GENERAL DESCRIPTION

N -channel enhancement mode logic level field-effect power transistor in a plastic envelope available in TO220AB and SOT404 . Using 'trench' technology which features very low on-state resistance. It is intended for use in automotive and general purpose switching applications.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MAX.	UNIT
$\mathrm{V}_{\text {DS }}$	Drain-source voltage	100	V
I_{D}	Drain current (DC)	23	A
$\mathrm{P}_{\text {tot }}$	Total power dissipation	99	W
T_{j}	Junction temperature	175	${ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	Drain-source on-state resistance $\quad \mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}$	75	$\mathrm{m} \Omega$
	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	55	$\mathrm{m} \Omega$

PINNING

TO220AB \& SOT404

PIN	DESCRIPTION
1	gate
2	drain
3	source
tab $/ \mathrm{mb}$	drain

PIN CONFIGURATION

SYMBOL

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{DS}	Drain-source voltage	-	-	100	V
$\mathrm{~V}_{\mathrm{DGR}}$	Drain-gate voltage	$\mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega$	-	100	V
$\pm \mathrm{V}_{\mathrm{GS}}$	Gate-source voltage	-	-	15	V
I_{D}	Drain current (DC)	$\mathrm{T}_{\mathrm{mb}}=25{ }^{\circ} \mathrm{C}$	-	23	A
I_{D}	Drain current (DC)	$\mathrm{T}_{\mathrm{mb}}=100{ }^{\circ} \mathrm{C}$	-	16	A
I_{DM}	Drain current (pulse peak value)	$\mathrm{T}_{\mathrm{mb}}=25{ }^{\circ} \mathrm{C}$	-	91	A
$\mathrm{P}_{\text {tot }}$	Total power dissipation	$\mathrm{T}_{\mathrm{mb}}=25{ }^{\circ} \mathrm{C}$	-	98	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage \& operating temperature	-	-55	175	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCES

SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	UNIT
$\mathrm{R}_{\text {th } j \text {-mb }}$	Thermal resistance junction to mounting base	-		1.5	K/W
$\mathrm{R}_{\text {th } j-\mathrm{a}}$	Thermal resistance junction to ambient(TO220AB)	in free air	60	-	K/W
$\mathrm{R}_{\text {th } \mathrm{j}-\mathrm{a}}$	Thermal resistance junction to ambient(SOT404)	Minimum footprint, FR4 board	50	-	K/W

TrenchMOS ${ }^{\text {TM }}$ transistor

STATIC CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{V}_{\text {(BR)DSs }}$ $\mathrm{V}_{\mathrm{GS}(\mathrm{T})}$	Drain-source breakdown voltage Gate threshold voltage		100	-	-	V
		$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=0.25 \mathrm{~mA} ; \mathrm{T}_{\mathrm{j}}=-55^{\circ} \mathrm{C}$	89	-	-	V
		$\begin{array}{ll}V_{D S}=V_{G S} ; \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA} & \\ & \mathrm{~T}_{\mathrm{j}}=175^{\circ} \mathrm{C} \\ & \mathrm{T}_{\mathrm{j}}=-55^{\circ} \mathrm{C}\end{array}$	1	1.5	2.0	V
			0.5	-	-	V
			-	-	2.3	V
$\mathrm{I}_{\text {DSS }}$	Zero gate voltage drain current	$\mathrm{V}_{\text {SS }}=100 \mathrm{~V} ; \mathrm{V}_{G S}=0 \mathrm{~V} ;$	-	0.05	10	$\mu \mathrm{A}$
		, $\mathrm{T}_{\mathrm{j}}=175^{\circ} \mathrm{C}$	-	-	500	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{GSS}}$ $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	Gate source leakage current Drain-source on-state resistance	$\mathrm{V}_{\mathrm{GS}}= \pm 10 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}$	-	2	100	nA
		$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}$	-	60	75	$\mathrm{m} \Omega$
		$T_{j}=175^{\circ} \mathrm{C}$	-	-	188	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}$	-	55	72	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}$	-	61	84	$\mathrm{m} \Omega$

