follows: Internal Clock O peration, Active-L ow Framing, 16-Bit W ord Length. T ransmission is initiated by writing a word to the $T X$ register after the SPORT has been enabled. The data is clocked out on each rising edge of the DSP's serial clock and clocked into the AD 5308/AD 5318/ AD 5328 on the falling edge of the DAC's SCLK.

*ADDITIONAL PINS OMITTED FOR CLARITY
Figure 13. ADSP-2101/ADSP-2103 to AD5308/AD5318/ AD5328 Interface

68HC 11/68L11to AD5308/AD5318/AD5328Interface

Figure 14 shows a serial interface between the AD 5308/AD 5318/ AD 5328 and the 68H C 11/68L 11 microcontroller. SCK of the $68 \mathrm{HC} 11 / 68 \mathrm{~L} 11$ drives the SCLK of the AD5308/AD 5318/ AD 5328, while the M OSI output drives the serial data line (DIN) of the DAC. The $\overline{\text { SYNC signal is derived from a port line (PC 7). }}$ The setup conditions for correct operation of this interface are as follows: the $68 \mathrm{HC} 11 / 68 \mathrm{~L} 11$ should be configured so that its CPOL bit is a 0 and its CPHA bit is a 1 . When data is being transmitted to the DAC, the $\overline{\text { SYNC }}$ line is taken low (PC 7). When the $68 \mathrm{HC} 11 / 68 \mathrm{~L} 11$ is configured as above, data appearing on the MOSI output is valid on the falling edge of SCK. Serial data from the $68 \mathrm{HC} 11 / 68 \mathrm{~L} 11$ is transmitted in 8 -bit bytes with only eight falling clock edges occurring in the transmit cycle. D ata is transmitted M SB first. In order to load data to the AD 5308/AD 5318/AD 5328, PC7 is left low after the first eight bits are transferred, and a second serial write operation is performed to the DAC and PC7 is taken high at the end of this procedure.

*ADDITIONAL PINS OMITTED FOR CLARITY
Figure 14. 68HC11/68L11 to AD5308/AD5318/AD5328 Interface

80C51/80L51to AD 5308/AD 5318/AD5328 Interface

Figure 15 shows a serial interface between the AD 5308/AD 5318/ AD 5328 and the 80C $51 / 80 \mathrm{~L} 51$ microcontroller. The setup for the interface is as follows: TXD of the 80C 51/80L 51 drives SCLK of the AD 5308/AD 5318/AD 5328, while RXD drives the serial data line of the part. The $\overline{\text { SYNC }}$ signal is again derived from a bit programmable pin on the port. In this case port line P3.3 is used. When data is to be transmitted to the AD 5308/AD 5318/ AD 5328, P3.3 is taken low. The 80C 51/80L 51 transmits data only in 8-bit bytes; thus only eight falling clock edges occur in the transmit cycle. To load data to the DAC , P3.3 is left low after the first eight bits are transmitted, and a second write cycle is initiated to transmit the second byte of data. P3.3 is taken high following the completion of this cycle. The 80C 51/80L 51 outputs the serial data in a format which has the LSB first. T he AD 5308/AD 5318/AD 5328 requires its data with the M SB as the first bit received. The 80C 51/80L 51 transmit routine should take this into account.

Figure 15. 80C51/80L51 to AD5308/AD5318/AD5328 Interface

MICROWIRE to AD 5308/AD5318/AD5328Interface

Figure 16 shows an interface between the AD 5308/AD 5318/ AD 5328 and any M ICROWIRE compatible device. Serial data is shifted out on the falling edge of the serial clock, SK and is clocked into the AD 5308/AD 5318/A D 5328 on the rising edge of SK, which corresponds to the falling edge of the DAC's SCLK.

*ADDITIONAL PINS OMITTED FOR CLARITY
Figure 16. 80C51/80L51 to AD5308/AD5318/AD5328 Interface

AD5308/AD5318/AD5328

APPLICATIONS
 Typical Application Circuit

The AD 5308/AD 5318/AD 5328 can be used with a wide range of reference voltages where the devices offer full, one-quadrant multiplying capability over a reference range of 0.25 V to $V_{D D} / 2$. M ore typically, these devices are used with a fixed, precision reference voltage. Suitable references for 5 V operation are the AD 780, AD R 381 and REF 192 (2.5 V references). F or 2.5 V operation, a suitable external reference would be the AD 589 and AD 1580 (1.2 V bandgap references). Figure 17 shows a typical setup for the AD5308/ AD 5318/AD 5328 when using an external reference.