DYNAMIC CHARACTERISTICS

$\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$ unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & \mathrm{C}_{\text {oss }} \\ & \mathrm{C}_{\text {rss }} \end{aligned}$	Input capacitance Output capacitance Feedback capacitance	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	-	$\begin{gathered} 1278 \\ 129 \\ 88 \end{gathered}$	$\begin{gathered} \hline 1704 \\ 155 \\ 120 \end{gathered}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{don}} \\ & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{doff}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	Turn-on delay time Turn-on rise time Turn-off delay time Turn-off fall time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V} ; \mathrm{R}_{\text {load }}=1.2 \Omega ; \\ & \mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{G}}=10 \Omega \end{aligned}$	-	$\begin{gathered} 13 \\ 120 \\ 58 \\ 57 \end{gathered}$	$\begin{gathered} 20 \\ 168 \\ 87 \\ 86 \end{gathered}$	ns ns ns ns
L_{d}	Internal drain inductance	Measured from drain lead 6 mm from package to centre of die	-	4.5	-	nH
L_{d}	Internal drain inductance	Measured from contact screw on tab to centre of die(TO220AB)	-	3.5	-	nH
L_{d}	Internal drain inductance	Measured from upper edge of drain tab to centre of die(SOT404)	-	2.5	-	nH
L_{s}	Internal source inductance	Measured from source lead to source bond pad	-	7.5	-	nH

REVERSE DIODE LIMITING VALUES AND CHARACTERISTICS
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I_{DR}	Continuous reverse drain		-	-	23	A
$\mathrm{I}_{\mathrm{DRM}}$	current	Pulsed reverse drain current				
V_{SD}	Diode forward voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	-	92	A
		$\mathrm{I}_{\mathrm{F}}=23 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	0.85	1.2	V
t_{rr}	Reverse recovery time	$\mathrm{I}_{\mathrm{F}}=23 \mathrm{~A} ;-\mathrm{dI} \mathrm{I}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} ;$	-	63	-	ns
Q_{rr}	Reverse recovery charge	$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V} ; \mathrm{V}_{\mathrm{R}}=30 \mathrm{~V}$	-	0.22	-	$\mu \mathrm{C}$

AVALANCHE LIMITING VALUE

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{W}_{\mathrm{DSs}}{ }^{1}$	Drain-source non-repetitive unclamped inductive turn-off energy	$\mathrm{I}_{\mathrm{D}}=14.2 \mathrm{~A} ; \mathrm{V}_{\mathrm{DD}} \leq 25 \mathrm{~V} ;$ $\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{GS}}=50 \Omega ; \mathrm{T}_{\mathrm{mb}}=25{ }^{\circ} \mathrm{C}$	-	-	100	mJ

Fig.1. Normalised power dissipation. $P D \%=100 \cdot P_{D} / P_{D 25^{\circ} \mathrm{C}}=f\left(T_{m b}\right)$

Fig.2. Normalised continuous drain current. $I D \%=100 \cdot I_{D} / I_{D 25^{\circ} \mathrm{C}}=f\left(T_{m b}\right)$; conditions: $V_{G S} \geq 5 \mathrm{~V}$

Fig.3. Safe operating area. $T_{m b}=25^{\circ} \mathrm{C}$ $I_{D} \& I_{D M}=f\left(V_{D S}\right) ; I_{D M}$ single pulse; parameter t_{p}

Fig.4. Transient thermal impedance.
$Z_{t h j-m b}=f(t) ;$ parameter $D=t_{p} / T$

[^0]

Fig.5. Typical output characteristics, $T_{j}=25^{\circ} \mathrm{C}$. $I_{D}=f\left(V_{D S}\right)$; parameter $V_{G S}$

Fig.6. Typical on-state resistance, $T_{j}=25^{\circ} \mathrm{C}$. $R_{D S(O N)}=f\left(V_{G S}\right)$; conditions: $I_{D}=25 \mathrm{~A}$;

Fig.7. Typical on-state resistance, $T_{j}=25^{\circ} \mathrm{C}$. $R_{D S(O N)}=f\left(V_{G S}\right)$; conditions: $I_{D}=25 \mathrm{~A}$;

Fig.8. Typical on-state resistance, $T_{j}=25{ }^{\circ} \mathrm{C}$.
$R_{D S(O N)}=f\left(V_{G S}\right)$; conditions: $I_{D}=25 \mathrm{~A}$;

Fig.9. Typical transfer characteristics. $I_{D}=f\left(V_{G S}\right)$; conditions: $V_{D S}=25 \mathrm{~V}$; parameter T_{j}

Fig.10. Typical transconductance, $T_{j}=25^{\circ} \mathrm{C}$. $g_{f s}=f\left(I_{D}\right)$; conditions: $V_{D S}=25 \mathrm{~V}$

TrenchMOS ${ }^{\text {TM }}$ transistor Logic level FET

Fig.11. Normalised drain-source on-state resistance. $a=R_{D S(O N)} / R_{D S(O N) 25{ }^{\circ} \mathrm{C}}=f\left(T_{j}\right) ; I_{D}=25 A ; V_{G S}=5 \mathrm{~V}$

Fig.12. Gate threshold voltage.
$V_{G S(T O)}=f\left(T_{j}\right)$; conditions: $I_{D}=1 \mathrm{~mA} ; V_{D S}=V_{G S}$

Fig.13. Sub-threshold drain current.
$I_{D}=f\left(V_{G S}\right) ;$ conditions: $T_{j}=25^{\circ} \mathrm{C} ; V_{D S}=V_{G S}$

Fig.14. Typical capacitances, $C_{\text {iss }}, C_{\text {oss, }}, C_{\text {rss }}$. $C=f\left(V_{D S}\right)$; conditions: $V_{G S}=0 \mathrm{~V} ; f=1 \mathrm{MHz}$

Fig.15. Typical turn-on gate-charge characteristics. $V_{G S}=f\left(Q_{G}\right)$; conditions: $I_{D}=25$ A; parameter $V_{D S}$

Fig.16. Typical reverse diode current. $I_{F}=f\left(V_{S D S}\right)$; conditions: $V_{G S}=0 \mathrm{~V}$; parameter T_{j}

Fig.17. Normalised avalanche energy rating. $W_{D S s} \%=f\left(T_{m b}\right)$; conditions: $I_{D}=75 \mathrm{~A}$

Fig.18. Avalanche energy test circuit.

$$
W_{D S S}=0.5 \cdot L I_{D}^{2} \cdot B V_{D S S} /\left(B V_{D S S}-V_{D D}\right)
$$

Fig.19. Maximum permissible repetitive avalanche current $\left(I_{A V}\right)$ versus avalanche time $\left(t_{A V}\right)$ for unclamped inductive loads.

Fig.20. Switching test circuit.

TrenchMOS ${ }^{\text {TM }}$ transistor

MECHANICAL DATA

Fig.21. SOT78 (TO220AB); pin 2 connected to mounting base.

Notes

1. Observe the general handling precautions for electrostatic-discharge sensitive devices (ESDs) to prevent damage to MOS gate oxide.
2. Refer to mounting instructions for SOT78 (TO220) envelopes.
3. Epoxy meets UL94 V0 at 1/8".

MECHANICAL DATA

Fig.22. SOT404 surface mounting package. Centre pin connected to mounting base.

Notes

1. This product is supplied in anti-static packaging. The gate-source input must be protected against static discharge during transport or handling.
2. Refer to SMD Footprint Design and Soldering Guidelines, Data Handbook SC18.
3. Epoxy meets UL94 V0 at 1/8".

TrenchMOS ${ }^{\text {TM }}$ transistor

MOUNTING INSTRUCTIONS

Dimensions in mm

Fig.23. SOT404 : soldering pattern for surface mounting.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information	Where application information is given, it is advisory and does not form part of the specification. © Philips Electronics N.V. 2000 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

[^0]: 1 For maximum permissible repetitive avalanche current see fig.18.