Figure 17. AD5308/AD5318/AD5328 Using a 2.5 V External Reference

Opto-Isolated Interfacefor Process Control Applications

The AD 5308/AD 5318/AD 5328 have a versatile 3 -wire serial interface making them ideal for generating accurate voltages in process control and industrial applications. Due to noise, safety requirements, or distance, it may be necessary to isolate the AD 5308/AD 5318/AD 5328 from the controller. This can easily be achieved by using opto-isolators that will provide isolation in excess of 3 kV . The actual data rate achieved may be limited by the type of optocouplers chosen. The serial loading structure of the AD 5308/AD 5318/AD 5328 makes them ideally suited for use in opto-isolated applications. Figure 19 shows an opto-isolated interface to the AD 5308/AD 5318/AD 5328 where DIN, SCLK, and SYNC are driven from optocouplers. The power supply to the part also needs to be isolated. This is done by using a transformer. On the DAC side of the transformer, a 5 V regulator provides the 5 V supply required for the AD5308/AD5318/ AD 5328.

Figure 19. AD5308/AD5318/AD5328 in an Opto-Isolated Interface

DecodingMultiple AD 5308/AD5318/AD5328s

The SYNC pin on the AD 5308/AD 5318/AD 5328 can be used in applications to decode a number of DAC s. In this application, all the DACs in the system receive the same serial clock and serial data, but only the SYNC to one of the devices will be active at any one time allowing access to four channels in this sixteen-channel system. The 74 HC 139 is used as a 2-to-4 line decoder to address any of the DACs in the system. To prevent timing errors from occurring, the enable input should be brought to its inactive state while the coded address inputs are changing state. Figure 20 shows a diagram of a typical setup for decoding multiple AD 5308 devices in a system.

AD5308/AD5318/AD5328

Figure 20. Decoding Mutiple AD5308 Devices in a system

Power Supply Bypassing and Grounding

In any circuit where accuracy is important, careful consideration of the power supply and ground return layout helps to ensure the rated performance. The printed circuit board on which the AD 5308/AD 5318/AD 5328 is mounted should be designed so that the analog and digital sections are separated, and confined to certain areas of the board. If the AD 5308/ AD 5318/AD 5328 is in a system where multiple devices require an AGND to DGND connection, the connection should be made at one point only. The star ground point should be established as close as possible to the device. The AD 5308/ AD 5318/AD 5328 should have ample supply bypassing of $10 \mu \mathrm{~F}$
in parallel with $0.1 \mu \mathrm{~F}$ on the supply located as close to the package as possible, ideally right up against the device. The $10 \mu \mathrm{~F}$ capacitors are the tantalum bead type. The $0.1 \mu \mathrm{~F}$ capacitor should have low Effective Series Resistance (ESR) and Effective Series Inductance (ESI), like the common ceramic types that provide a low impedance path to ground at high frequencies to handle transient currents due to internal logic switching.
The power supply lines of the AD 5308/AD 5318/AD 5328 should use as large a trace as possible to provide low impedance paths and reduce the effects of glitches on the power supply line. Fast switching signals such as clocks should be shielded with digital ground to avoid radiating noise to other parts of the board, and should never be run near the reference inputs. Avoid crossover of digital and analog signals. T races on opposite sides of the board should run at right angles to each other. This reduces the effects of feedthrough through the board. A microstrip technique is by far the best, but not always possible with a double-sided board. In this technique, the component side of the board is dedicated to ground plane while signal traces are placed on the solder side.

Tablev. Overview of AD53xx Serial Devices

Part No.	Resolution	DNL	$\mathbf{V}_{\text {Ref }}$ Pins	SettlingTime	Interface	Package	Pins
SINGLES							
AD 5300	8	± 0.25	$0\left(V_{\text {REF }}=V_{\text {DD }}\right)$	$4 \mu \mathrm{~s}$	SPI	SOT-23, microSOIC	6, 8
AD 5310	10	± 0.5	$0\left(V_{\text {REF }}=V_{\text {DD }}\right)$	6μ	SPI	SOT-23, microSOIC	6, 8
AD 5320	12	± 1.0	$0\left(\mathrm{~V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{DD}}\right)$	$8 \mu \mathrm{~s}$	SPI	SOT-23, microSOIC	6, 8
AD 5301	8	± 0.25	$0\left(V_{\text {REF }}=V_{\text {DD }}\right)$	$6 \mu \mathrm{~s}$	2-Wire	SOT-23, microSOIC	6, 8
AD 5311	10	± 0.5	$0\left(V_{\text {REF }}=V_{\text {DD }}\right)$	$7 \mu \mathrm{~s}$	2-Wire	SOT-23, microSOIC	6, 8
AD 5321	12	± 1.0	$0\left(\mathrm{~V}_{\text {REF }}=\mathrm{V}_{\mathrm{DD}}\right)$	$8 \mu \mathrm{~s}$	2-Wire	SOT-23, microSOIC	6, 8
DUALS							
AD 5302	8	± 0.25	2	$6 \mu s$	SPI	microSOIC	8
AD 5312	10	± 0.5	2	$7 \mu \mathrm{~s}$	SPI	microSOIC	8
AD 5322	12	± 1.0	2	$8 \mu \mathrm{~s}$	SPI	microSOIC	8
AD 5303	8	± 0.25	2	6μ	SPI	TSSOP	16
AD 5313	10	± 0.5	2	7μ	SPI	TSSOP	16
AD 5323	12	± 1.0	2	$8 \mu \mathrm{~s}$	SPI	TSSOP	16
QUADS							
AD 5304	8	± 0.25	1	$6 \mu s$	SPI	microSOIC	10
AD 5314	10	± 0.5	1	$7 \mu \mathrm{~s}$	SPI	microSOIC	10
AD 5324	12	± 1.0	1	8μ	SPI	microSOIC	10
AD 5305	8	± 0.25	1	$6 \mu \mathrm{~s}$	2-Wire	microSOIC	10
AD 5315	10	± 0.5	1	7μ	2-Wire	microSOIC	10
AD 5325	12	± 1.0	1	$8 \mu \mathrm{~s}$	2-Wire	microSOIC	10
AD 5306	8	± 0.25	4	$6 \mu \mathrm{~s}$	2-Wire	TSSOP	16
AD 5316	10	± 0.5	4	$7 \mu \mathrm{~s}$	2-W ire	TSSOP	16
AD 5326	12	± 1.0	4	$8 \mu \mathrm{~s}$	2-W ire	TSSOP	16
AD 5307	8	± 0.25	2	$6 \mu \mathrm{~s}$	SPI	TSSOP	16
AD 5317	10	± 0.5	2	$7 \mu s$	SPI	TSSOP	16
AD 5327	12	± 1.0	2	$8 \mu \mathrm{~s}$	SPI	TSSOP	16
OCTALS							
AD 5308	8	± 0.25	2	$6 \mu \mathrm{~s}$	SPI	TSSOP	16
AD 5318	10	± 0.5	2	7μ	SPI	TSSOP	16
AD 5328	12	± 1.0	2	$8 \mu \mathrm{~s}$	SPI	TSSOP	16

Visit our web-page at http://www.analog.com/support/standard_linear/selection_guides/AD 53xx.html
Table VI. Overview of AD 53xx Parallel Devices

Part No.	Resolution	DNL	V $\mathbf{R E F}$ Pins	SettlingTime	Additional Pin Functions				Package	Pins
SINGLES					BUF	GAIN	HBEN	$\overline{\mathrm{CLR}}$		
AD 5330	8	± 0.25	1	$6 \mu \mathrm{~s}$	\checkmark	\checkmark		\checkmark	TSSOP	20
AD 5331	10	± 0.5	1	$7 \mu \mathrm{~s}$		\checkmark		\checkmark	TSSOP	20
AD 5340	12	± 1.0	1	$8 \mu \mathrm{~s}$	\checkmark	\checkmark		\checkmark	TSSOP	24
AD 5341	12	± 1.0	1	$8 \mu \mathrm{~s}$	\checkmark	\checkmark	\checkmark	\checkmark	TSSOP	20
DUALS										
AD 5332	8	± 0.25	2	$6 \mu \mathrm{~s}$				\checkmark	TSSOP	20
AD 5333	10	± 0.5	2	$7 \mu \mathrm{~s}$	\checkmark	\checkmark		\checkmark	TSSOP	24
AD 5342	12	± 1.0	2	$8 \mu \mathrm{~s}$	\checkmark	\checkmark		\checkmark	TSSOP	28
AD 5343	12	± 1.0	1	$8 \mu \mathrm{~s}$			\checkmark	\checkmark	TSSOP	20
QUADS										
AD 5334	8	± 0.25	2	$6 \mu \mathrm{~s}$		\checkmark		\checkmark	TSSOP	24
AD 5335	10	± 0.5	2	$7 \mu \mathrm{~s}$			\checkmark	\checkmark	TSSOP	24
AD 5336	10	± 0.5	4	$7 \mu \mathrm{~s}$		\checkmark		\checkmark	T SSOP	28
AD 5344	12	± 1.0	4	$8 \mu \mathrm{~s}$					TSSOP	28

AD5308/AD5318/AD5328

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

16-Lead Small Outline Package (TSSOP)

(RU-16)

